[1] HIROKAWA N, NODA Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics [J]. Physiol Rev, 2008, 88(3): 1089-118.
[2] HIROKAWA N, NIWA S, TANAKA Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease [J]. Neuron, 2010, 68(4): 610-38.
[3] GUILLAUD L, EL-AGAMY S E, OTSUKI M, et al. Anterograde Axonal Transport in Neuronal Homeostasis and Disease [J]. Front Mol Neurosci, 2020, 13: 556175.
[4] SWEENEY H L, HOLZBAUR E L F. Motor Proteins [J]. Cold Spring Harb Perspect Biol, 2018, 10(5).
[5] NABB A T, FRANK M, BENTLEY M. Smart motors and cargo steering drive kinesin-mediated selective transport [J]. Mol Cell Neurosci, 2020, 103: 103464.
[6] SLEIGH J N, ROSSOR A M, FELLOWS A D, et al. Axonal transport and neurological disease [J]. Nat Rev Neurol, 2019, 15(12): 691-703.
[7] D V R, S R T, P S M. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility [J]. Cell, 1985, 42(1).
[8] LAWRENCE C J, DAWE R K, CHRISTIE K R, et al. A standardized kinesin nomenclature [J]. J Cell Biol, 2004, 167(1): 19-22.
[9] H M, M S, K K, et al. All kinesin superfamily protein, KIF, genes in mouse and human [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(13).
[10] HIROKAWA N, TANAKA Y. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases [J]. Exp Cell Res, 2015, 334(1): 16-25.
[11] HIROKAWA N, NODA Y, TANAKA Y, et al. Kinesin superfamily motor proteins and intracellular transport [J]. Nat Rev Mol Cell Biol, 2009, 10(10): 682-96.
[12] TORRES J Z, SUMMERS M K, PETERSON D, et al. The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly [J]. Cell, 2011, 147(6): 1309-23.
[13] HOEPFNER S, SEVERIN F, CABEZAS A, et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B [J]. Cell, 2005, 121(3): 437-50.
[14] OKADA Y, YAMAZAKI H, SEKINE-AIZAWA Y, et al. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors [J]. Cell, 1995, 81(5): 769-80.
[15] GUEDES-DIAS P, HOLZBAUR E L F. Axonal transport: Driving synaptic function [J]. Science, 2019, 366(6462).
[16] MAEDER C I, SAN-MIGUEL A, WU E Y, et al. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking [J]. Traffic, 2014, 15(3): 273-91.
[17] GONDRE-LEWIS M C, PARK J J, LOH Y P. Cellular mechanisms for the biogenesis and transport of synaptic and dense-core vesicles [J]. Int Rev Cell Mol Biol, 2012, 299: 27-115.
[18] RIZALAR F S, ROOSEN D A, HAUCKE V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation [J]. Neuron, 2021, 109(1): 27-41.
[19] HALL D H, HEDGECOCK E M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans [J]. Cell, 1991, 65(5): 837-47.
[20] YONEKAWA Y, HARADA A, OKADA Y, et al. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice [J]. J Cell Biol, 1998, 141(2): 431-41.
[21] KONDO M, TAKEI Y, HIROKAWA N. Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment [J]. Neuron, 2012, 73(4): 743-57.
[22] PENNINGS M, SCHOUTEN M I, VAN GAALEN J, et al. KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia [J]. Eur J Hum Genet, 2020, 28(1): 40-9.
[23] NICITA F, GINEVRINO M, TRAVAGLINI L, et al. Heterozygous KIF1A variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders [J]. J Med Genet, 2020.
[24] BARKUS R V, KLYACHKO O, HORIUCHI D, et al. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides [J]. Mol Biol Cell, 2008, 19(1): 274-83.
[25] LO K Y, KUZMIN A, UNGER S M, et al. KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons [J]. Neurosci Lett, 2011, 491(3): 168-73.
[26] HUO L, YUE Y, REN J, et al. The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A [J]. Structure, 2012, 20(9): 1550-61.
[27] KLOPFENSTEIN D R, TOMISHIGE M, STUURMAN N, et al. Role of phosphatidylinositol (4, 5) bisphosphate organization in membrane transport by the Unc104 kinesin motor [J]. Cell, 2002, 109(3): 347-58.
[28] OKADA Y, HIROKAWA N. A processive single-headed motor: kinesin superfamily protein KIF1A [J]. Science, 1999, 283(5405): 1152-7.
[29] OKADA Y, HIROKAWA N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin [J]. Proc Natl Acad Sci U S A, 2000, 97(2): 640-5.
[30] HIROKAWA N, NITTA R, OKADA Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A [J]. Nat Rev Mol Cell Biol, 2009, 10(12): 877-84.
[31] TOMISHIGE M, KLOPFENSTEIN D R, VALE R D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization [J]. Science, 2002, 297(5590): 2263-7.
[32] SOPPINA V, VERHEY K J. The family-specific K-loop influences the microtubule on-rate but not the superprocessivity of kinesin-3 motors [J]. Mol Biol Cell, 2014, 25(14): 2161-70.
[33] ZHANG K, FOSTER H E, RONDELET A, et al. Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated [J]. Cell, 2017, 169(7): 1303-14 e18.
[34] YANG S, TIWARI P, LEE K H, et al. Cryo-EM structure of the inhibited (10S) form of myosin II [J]. Nature, 2020, 588(7838): 521-5.
[35] LEE J R, SHIN H, CHOI J, et al. An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A [J]. EMBO J, 2004, 23(7): 1506-15.
[36] REN J, WANG S, CHEN H, et al. Coiled-coil 1-mediated fastening of the neck and motor domains for kinesin-3 autoinhibition [J]. Proc Natl Acad Sci U S A, 2018, 115(51): E11933-e42.
[37] STUCCHI R, PLUCINSKA G, HUMMEL J J A, et al. Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca(2+)/CaM Controls DCV Binding and Liprin-alpha/TANC2 Recruits DCVs to Postsynaptic Sites [J]. Cell Rep, 2018, 24(3): 685-700.
[38] HAMMOND J W, CAI D, BLASIUS T L, et al. Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition [J]. PLoS Biol, 2009, 7(3): e72.
[39] MILLER K E, DEPROTO J, KAUFMANN N, et al. Direct observation demonstrates that Liprinalpha is required for trafficking of synaptic vesicles [J]. Curr Biol, 2005, 15(7): 684-9.
[40] HSU C C, MONCALEANO J D, WAGNER O I. Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons [J]. Neuroscience, 2011, 176: 39-52.
[41] WAGNER O I, ESPOSITO A, KöHLER B, et al. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans [J]. Proc Natl Acad Sci U S A, 2009, 106(46): 19605-10.
[42] SHIN H, WYSZYNSKI M, HUH K H, et al. Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha [J]. J Biol Chem, 2003, 278(13): 11393-401.
[43] ATHERTON J, HUMMEL J J, OLIERIC N, et al. The mechanism of kinesin inhibition by kinesin-binding protein [J]. Elife, 2020, 9.
[44] WOZNIAK M J, MELZER M, DORNER C, et al. The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein [J]. BMC Cell Biol, 2005, 6: 35.
[45] NIWA S, TANAKA Y, HIROKAWA N. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD [J]. Nat Cell Biol, 2008, 10(11): 1269-79.
[46] OZYAVUZ CUBUK P. Goldberg-Shprintzen Syndrome Associated with a Novel Variant in the KIFBP Gene [J]. Mol Syndromol, 2021, 12(4): 240-3.
[47] SOLON A L, TAN Z, SCHUTT K L, et al. Kinesin-binding protein remodels the kinesin motor to prevent microtubule binding [J]. Sci Adv, 2021, 7(47): eabj9812.
[48] KEVENAAR J T, BIANCHI S, VAN SPRONSEN M, et al. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity [J]. Curr Biol, 2016, 26(7): 849-61.
[49] MIYOSHI J, TAKAI Y. Dual role of DENN/MADD (Rab3GEP) in neurotransmission and neuroprotection [J]. Trends Mol Med, 2004, 10(10): 476-80.
[50] WADA M, NAKANISHI H, SATOH A, et al. Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins [J]. J Biol Chem, 1997, 272(7): 3875-8.
[51] TANAKA M, MIYOSHI J, ISHIZAKI H, et al. Role of Rab3 GDP/GTP exchange protein in synaptic vesicle trafficking at the mouse neuromuscular junction [J]. Mol Biol Cell, 2001, 12(5): 1421-30.
[52] PATEL M R, SHEN K. RSY -1 is a local inhibitor of presynaptic assembly in C. elegans [J]. Science, 2009, 323(5920): 1500-3.
[53] SUDHOF T C. The presynaptic active zone [J]. Neuron, 2012, 75(1): 11-25.
[54] SCHOCH S, GUNDELFINGER E D. Molecular organization of the presynaptic active zone [J]. Cell Tissue Res, 2006, 326(2): 379-91.
[55] WU X, CAI Q, SHEN Z, et al. RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation [J]. Mol Cell, 2019, 73(5): 971-84 e5.
[56] SPANGLER S A, HOOGENRAAD C C. Liprin-alpha proteins: scaffold molecules for synapse maturation [J]. Biochem Soc Trans, 2007, 35(Pt 5): 1278-82.
[57] ZHEN M, JIN Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans [J]. Nature, 1999, 401(6751): 371-5.
[58] KITTELMANN M, HEGERMANN J, GONCHAROV A, et al. Liprin-alpha/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans [J]. J Cell Biol, 2013, 203(5): 849-63.
[59] DAI Y, TARU H, DEKEN S L, et al. SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS [J]. Nat Neurosci, 2006, 9(12): 1479-87.
[60] OWALD D, FOUQUET W, SCHMIDT M, et al. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila [J]. J Cell Biol, 2010, 188(4): 565-79.
[61] LENIHAN J A, SAHA O, HEIMER-MCGINN V, et al. Decreased Anxiety-Related Behaviour but Apparently Unperturbed NUMB Function in Ligand of NUMB Protein-X (LNX) 1/2 Double Knockout Mice [J]. Mol Neurobiol, 2017, 54(10): 8090-109.
[62] GOODWIN P R, JUO P. The scaffolding protein SYD-2/Liprin-alpha regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons [J]. PLoS One, 2013, 8(1): e54763.
[63] LI L, TIAN X, ZHU M, et al. Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons [J]. J Neurosci, 2014, 34(25): 8474-87.
[64] EDWARDS S L, YORKS R M, MORRISON L M, et al. Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Vesicle Transport in Caenorhabditiselegans [J]. Genetics, 2015, 201(1): 91-116.
[65] EDWARDS S L, MORRISON L M, YORKS R M, et al. UNC-16 (JIP3) Acts Through SynapseAssembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons [J]. Genetics, 2015, 201(1): 117-41.
[66] LIANG M, XIE X, PAN J, et al. Structural basis of the target-binding mode of the G proteincoupled receptor kinase-interacting protein in the regulation of focal adhesion dynamics [J]. J Biol Chem, 2019, 294(15): 5827-39.
[67] SALA K, CORBETTA A, MINICI C, et al. The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase [J]. Sci Rep, 2019, 9(1): 13530.
[68] WENTZEL C, SOMMER J E, NAIR R, et al. mSYD1A, a mammalian synapse-defective-1 protein, regulates synaptogenic signaling and vesicle docking [J]. Neuron, 2013, 78(6): 1012-23.
[69] CHENG Y, GRIGORIEFF N, PENCZEK P A, et al. A primer to single-particle cryo-electron microscopy [J]. Cell, 2015, 161(3): 438-49.
[70] ADRIAN M, DUBOCHET J, LEPAULT J, et al. Cryo-electron microscopy of viruses [J]. Nature, 1984, 308(5954): 32-6.
[71] CHENG Y. Single-particle cryo-EM-How did it get here and where will it go [J]. Science, 2018, 361(6405): 876-80.
[72] EARL L A, FALCONIERI V, MILNE J L S, et al. Cryo-EM: beyond the microscope [J]. Current Opinion in Structural Biology, 2017, 46: 71-8.
[73] MURATA K, WOLF M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules [J]. Biochim Biophys Acta Gen Subj, 2018, 1862(2): 324-34.
[74] MUNK C, MUTT E, ISBERG V, et al. An online resource for GPCR structure determination and analysis [J]. Nat Methods, 2019, 16(2): 151-62.
[75] SHEN J, ZHANG D, FU Y , et al. Cryo-EM structures of human bradykinin receptor-Gq proteins complexes [J]. Nat Commun, 2022, 13(1): 714.
[76] MARTYNOWYCZ M W, SHIRIAEVA A, GE X, et al. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP [J]. Proc Natl Acad Sci U S A, 2021, 118(36).
[77] DANELIUS E, GONEN T. Protein and Small Molecule Structure Determination by the CryoEM Method MicroED [J]. Methods Mol Biol, 2021, 2305: 323-42.
[78] YAO H, SONG Y, CHEN Y, et al. Molecular Architecture of the SARS-CoV -2 Virus [J]. Cell, 2020, 183(3): 730-8 e13.
[79] TURK M, BAUMEISTER W. The promise and the challenges of cryo-electron tomography [J]. FEBS Lett, 2020, 594(20): 3243-61.
[80] NI T, FROSIO T, MENDONCA L, et al. High-resolution in situ structure determination by cryoelectron tomography and subtomogram averaging using emClarity [J]. Nat Protoc, 2022, 17(2): 421-44.
[81] DANDEY V P, WEI H, ZHANG Z, et al. Spotiton: New features and applications [J]. J Struct Biol, 2018, 202(2): 161-9.
[82] NAKANE T, KOTECHA A, SENTE A, et al. Single-particle cryo-EM at atomic resolution [J]. Nature, 2020, 587(7832): 152-6.
[83] STRACK R. Cryo-EM goes atomic [J]. Nat Methods, 2020, 17(12): 1175.
[84] NAYDENOVA K, JIA P, RUSSO C J. Cryo-EM with sub-1 Å specimen movement [J]. Science, 2020, 370(6513): 223-6.
[85] KIM H U, JUNG H S. Cryo-EM as a powerful tool for drug discovery: recent structural based studies of SARS-CoV -2 [J]. Appl Microsc, 2021, 51(1): 13.
[86] KOIFMAN N, TALMON Y. Cryogenic Electron Microscopy Methodologies as Analytical Tools for the Study of Self-Assembled Pharmaceutics [J]. Pharmaceutics, 2021, 13(7).
[87] CAO Y, WANG J, JIAN F, et al. Omicron escapes the majority of existing SARS-CoV -2 neutralizing antibodies [J]. Nature, 2021.
[88] 李敏,杨谦.一种高效构建同源重组 DNA 片段的方法--融合 PCR [J].中国生物工程杂志, 2007, (08): 53-8.
[89] LI S, XIE T, LIU P, et al. Structural insights into the assembly and substrate selectivity of human SPT -ORMDL3 complex [J]. Nat Struct Mol Biol, 2021, 28(3): 249-57.
[90] NITTA R, OKADA Y, HIROKAWA N. Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin [J]. Nat Struct Mol Biol, 2008, 15(10): 1067-75.
[91] NITTA R, KIKKAWA M, OKADA Y, et al. KIF1A alternately uses two loops to bind microtubules [J]. Science, 2004, 305(5684): 678-83.
[92] HISANAGA S, MUROFUSHI H, OKUHARA K, et al. The molecular structure of adrenal medulla kinesin [J]. Cell Motil Cytoskeleton, 1989, 12(4): 264-72.
[93] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold [J]. Nature, 2021, 596(7873): 583-9.
[94] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome [J]. Nature, 2021, 596(7873): 590-6.
[95] SCARFF C A, CARRINGTON G, CASAS-MAO D, et al. Structure of the shutdown state of myosin-2 [J]. Nature, 2020, 588(7838): 515-20
Edit Comment