中文版 | English
Title

基于复合结构的太赫兹调制器的制备及其应用

Alternative Title
FABRICATION AND APPLICATION OF TERAHERTZ MODULATORS BASED ON HYBRID STRUCTURE
Author
Name pinyin
LU Yelong
School number
12032293
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
刘文权
Mentor unit
中国科学院深圳先进技术研究院
Publication Years
2022-05-13
Submission date
2022-06-25
University
南方科技大学
Place of Publication
深圳
Abstract

  作为一个重要的前沿科技领域,太赫兹技术所展现出的波谱特性和应用潜力已受到广泛关注。高性能太赫兹调制器件是太赫兹技术走向实际应用的关键技术之一。近年来,超材料/超表面、石墨烯、二氧化钒和钙钛矿等功能材料为太赫兹调制器件的研发注入了新的动力。然而,当前针对上述材料的复合结构太赫兹调制器件及其应用的研究较少,仍有诸多问题亟待解决。鉴于此,本文设计、加工和测试了三种复合结构太赫兹调制器,分别是光电混合调制硅基超表面、石墨烯/二氧化钒复合薄膜和钙钛矿薄膜复合结构,并将石墨烯/二氧化钒复合薄膜应用于太赫兹单像素成像。太赫兹调制和成像结果验证了设计的有效性和可行性。本文完成的主要工作如下:

  提出了光电混合调制硅基太赫兹超表面。设计了兼有偶极子共振和电学偏置功能的叉指电极复合结构,并采用阴影掩膜蒸发工艺将此结构蒸镀于硅基底表面,由此制备了太赫兹超表面器件。利用太赫兹时域光谱系统测试了该超表面在不同光激励和偏置电压下的太赫兹响应。实验表明,在光电混合调制下,该超表面的太赫兹透射率随激励光强增大而减小,但随偏置电压的升高而增大。这可能是电极附近的电场对硅基底光生载流子的局域调节所致。这种双向调制特性有望用于复杂的太赫兹波传输调控。

  提出了石墨烯/二氧化钒复合薄膜太赫兹光控调制器。通过磁溅射法制备了二氧化钒薄膜,并采用湿法转移把单层石墨烯转移至该薄膜上进行复合。实验表明,与二氧化钒薄膜相比,复合薄膜的调制性能提高80%。进一步地,将应用于太赫兹单像素成像。结果显示,基于该复合薄膜的成像信噪比提升了近20%

  初步探索了钙钛矿超表面太赫兹调制器。采用一步溶液旋涂法制备了钙钛矿薄膜,并将其与超表面进行复合。实验显示,在光电混合调制下,该复合结构对太赫兹波也具有双向调控作用。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-05
References List

[1] KLEINE OSTMANN T, NAGATSUMA T. A review on terahertz communications research[J]. Journal of Infrared Millimeter and Terahertz Waves, 2011, 32(2):143-71.
[2] FUKASAWA R. Terahertz imaging: Widespread industrial application in non-destructive inspection and chemical analysis[J]. IEEE Transactions on Terahertz Science And Technology, 2015, 5(6):1121-7.
[3] NAGATSUMA T, DUCOURNAU G, RENAUD C. Advances in terahertz communications accelerated by photonics[J]. Nat Photonics, 2016, 10(6):371-9.
[4] WUN JM, LAI CH, CHEN NW, et al. Flip-chip bonding packaged THz photodiode with broadband high-power performance[J]. IEEE Photonics Technology Letters, 2014, 26(24):2462-4.
[5] KöHLER R, TREDICUCCI A, BELTRAM F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885):156-9.
[6] RöSCH M, SCALARI G, BECK M, et al. Octave-spanning semiconductor laser[J]. Nat Photonics, 2015, 9(1):42-7.
[7] FISCHER B M, HOFFMANN M, HELM H, et al. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Optics Express, 2005, 13(14): 5205-15.
[8] CROWE T W, MATTAUCH R J, ROSER H, et al. GaAs Schottky diodes for THz mixing applications[J]. Proceedings of the IEEE, 1992, 80(11):1827-41.
[9] RICHARDS P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1):1-24.
[10] SCHELLER M, YARBOROUGH J M, MOLONEY J V, et al. Room temperature continuous wave milliwatt terahertz source[J]. Optics Express, 2010, 18(26): 27112-7.
[11] JIANG WX, LUO CY, GE S, et al. An Optically Controllable Transformation‐dc Illusion Device[J]. Advanced Materials, 2015, 27(31):4628-33.
[12] KAPITANOVA P V, MASLOVSKI S I, SHADRIVOV I V, et al. Controlling split-ring resonators with light[J]. Applied Physics Letters, 2011, 99(25): 251914.
[13] CHEN Y, GONG XL, GAI JG. Progress and challenges in transfer of large‐area graphene films[J]. Advanced Science, 2016, 3(8):1500343.
[14] ALAM M Z, SCHULZ S A, UPHAM J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material[J]. Nat Photonics, 2018, 12(2):79-83.
[15] WANG Z, DONG Z, GU Y, et al. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures[J]. Nature Communications, 2016, 7(1):1-8.
[16] CUI TJ, QI MQ, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Applications, 2014, 3(10): e218-e218.
[17] GAO X, YANG WL, MA HF, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas Propagation, 2018, 66(11):6086-95.
[18] RATNI B, DE LUSTRAC A, PIAU G P, et al. Active metasurface for reconfigurable reflectors[J]. Applied Physics A, 2018, 124(2):1-8.
[19] CHAU K, ELEZZABI A. Photonic anisotropic magnetoresistance in dense Co particle ensembles[J]. Physical Review Letters, 2006, 96(3):033903.
[20] CHAU K, JOHNSON M, ELEZZABI A. Electron-spin-dependent terahertz light transport in spintronic-plasmonic media[J]. Physical Review Letters, 2007, 98(13):133901.
[21] STRAATSMA C, JOHNSON M, ELEZZABI A. Terahertz spinplasmonics in random ensembles of Ni and Co microparticles[J]. Journal of Applied Physics, 2012, 112(10):103904.
[22] SINGH R, AZAD A K, JIA Q, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Optics Letters, 2011, 36(7):1230-2.
[23] LEE K S, KANG R, SON B, et al. All-optical THz wave switching based on CH3NH3PbI3 perovskites[J]. Scientific Reports, 2016, 6(1):1-6.
[24] LAI W, GE C, YUAN H, et al. NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Silicon‐PEDOT: PSS‐Perovskite Hybrid System[J]. Adv Mater Technol, 2020, 5(4):1901090.
[25] LEE S H, CHOI M, KIM T-T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials,2012, 11(11): 936-41.
[26] JEONG Y G, BERNIEN H, KYOUNG J S, et al. Electrical control of terahertz nano antennas on VO2 thin film[J]. Optics Express, 2011, 19(22):21211-5.
[27] KEISER G, KARL N, LIU P, et al. Nonlinear terahertz metamaterials with active electrical control[J]. Applied Physics Letters, 2017, 111(12):121101.
[28] BAI Y, CHEN K, LIU H, et al. Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect[J]. Optics Communications, 2015, 353:83-9.
[29] CAO Y, GAN S, GENG Z, et al. Optically tuned terahertz modulator based on annealed multilayer MoS2[J]. Scientific Reports, 2016, 6(1): 1-9.
[30] ZHANG B, LV L, HE T, et al. Active terahertz device based on optically controlled organometal halide perovskite[J]. Applied Physics Letters, 2015, 107(9):81-5.
[31] ZHANG B, ZHONG L, HE T, et al. Photo-Doped Active Electrically Controlled Terahertz Modulator[J]. Journal of Electronic Science and Technology, 2015, 13(2):113-6.
[32] KAKENOV N, TAKAN T, OZKAN V A, et al. Electrically controlled terahertz spatial light modulators with graphene arrays[J]. IEEE MTT-S International Microwave Symposium, 2016:1-4.
[33] LI Q, TIAN Z, ZHANG X, et al. Dual control of active graphene–silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-53.
[34] MA Z, GENG Z, FAN Z, et al. Modulators for terahertz communication: the current state of the art[J]. Research(Wash D C), 2019, 2019:6482975.
[35] MASLOV A, CITRIN D. Quantum-well optical modulator at terahertz frequencies[J]. Journal of Applied Physics, 2003, 93(12):10131-3.
[36] CARTER S, BIRKEDAL V, WANG C, et al. Quantum coherence in an optical modulator[J]. Science, 2005, 310(5748):651-3.
[37] WINNERL S, SCHOMBURG E, BRANDL S, et al. Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations[J]. Applied Physics Letters, 2000, 77(9): 1259-61.
[38] FEISE M, CITRIN D. Semiclassical theory of terahertz multiple-harmonic generation in semiconductor superlattices[J]. Applied Physics Letters, 1999, 75(22):3536-8.
[39] JI J, ZHOU S, ZHANG J, et al. Electrical terahertz modulator based on photo-excited ferroelectric superlattice[J]. Scientific Reports, 2018, 8(1):1-9.
[40] LI J. Terahertz modulator using photonic crystals[J]. Optics Communications, 2007, 269(1):98-101.
[41] FAN F, HOU Y, JIANG ZW, et al. Terahertz modulator based on insulator–metal transition in photonic crystal waveguide[J]. Applied Optics, 2012, 51(20):4589-96.
[42] SINGH R, CAO W, AL NAIB I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17):171101.
[43] MANJAPPA M, SRIVASTAVA Y K, CONG L, et al. Active photoswitching of sharp Fano resonances in THz metadevices[J]. Advanced Materials, 2017, 29(3):1603355.
[44] CONG L, PITCHAPPA P, WANG N, et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J].Research(Wash D C), 2019, 2019:7084251.
[45] CHEN HT, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3):148-51.
[46] CONG L, CAO W, ZHANG X, et al. A perfect metamaterial polarization rotator [J]. Applied Physics Letters, 2013, 103(17):171107.
[47] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-271.
[48] MILOT R L, EPERON G E, SNAITH H J, et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films[J]. Adv Funct Mater, 2015, 25(39):6218-27.
[49] YAN Y, LI B, GUO W, et al. Vanadium based materials as electrode materials for high performance supercapacitors[J]. Journal of Power Sources, 2016, 329: 148-69.
[50] SINGH R, AZAD A K, JIA Q, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Optics Letters, 2011, 36(7):1230-2.
[51] CSELYUSZKA N, SEČUJSKI M, ENGHETA N, et al. Temperature-controlled acoustic surface waves[J]. New J Phys, 2016, 18(10):103006.
[52] CHEN HT, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3):148-51.
[53] 丛龙庆. 主动式太赫兹超材料器件综述[J]. 中国激光, 2021, 48(19):157-173.
[54] XIE Z, WANG X, YE J, et al. Spatial terahertz modulator[J]. Scientific Reports, 2013, 3:1-4.
[55] WEIS P, GARCIA POMAR J L, HOH M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10): 9118-24.
[56] OKADA T, TANAKA K. Photo-designed terahertz devices[J]. Scientific Reports, 2011, 1(1):1-5.
[57] ZHANG B, HE T, SHEN J, et al. Conjugated polymer-based broadband terahertz wave modulator[J]. Optics Letters, 2014, 39(21):6110-3.
[58] DEGL INNOCENTI R, KINDNESS S J, BEERE H E, et al. All-integrated terahertz modulators[J]. Nanophotonics, 2018, 7(1):127-44.
[59] WEIS P, GARCIA POMAR J L, HOEH M, et al. Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene[J]. ACS Nano, 2012, 6(10):9118-24.
[60] WEN QY, TIAN W, MAO Q, et al. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2014, 4(1):1-5.
[61] CAO Y, GAN S, GENG Z, et al. Optically tuned terahertz modulator based on annealed multilayer MoS2[J]. Scientific Reports, 2016, 6(1):1-9.
[62] CONG L, SRIVASTAVA Y K, SOLANKI A, et al. Perovskite as a platform for active flexible metaphotonic devices[J]. ACS Photonics, 2017, 4(7):1595-601.
[63] MANJAPPA M, SRIVASTAVA Y K, SOLANKI A, et al. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices[J]. Advanced Materials, 2017, 29(32):1605881.
[64] CHANANA A, ZHAI Y, BANIYA S, et al. Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites[J]. Nature Communications, 2017, 8(1):1-8.
[65] DEGL INNOCENTI R, KINDNESS S J, BEERE H E, et al. All-integrated terahertz modulators [J]. Nanophotonics, 2018, 7(1):127-44.
[66] KLEINE OSTMANN T, DAWSON P, PIERZ K, et al. Room-temperature operation of an electrically driven terahertz modulator[J]. Applied Physics Letters, 2004, 84(18):3555-7.
[67] CHEN HT, PADILLA W J, ZIDE J M, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119):597-600.
[68] SENSALE RODRIGUEZ B, YAN R, KELLY M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3(1):1-7.
[69] SENSALE RODRIGUEZ B, YAN R, RAFIQUE S, et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2012, 12(9):4518-22.
[70] PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Adv Opt Mater, 2016, 4(4):541-7.
[71] MA F, LIN Y S, ZHANG X, et al. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array[J]. Light: Science and Applications, 2014, 3(5):e171-e171.
[72] HAN Z, KOHNO K, FUJITA H, et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator[J]. Optics Express, 2014, 22(18): 21326-39.
[73] LI J, SHAH CM, WITHAYACHUMNANKUL W, et al. Mechanically tunable terahertz metamaterials[J]. Applied Physics Letters, 2013, 102(12):121101.
[74] YANG R, LOU J, ZHANG F, et al. Active Control of Terahertz Toroidal Excitations in a Hybrid Metasurface with an Electrically Biased Silicon Layer [J]. Advanced Photonics Research, 2021, 2(12):2100103.
[75] LIU X, CHEN H, LIANG S, et al. Ultrabroadband electrically controllable terahertz modulation based on GaAs Schottky diode structure[J]. APL Photonics, 2021, 6(11):111301.
[76] CONG L, XU N, GU J, et al. Highly flexible broadband terahertz metamaterial quarter‐wave plate[J]. Laser Photonics Reviews, 2014, 8(4):626-32.
[77] PADILLA W J, TAYLOR A J, HIGHSTRETE C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Physical Review Letters, 2006, 96(10):107401.
[78] ZHOU J, CHOWDHURY D R, ZHAO R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review B, 2012, 86(3):035448.
[79] YANG Q, GU J, WANG D, et al. Efficient flat metasurface lens for terahertz imaging[J]. Optics Express, 2014, 22(21):25931-9.
[80] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947):1518-21.
[81] WEN QY, ZHANG HW, YANG QH, et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability[J]. Applied Physics Letters, 2010, 97(2): 021111.
[82] GOLDFLAM M, DRISCOLL T, CHAPLER B, et al. Reconfigurable gradient index using VO2 memory metamaterials[J]. Applied Physics Letters, 2011, 99(4):044103.
[83] SHREKENHAMER D, CHEN WC, PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17):177403.
[84] JU L, GENG B, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-4.
[85] GAO W, SHU J, REICHEL K, et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Applied Physics Letters, 2014, 14(3):1242-8.
[86] MIAO Z, WU Q, LI X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 2015, 5(4): 041027.
[87] CHEN HT, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3):148-51.
[88] CHEN HT, O'HARA J F, AZAD A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nat Photonics, 2008, 2(5):295-8.
[89] ZHANG S, ZHOU J, PARK Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3(1):1-7.
[90] LOU J, LIANG J, YU Y, et al. Silicon‐based terahertz meta‐devices for electrical modulation of Fano resonance and transmission amplitude[J]. Adv Opt Mater, 2020, 8(19):2000449.
[91] CHAN WL, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.
[92] CHEN SC, DU LH, MENG K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-4.
[93] ZHAO J, WILLIAMS K, ZHANG XC, et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light: Science and Applications, 2019, 8(1):1-8.
[94] SHANG Y, WANG X, SUN W, et al. Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction[J]. Optics Express, 2019, 27(10):14725-35.
[95] WATTS C M, SHREKENHAMER D, MONTOYA J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nat Photonics, 2014, 8(8):605-9.
[96] STANTCHEV R I, PHILLIPS D B, HOBSON P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8):989-92.
[97] XIONG LY, ZHANG B, JI HY, et al. Active Optically Controlled Broadband Terahertz Modulator Based on Fe3O4 Nanoparticles[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(5):535-40.
[98] HU FR, WANG H, LI T, et al. Photo-induced high modulation depth terahertz modulator based on VOx-Si-VOx hybrid structure[J]. Journal of Physics D-Applied Physics, 2019, 52(17):175103.
[99] 孙丹丹, 陈智, 文岐业, 等. 二氧化钒薄膜低温制备及其太赫兹调制特性研究[J]. 物理学报, 2013, 62(101):401-406.
[100]YAN RS, SENSALE-RODRIGUEZ B, LIU L, et al. A new class of electrically tunable metamaterial terahertz modulators[J]. Optics Express, 2012, 20(27): 28664-71.
[101]WEN QY, TIAN W, MAO Q, et al. Graphene based all-optical Spatial Terahertz Modulator[J]. Scientific Reports,2014, 4(1):1-5.
[102]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
[103]姜丽丽, 鲁雄. 石墨烯制备方法及研究进展[J]. 功能材料, 2012, 43(23):3185-9.
[104]张子邦, 陆天傲, 彭军政, 等. 傅里叶单像素成像技术与应用[J]. 红外与激光工程, 2019, 48(6):22-40.
[105]李亚巍. 钙钛矿结构薄膜的制备和性能研究[D]. 开封:河南大学, 2003.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TN761
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/342777
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
鲁叶龙. 基于复合结构的太赫兹调制器的制备及其应用[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032293-鲁叶龙-中国科学院深圳(4448KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[鲁叶龙]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[鲁叶龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[鲁叶龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.