[1] 中华人民共和国国务院. 国务院关于印发“十三五”国家战略性新兴产业发展规划的通知[EB/OL]. 2016
[2016-12-19]. http://www.gov.cn/zhengce/content/2016-12/19/content_515 0090.htm.
[2] 中华人民共和国国家统计局. 《战略性新兴产业分类(2018)》(国家统计局令第 23 号)[EB/OL]. 2018
[2018-11-26]. http://www.stats.gov.cn/tjgz/tzgb/201811/t20181126_1635848. html.
[3] 中华人民共和国国家发展和改革委员会. 发展改革委修订发布《产业结构调整指导目录(2019 年本)》[EB/OL]. 2019
[2019-11-06]. http://www.gov.cn/xinwen/2019-11/06/content _5449193.htm.
[4] 杨宏强. 势如旭日东升的中国内资 PCB 产业——2017 年全球 PCB 百强企业分析[J]. 印制电路信息, 2018, 26(11): 6-11.
[5] 杨宏强. 2018 年全球 PCB 产业分析[J]. 印制电路信息, 2019, 27(10): 1-5.
[6] 杨宏强. 2019 年全球 PCB 产业分析[J]. 印制电路信息, 2020, 28(10): 1-4.
[7] 龚永林. 看 2020 年度世界顶级 PCB 制造商排名见中国 PCB 产业越来越大[J]. 印制电路信息, 2021, 29(09): 1-6.
[8] Institute for Printed Circuits. IPC-A-600J Acceptability of Printed Boards[S]. Bannockburn: Institute for Printed Circuits, 2016.
[9] CHANG P C, CHEN L Y, FAN C Y. A case-based evolutionary model for defect classification of printed circuit board images[J]. Journal of Intelligent Manufacturing, 2008, 19(2): 203-214.
[10] PUTERA S I, IBRAHIM Z. Printed circuit board defect detection using mathematical morphology and matlab image processing tools[C]//2010 2nd international conference on education technology and computer: volume 5. IEEE, 2010: V5-359.
[11] 熊邦书, 熊振姣, 莫燕, 等. 线路板缺陷的图像检测方法[J]. 半导体光电, 2012, 33(02):333-306.
[12] RAY S, MUKHERJEE J. A hybrid approach for detection and classification of the defects on printed circuit board[J]. International Journal of Computer Applications, 2015, 121(12).
[13] 王栋, 解则晓. 基于形态学的 PCB 缺陷快速检测技术[J]. 计算机科学, 2016, 43(S1): 184-186+225.
[14] CE W, et al. Pcb defect detection using opencv with image subtraction method[C]//2017 International Conference on Information Management and Technology (ICIMTech). IEEE, 2017: 204-209.
[15] LI Y, LI S. Defect detection of bare printed circuit boards based on gradient direction information entropy and uniform local binary patterns[J]. Circuit World, 2017.
[16] GAIDHANE V H, HOTE Y V, SINGH V. An efficient similarity measure approach for pcb surface defect detection[J]. Pattern Analysis and Applications, 2018, 21(1): 277-289.
[17] ZHANG Z, WANG X, LIU S, et al. An automatic recognition method for pcb visual defects [C]//2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, 2018: 138-142.
[18] HASSANIN A A I, ABD EL-SAMIE F E, EL BANBY G M. A real-time approach for automatic defect detection from pcbs based on surf features and morphological operations[J]. Multimedia Tools and Applications, 2019, 78(24): 34437-34457.
[19] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[20] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37 (9): 1904-1916.
[21] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[22] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28: 91-99.
[23] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
[24] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[25] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Springer, 2016: 21-37.
[26] REDMON J, FARHADI A. Yolo9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[27] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[28] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[29] TAN M, PANG R, LE Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[30] TAKADA Y, SHIINA T, USAMI H, et al. Defect detection and classification of electronic circuit boards using keypoint extraction and cnn features[C]//The Ninth International Conferences on Pervasive Patterns and Applications Defect: volume 100. 2017: 113-116.
[31] GHOSH B, BHUYAN M, SASMAL P, et al. Defect classification of printed circuit boards based on transfer learning[C]//2018 IEEE Applied Signal Processing Conference (ASPCON). IEEE, 2018: 245-248.
[32] DENG Y S, LUO A C, DAI M J. Building an automatic defect verification system using deep neural network for pcb defect classification[C]//2018 4th International Conference on Frontiers of Signal Processing (ICFSP). IEEE, 2018: 145-149.
[33] LI Y T, GUO J I. A vgg-16 based faster rcnn model for pcb error inspection in industrial aoi applications[C]//2018 IEEE international conference on consumer electronics-Taiwan (ICCETW). IEEE, 2018: 1-2.
[34] ZHANG C, SHI W, LI X, et al. Improved bare pcb defect detection approach based on deep feature learning[J]. The Journal of Engineering, 2018, 2018(16): 1415-1420.
[35] HU B, WANG J. Detection of pcb surface defects with improved faster-rcnn and feature pyramid network[J]. IEEE Access, 2020, 8: 108335-108345.
[36] LAN Z, HONG Y, LI Y. An improved yolov3 method for pcb surface defect detection[C]// 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). IEEE, 2021: 1009-1015.
[37] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.
[38] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//International Conference on Learning Representations. 2020.
[39] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]//European Conference on Computer Vision. Springer, 2020: 213-229.
[40] ZHENG M, GAO P, WANG X, et al. End-to-end object detection with adaptive clustering transformer[J]. arXiv preprint arXiv:2011.09315, 2020.
[41] ZHU X, SU W, LU L, et al. Deformable detr: Deformable transformers for end-to-end object detection[J]. arXiv preprint arXiv:2010.04159, 2020.
[42] WANG Y, ZHANG X, YANG T, et al. Anchor detr: Query design for transformer-based detector [J]. arXiv preprint arXiv:2109.07107, 2021.
[43] BEAL J, KIM E, TZENG E, et al. Toward transformer-based object detection[J]. arXiv preprint arXiv:2012.09958, 2020.
[44] FANG Y, LIAO B, WANG X, et al. You only look at one sequence: Rethinking transformer in vision through object detection[J]. arXiv preprint arXiv:2106.00666, 2021.
[45] WANG W, XIE E, LI X, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[J]. arXiv preprint arXiv:2102.12122, 2021.
[46] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[47] HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus)[J]. arXiv preprint arXiv:1606.08415, 2016.
[48] MISRA D. Mish: A self regularized non-monotonic neural activation function[J]. arXiv preprint arXiv:1908.08681, 2019, 4: 2.
[49] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[50] TAN M, LE Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning. PMLR, 2019: 6105-6114.
[51] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
[52] TAN M, CHEN B, PANG R, et al. Mnasnet: Platform-aware neural architecture search for mobile[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2820-2828.
[53] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[54] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[55] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Advances in neural information processing systems. 2014: 2204-2212.
[56] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
[57] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 658-666.
[58] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[59] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8759-8768.
[60] GHIASI G, LIN T Y, LE Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7036-7045.
[61] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv preprint arXiv:1710.05941, 2017.
[62] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.
[63] HUANG W, WEI P, ZHANG M, et al. Hripcb: a challenging dataset for pcb defects detection and classification[J]. The Journal of Engineering, 2020, 2020(13): 303-309.
[64] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
Edit Comment