[1] KLEINE OSTMANN T, NAGATSUMA T. A review on terahertz communications research[J]. Journal of Infrared Millimeter and Terahertz Waves, 2011, 32(2):143-71.
[2] FUKASAWA R. Terahertz imaging: Widespread industrial application in non-destructive inspection and chemical analysis[J]. IEEE Transactions on Terahertz Science And Technology, 2015, 5(6):1121-7.
[3] NAGATSUMA T, DUCOURNAU G, RENAUD C. Advances in terahertz communications accelerated by photonics[J]. Nat Photonics, 2016, 10(6):371-9.
[4] WUN JM, LAI CH, CHEN NW, et al. Flip-chip bonding packaged THz photodiode with broadband high-power performance[J]. IEEE Photonics Technology Letters, 2014, 26(24):2462-4.
[5] KöHLER R, TREDICUCCI A, BELTRAM F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885):156-9.
[6] RöSCH M, SCALARI G, BECK M, et al. Octave-spanning semiconductor laser[J]. Nat Photonics, 2015, 9(1):42-7.
[7] FISCHER B M, HOFFMANN M, HELM H, et al. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Optics Express, 2005, 13(14): 5205-15.
[8] CROWE T W, MATTAUCH R J, ROSER H, et al. GaAs Schottky diodes for THz mixing applications[J]. Proceedings of the IEEE, 1992, 80(11):1827-41.
[9] RICHARDS P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1):1-24.
[10] SCHELLER M, YARBOROUGH J M, MOLONEY J V, et al. Room temperature continuous wave milliwatt terahertz source[J]. Optics Express, 2010, 18(26): 27112-7.
[11] JIANG WX, LUO CY, GE S, et al. An Optically Controllable Transformation‐dc Illusion Device[J]. Advanced Materials, 2015, 27(31):4628-33.
[12] KAPITANOVA P V, MASLOVSKI S I, SHADRIVOV I V, et al. Controlling split-ring resonators with light[J]. Applied Physics Letters, 2011, 99(25): 251914.
[13] CHEN Y, GONG XL, GAI JG. Progress and challenges in transfer of large‐area graphene films[J]. Advanced Science, 2016, 3(8):1500343.
[14] ALAM M Z, SCHULZ S A, UPHAM J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material[J]. Nat Photonics, 2018, 12(2):79-83.
[15] WANG Z, DONG Z, GU Y, et al. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures[J]. Nature Communications, 2016, 7(1):1-8.
[16] CUI TJ, QI MQ, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Applications, 2014, 3(10): e218-e218.
[17] GAO X, YANG WL, MA HF, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas Propagation, 2018, 66(11):6086-95.
[18] RATNI B, DE LUSTRAC A, PIAU G P, et al. Active metasurface for reconfigurable reflectors[J]. Applied Physics A, 2018, 124(2):1-8.
[19] CHAU K, ELEZZABI A. Photonic anisotropic magnetoresistance in dense Co particle ensembles[J]. Physical Review Letters, 2006, 96(3):033903.
[20] CHAU K, JOHNSON M, ELEZZABI A. Electron-spin-dependent terahertz light transport in spintronic-plasmonic media[J]. Physical Review Letters, 2007, 98(13):133901.
[21] STRAATSMA C, JOHNSON M, ELEZZABI A. Terahertz spinplasmonics in random ensembles of Ni and Co microparticles[J]. Journal of Applied Physics, 2012, 112(10):103904.
[22] SINGH R, AZAD A K, JIA Q, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Optics Letters, 2011, 36(7):1230-2.
[23] LEE K S, KANG R, SON B, et al. All-optical THz wave switching based on CH3NH3PbI3 perovskites[J]. Scientific Reports, 2016, 6(1):1-6.
[24] LAI W, GE C, YUAN H, et al. NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Silicon‐PEDOT: PSS‐Perovskite Hybrid System[J]. Adv Mater Technol, 2020, 5(4):1901090.
[25] LEE S H, CHOI M, KIM T-T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials,2012, 11(11): 936-41.
[26] JEONG Y G, BERNIEN H, KYOUNG J S, et al. Electrical control of terahertz nano antennas on VO2 thin film[J]. Optics Express, 2011, 19(22):21211-5.
[27] KEISER G, KARL N, LIU P, et al. Nonlinear terahertz metamaterials with active electrical control[J]. Applied Physics Letters, 2017, 111(12):121101.
[28] BAI Y, CHEN K, LIU H, et al. Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect[J]. Optics Communications, 2015, 353:83-9.
[29] CAO Y, GAN S, GENG Z, et al. Optically tuned terahertz modulator based on annealed multilayer MoS2[J]. Scientific Reports, 2016, 6(1): 1-9.
[30] ZHANG B, LV L, HE T, et al. Active terahertz device based on optically controlled organometal halide perovskite[J]. Applied Physics Letters, 2015, 107(9):81-5.
[31] ZHANG B, ZHONG L, HE T, et al. Photo-Doped Active Electrically Controlled Terahertz Modulator[J]. Journal of Electronic Science and Technology, 2015, 13(2):113-6.
[32] KAKENOV N, TAKAN T, OZKAN V A, et al. Electrically controlled terahertz spatial light modulators with graphene arrays[J]. IEEE MTT-S International Microwave Symposium, 2016:1-4.
[33] LI Q, TIAN Z, ZHANG X, et al. Dual control of active graphene–silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-53.
[34] MA Z, GENG Z, FAN Z, et al. Modulators for terahertz communication: the current state of the art[J]. Research(Wash D C), 2019, 2019:6482975.
[35] MASLOV A, CITRIN D. Quantum-well optical modulator at terahertz frequencies[J]. Journal of Applied Physics, 2003, 93(12):10131-3.
[36] CARTER S, BIRKEDAL V, WANG C, et al. Quantum coherence in an optical modulator[J]. Science, 2005, 310(5748):651-3.
[37] WINNERL S, SCHOMBURG E, BRANDL S, et al. Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations[J]. Applied Physics Letters, 2000, 77(9): 1259-61.
[38] FEISE M, CITRIN D. Semiclassical theory of terahertz multiple-harmonic generation in semiconductor superlattices[J]. Applied Physics Letters, 1999, 75(22):3536-8.
[39] JI J, ZHOU S, ZHANG J, et al. Electrical terahertz modulator based on photo-excited ferroelectric superlattice[J]. Scientific Reports, 2018, 8(1):1-9.
[40] LI J. Terahertz modulator using photonic crystals[J]. Optics Communications, 2007, 269(1):98-101.
[41] FAN F, HOU Y, JIANG ZW, et al. Terahertz modulator based on insulator–metal transition in photonic crystal waveguide[J]. Applied Optics, 2012, 51(20):4589-96.
[42] SINGH R, CAO W, AL NAIB I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17):171101.
[43] MANJAPPA M, SRIVASTAVA Y K, CONG L, et al. Active photoswitching of sharp Fano resonances in THz metadevices[J]. Advanced Materials, 2017, 29(3):1603355.
[44] CONG L, PITCHAPPA P, WANG N, et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J].Research(Wash D C), 2019, 2019:7084251.
[45] CHEN HT, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3):148-51.
[46] CONG L, CAO W, ZHANG X, et al. A perfect metamaterial polarization rotator [J]. Applied Physics Letters, 2013, 103(17):171107.
[47] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-271.
[48] MILOT R L, EPERON G E, SNAITH H J, et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films[J]. Adv Funct Mater, 2015, 25(39):6218-27.
[49] YAN Y, LI B, GUO W, et al. Vanadium based materials as electrode materials for high performance supercapacitors[J]. Journal of Power Sources, 2016, 329: 148-69.
[50] SINGH R, AZAD A K, JIA Q, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Optics Letters, 2011, 36(7):1230-2.
[51] CSELYUSZKA N, SEČUJSKI M, ENGHETA N, et al. Temperature-controlled acoustic surface waves[J]. New J Phys, 2016, 18(10):103006.
[52] CHEN HT, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3):148-51.
[53] 丛龙庆. 主动式太赫兹超材料器件综述[J]. 中国激光, 2021, 48(19):157-173.
[54] XIE Z, WANG X, YE J, et al. Spatial terahertz modulator[J]. Scientific Reports, 2013, 3:1-4.
[55] WEIS P, GARCIA POMAR J L, HOH M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10): 9118-24.
[56] OKADA T, TANAKA K. Photo-designed terahertz devices[J]. Scientific Reports, 2011, 1(1):1-5.
[57] ZHANG B, HE T, SHEN J, et al. Conjugated polymer-based broadband terahertz wave modulator[J]. Optics Letters, 2014, 39(21):6110-3.
[58] DEGL INNOCENTI R, KINDNESS S J, BEERE H E, et al. All-integrated terahertz modulators[J]. Nanophotonics, 2018, 7(1):127-44.
[59] WEIS P, GARCIA POMAR J L, HOEH M, et al. Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene[J]. ACS Nano, 2012, 6(10):9118-24.
[60] WEN QY, TIAN W, MAO Q, et al. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2014, 4(1):1-5.
[61] CAO Y, GAN S, GENG Z, et al. Optically tuned terahertz modulator based on annealed multilayer MoS2[J]. Scientific Reports, 2016, 6(1):1-9.
[62] CONG L, SRIVASTAVA Y K, SOLANKI A, et al. Perovskite as a platform for active flexible metaphotonic devices[J]. ACS Photonics, 2017, 4(7):1595-601.
[63] MANJAPPA M, SRIVASTAVA Y K, SOLANKI A, et al. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices[J]. Advanced Materials, 2017, 29(32):1605881.
[64] CHANANA A, ZHAI Y, BANIYA S, et al. Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites[J]. Nature Communications, 2017, 8(1):1-8.
[65] DEGL INNOCENTI R, KINDNESS S J, BEERE H E, et al. All-integrated terahertz modulators [J]. Nanophotonics, 2018, 7(1):127-44.
[66] KLEINE OSTMANN T, DAWSON P, PIERZ K, et al. Room-temperature operation of an electrically driven terahertz modulator[J]. Applied Physics Letters, 2004, 84(18):3555-7.
[67] CHEN HT, PADILLA W J, ZIDE J M, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119):597-600.
[68] SENSALE RODRIGUEZ B, YAN R, KELLY M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3(1):1-7.
[69] SENSALE RODRIGUEZ B, YAN R, RAFIQUE S, et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2012, 12(9):4518-22.
[70] PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Adv Opt Mater, 2016, 4(4):541-7.
[71] MA F, LIN Y S, ZHANG X, et al. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array[J]. Light: Science and Applications, 2014, 3(5):e171-e171.
[72] HAN Z, KOHNO K, FUJITA H, et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator[J]. Optics Express, 2014, 22(18): 21326-39.
[73] LI J, SHAH CM, WITHAYACHUMNANKUL W, et al. Mechanically tunable terahertz metamaterials[J]. Applied Physics Letters, 2013, 102(12):121101.
[74] YANG R, LOU J, ZHANG F, et al. Active Control of Terahertz Toroidal Excitations in a Hybrid Metasurface with an Electrically Biased Silicon Layer [J]. Advanced Photonics Research, 2021, 2(12):2100103.
[75] LIU X, CHEN H, LIANG S, et al. Ultrabroadband electrically controllable terahertz modulation based on GaAs Schottky diode structure[J]. APL Photonics, 2021, 6(11):111301.
[76] CONG L, XU N, GU J, et al. Highly flexible broadband terahertz metamaterial quarter‐wave plate[J]. Laser Photonics Reviews, 2014, 8(4):626-32.
[77] PADILLA W J, TAYLOR A J, HIGHSTRETE C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Physical Review Letters, 2006, 96(10):107401.
[78] ZHOU J, CHOWDHURY D R, ZHAO R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review B, 2012, 86(3):035448.
[79] YANG Q, GU J, WANG D, et al. Efficient flat metasurface lens for terahertz imaging[J]. Optics Express, 2014, 22(21):25931-9.
[80] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947):1518-21.
[81] WEN QY, ZHANG HW, YANG QH, et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability[J]. Applied Physics Letters, 2010, 97(2): 021111.
[82] GOLDFLAM M, DRISCOLL T, CHAPLER B, et al. Reconfigurable gradient index using VO2 memory metamaterials[J]. Applied Physics Letters, 2011, 99(4):044103.
[83] SHREKENHAMER D, CHEN WC, PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17):177403.
[84] JU L, GENG B, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-4.
[85] GAO W, SHU J, REICHEL K, et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Applied Physics Letters, 2014, 14(3):1242-8.
[86] MIAO Z, WU Q, LI X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 2015, 5(4): 041027.
[87] CHEN HT, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3):148-51.
[88] CHEN HT, O'HARA J F, AZAD A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nat Photonics, 2008, 2(5):295-8.
[89] ZHANG S, ZHOU J, PARK Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3(1):1-7.
[90] LOU J, LIANG J, YU Y, et al. Silicon‐based terahertz meta‐devices for electrical modulation of Fano resonance and transmission amplitude[J]. Adv Opt Mater, 2020, 8(19):2000449.
[91] CHAN WL, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.
[92] CHEN SC, DU LH, MENG K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-4.
[93] ZHAO J, WILLIAMS K, ZHANG XC, et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light: Science and Applications, 2019, 8(1):1-8.
[94] SHANG Y, WANG X, SUN W, et al. Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction[J]. Optics Express, 2019, 27(10):14725-35.
[95] WATTS C M, SHREKENHAMER D, MONTOYA J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nat Photonics, 2014, 8(8):605-9.
[96] STANTCHEV R I, PHILLIPS D B, HOBSON P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8):989-92.
[97] XIONG LY, ZHANG B, JI HY, et al. Active Optically Controlled Broadband Terahertz Modulator Based on Fe3O4 Nanoparticles[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(5):535-40.
[98] HU FR, WANG H, LI T, et al. Photo-induced high modulation depth terahertz modulator based on VOx-Si-VOx hybrid structure[J]. Journal of Physics D-Applied Physics, 2019, 52(17):175103.
[99] 孙丹丹, 陈智, 文岐业, 等. 二氧化钒薄膜低温制备及其太赫兹调制特性研究[J]. 物理学报, 2013, 62(101):401-406.
[100]YAN RS, SENSALE-RODRIGUEZ B, LIU L, et al. A new class of electrically tunable metamaterial terahertz modulators[J]. Optics Express, 2012, 20(27): 28664-71.
[101]WEN QY, TIAN W, MAO Q, et al. Graphene based all-optical Spatial Terahertz Modulator[J]. Scientific Reports,2014, 4(1):1-5.
[102]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
[103]姜丽丽, 鲁雄. 石墨烯制备方法及研究进展[J]. 功能材料, 2012, 43(23):3185-9.
[104]张子邦, 陆天傲, 彭军政, 等. 傅里叶单像素成像技术与应用[J]. 红外与激光工程, 2019, 48(6):22-40.
[105]李亚巍. 钙钛矿结构薄膜的制备和性能研究[D]. 开封:河南大学, 2003.
Edit Comment