中文版 | English
Title

Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals

Author
Corresponding AuthorLi,Chen; Li,Longqiu
Publication Years
2022
DOI
Source Title
ISSN
0890-6955
EISSN
1879-2170
Volume172
Abstract

Despite being the most promising third-generation semiconductor materials, the deformation and removal mechanisms of gallium nitride (GaN) single crystals involved in the ultra-precision machining process are not well revealed and few investigations on the grinding of GaN crystals have been reported, which hinders the development of high-efficiency and ultra-precision manufacturing of GaN components. Self-rotating grinding tests of GaN crystals were performed, and the results indicated that abrasive size had a significant influence on the surface morphology and roughness, in comparison with wheel rotational speed and feed speed. As the abrasive size decreased from 18 μm to 1.6 μm, the brittle fracture-dominated surface gradually changed to a full-plastic surface without brittle fractures and cracks. An ultra-smooth surface with a roughness of 1 nm in Sa was acquired using #8000 grinding wheels and a spark-out time of 10 min, which indicated that the machining technology of “grinding instead of polishing” of GaN crystals was achieved in this work. The plastic deformation mechanism of GaN crystals induced by ultra-precision machining was investigated using a cross-sectional TEM method and MD simulation, and both experimental and simulation results indicated that the plastic deformation involved in the scratching process was caused by the formation of polycrystalline nanocrystals, high-angle lattice misorientations, and close-to-atomic-scale defects, including stacking faults, dislocations and serious lattice distortions, along with a small amount of amorphous and phase transitions. There was an obvious delamination phenomenon in the plastic deformation zone. This research enhances the understanding of the deformation and damage mechanisms of GaN crystals involved in the ultra-precision machining process and is of significance for achieving the high-efficiency and high-accuracy manufacturing of GaN components.

Keywords
URL[Source Record]
Indexed By
SCI ; EI
Language
English
Important Publications
ESI Hot Papers ; ESI Highly Cited Papers
SUSTech Authorship
Others
Funding Project
National Natural Science Foundation of China[52005134,51975154] ; China Postdoctoral Science Foun-dation[2020M670901] ; Heilongjiang Postdoctoral Fund[LBH-Z20016]
WOS Research Area
Engineering
WOS Subject
Engineering, Manufacturing ; Engineering, Mechanical
WOS Accession No
WOS:000779697200001
Publisher
EI Accession Number
20214711193700
EI Keywords
Cubic boron nitride ; Diamonds ; Efficiency ; Grinding (machining) ; Grinding wheels ; III-V semiconductors ; Industrial research ; Industrial robots ; Morphology ; Plastic deformation ; Precision engineering ; Single crystals ; Surface morphology ; Surface roughness ; Wide band gap semiconductors
ESI Classification Code
Gems:482.2.1 ; Machining Operations:604.2 ; Semiconducting Materials:712.1 ; Robot Applications:731.6 ; Ceramics:812.1 ; Engineering Research:901.3 ; Industrial Engineering:912.1 ; Production Engineering:913.1 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Crystalline Solids:933.1 ; Materials Science:951
ESI Research Field
ENGINEERING
Scopus EID
2-s2.0-85119265275
Data Source
Scopus
Citation statistics
Cited Times [WOS]:114
Document TypeJournal Article
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/256855
DepartmentDepartment of Mechanical and Energy Engineering
Affiliation
1.School of Mechatronics Engineering,Harbin Institute of Technology,Harbin,150001,China
2.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
Recommended Citation
GB/T 7714
Li,Chen,Piao,Yinchuan,Meng,Binbin,et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals[J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE,2022,172.
APA
Li,Chen,Piao,Yinchuan,Meng,Binbin,Hu,Yuxiu,Li,Longqiu,&Zhang,Feihu.(2022).Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals.INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE,172.
MLA
Li,Chen,et al."Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals".INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE 172(2022).
Files in This Item:
There are no files associated with this item.
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Li,Chen]'s Articles
[Piao,Yinchuan]'s Articles
[Meng,Binbin]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[Li,Chen]'s Articles
[Piao,Yinchuan]'s Articles
[Meng,Binbin]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Li,Chen]'s Articles
[Piao,Yinchuan]'s Articles
[Meng,Binbin]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.