中文版 | English
Title

气体扩散层孔隙率对质子交换膜燃料电池性能影响的数值模拟研究

Alternative Title
A NUMERICAL STUDY ON THE IMPACTS OF GAS DIFFUSION LAYER POROSITY ON PROTON EXCHANGE MEMBRANE FUEL CELL
Author
Name pinyin
OUYANG Huiying
School number
12032294
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
郑春花
Mentor unit
中科院深圳先进技术研究院
Tutor units of foreign institutions
南方科技大学
Publication Years
2022-05-12
Submission date
2022-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

质子交换膜燃料电池(Proton Exchange Membrane Fuel CellPEMFC)是一种能够利用氢发电的装置。气体扩散层是PEMFC的重要组成部件,为内部气体提供输运通道,孔隙率是影响其传质的核心参数。本研究以提高PEMFC电流密度以及优化传质为目的,为PEMFC生产实践提供参考。基于数值模拟方法,本文主要探究了气体扩散层孔隙率对不同进气相对湿度PEMFC性能影响的规律。

首先,本文建立了单流道的PEMFC三维模型,介绍了描述PEMFC内部电化学反应的基本数学方程,并且给出了具体的仿真流程,包括建立几何模型导入数学模型设置边界条件进行网格独立性验证以及模型准确性验证等步骤。

其次本文考察了进气相对湿度在10%-100%区间内变化时PEMFC的性能变化,具体包括电流密度变化情况、膜中水含量变化情况、阳极催化层氢气分布云图等。研究结果表明PEMFC的工作温度为353K工作电压为0.7V的条件下,随着进气相对湿度的上升,PEMFC的电流密度呈现先上升后下降的趋势。PEMFC处于低湿度工况(进气相对湿度为10%)时,其水含量过低,无法充分润湿质子交换膜,造成其内阻较大限制了电流密度的上升;PEMFC处于高湿度工况(进气相对湿度为100%)时,其水含量过高造成水淹,限制了内部气体传输。在进气相对湿度为70%时,PEMFC的电流密度达到最大值。

最后本文探究了气体扩散层孔隙率对PEMFC的性能影响。定义均匀气体扩散层的孔隙率沿气体流动方向均匀不变,非均匀气体扩散层的孔隙率沿气体流动方向梯度变化。根据文献选取气体扩散层孔隙率的范围为0.3-0.6对于均匀气体扩散层PEMFC的工作温度为353K工作电压为0.7V条件下,孔隙率0.3有利于提升低湿度PEMFC的电流密度,孔隙率0.6有利于提升高湿度PEMFC的电流密度。但当工作电压小于0.7V时,孔隙率为0.6更有利于提升PEMFC的电流密度,并且对于高湿度工况的提升效果更加显著。对于非均匀气体扩散层,孔隙率梯度变化对电流密度的影响较不明显,其变化幅度小于0.5%,对PEMFC传质的影响更为显著。因此,在对电流密度无明显影响的情况下,选择孔隙率梯度递增的气体扩散层更有利于提升氢气、氧气以及水分布均匀性,降低催化层局部缺气、膜局部溶胀等现象发生的可能性,从而提升PEMFC的使用寿命。对于微孔层(MPL)和基底层MPS)组合的气体扩散层结构,沿垂直厚度方向的孔隙率梯度设计有利于提升电流密度。该气体扩散层结构对于高湿度状态的PEMFC电流密度改善效果更显著,若考虑接触电阻进行仿真,改善效果将进一步提升。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] 李俊峰, 李广. 中国能源、环境与气候变化问题回顾与展望 [J]. 环境与可持续发展, 2020, 45(05): 8-17.
[2] BARBIR F. PEM fuel cells: theory and practice [M]. Academic press, 2012.
[3] RAZA R, AKRAM N, JAVED M S, et al. Fuel cell technology for sustainable development in Pakistan–An over-view [J]. Renewable and Sustainable Energy Reviews, 2016, 53: 450-461.
[4] CHI B, HOU S, LIU G, et al. Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE) [J]. Electrochimica Acta, 2018, 277: 110-115.
[5] THERDTHIANWONG A, MANOMAYIDTHIKARN P, THERDTHIANWONG S. Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell [J]. Energy, 2007, 32(12): 2401-2411.
[6] 张华民, 明平文, 邢丹敏. 质子交换膜燃料电池的发展现状 [J]. 当代化工, 2001, (01): 7-11.
[7] 孟黎清. 燃料电池的历史和现状 [J]. 电力学报, 2002, (02): 99-104.
[8] AGUIAR P, BRETT D, BRANDON N. Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications [J]. Journal of power sources, 2007, 171(1): 186-197.
[9] PATHAK S, DAS J N, RANGARAJAN J, et al. Development of prototype phosphoric acid fuel cell pick-up electric vehicle; proceedings of the 2006 IEEE Conference on Electric and Hybrid Vehicles, F, 2006 [C]. IEEE.
[10] WIENER F, BRAM M, BUCHKREMER H P, et al. Chemical interaction between Crofer 22 APU and mica-based gaskets under simulated SOFC conditions [J]. Journal of Materials Science, 2007, 42(8): 2643-2651.
[11] WANG C, NEHRIR M H. A physically based dynamic model for solid oxide fuel cells [J]. IEEE Transactions on Energy Conversion, 2007, 22(4): 887-897.
[12] SHIRATORI Y, TIETZ F, PENKALLA H, et al. Influence of impurities on the conductivity of composites in the system (3YSZ) 1− x–(MgO) x [J]. Journal of power sources, 2005, 148: 32-42.
[13] SRIRAMULU S, TARGOFF J, LASHER S, et al. Challenges and Opportunities for Fuel Cells in Stationary Power Generation [J]. Cogeneration and Distributed Generation Journal, 2005, 20(3): 31-42.
[14] OKAMOTO M, AKIMUNE Y, FURUYA K, et al. Phase transition and electrical conductivity of scandia-stabilized zirconia prepared by spark plasma sintering process [J]. Solid State Ionics, 2005, 176(7-8): 675-680.
[15] 曾潮流, 吴维. 熔融碳酸盐燃料电池材料的腐蚀与防护CORROSION AND PROTECTION FOR MOLTEN CARBONATE FUEL CELL [J]. 腐蚀科学与防护技术, 2001, 13(3): 147-151,161.
[16] MITSOS-MIT A, HENCKE-MIT M M, BARTON P I. Man-portable power generation based on fuel-cell systems [J]. American Institute of Chemical Engineers, 2004.
[17] 王强. 固水界面的电化学性质及其对PEMFC的意义 [D]; 武汉大学, 2010.
[18] 常国峰, 曾辉杰, 许思传. 燃料电池汽车热管理系统的研究 [J]. 汽车工程, 2015, 37(08): 959-963.
[19] 杨代军, 马建新, 徐麟, 等. 城市大气主要污染物对PEMFC性能的影响 [J]. 电源技术, 2006, (04): 269-273.
[20] JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells [J]. Nature, 2021, 595(7867): 361-369.
[21] 何光伟. 质子交换膜传递通道理性构筑及其微环境调控研究 [D]; 天津大学, 2016.
[22] ADILBISH G, LEE J-W, JANG Y-S, et al. Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC [J]. international journal of hydrogen energy, 2014, 39(7): 3381-3386.
[23] CLEEMANN L N, BUAZAR F, LI Q, et al. Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes [J]. Fuel Cells, 2013, 13(5): 822-831.
[24] KIM D-S, ZEID E F A, KIM Y-T. Additive treatment effect of TiO2 as supports for Pt-based electrocatalysts on oxygen reduction reaction activity [J]. Electrochimica Acta, 2010, 55(11): 3628-3633.
[25] KUMAR A, REDDY R G. Materials and design development for bipolar/end plates in fuel cells [J]. Journal of Power Sources, 2004, 129(1): 62-67.
[26] BERNARDI D M, VERBRUGGE M W. A mathematical model of the solid‐polymer‐electrolyte fuel cell [J]. Journal of the Electrochemical Society, 1992, 139(9): 2477.
[27] TOHIDI M, MANSOURI S, AMIRI H. Effect of primary parameters on the performance of PEM fuel cell [J]. International journal of hydrogen energy, 2010, 35(17): 9338-9348.
[28] SALVA J A, IRANZO A, ROSA F, et al. Experimental validation of the polarization curve and the temperature distribution in a PEMFC stack using a one dimensional analytical model [J]. International Journal of Hydrogen Energy, 2016, 41(45): 20615-20632.
[29] FALCãO D, GOMES P, OLIVEIRA V, et al. 1D and 3D numerical simulations in PEM fuel cells [J]. International Journal of Hydrogen Energy, 2011, 36(19): 12486-12498.
[30] SAHRAOUI M, KHARRAT C, HALOUANI K. Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC [J]. international journal of hydrogen energy, 2009, 34(7): 3091-3103.
[31] WONG K, LOO K H, LAI Y, et al. A theoretical study of inlet relative humidity control in PEM fuel cell [J]. international journal of hydrogen energy, 2011, 36(18): 11871-11885.
[32] ZHANG Y, PITCHUMANI R. Numerical studies on an air-breathing proton exchange membrane (PEM) fuel cell [J]. International Journal of Heat and Mass Transfer, 2007, 50(23-24): 4698-4712.
[33] SAHRAOUI M, BICHIOUI Y, HALOUANI K. Three-dimensional modeling of water transport in PEMFC [J]. international journal of hydrogen energy, 2013, 38(20): 8524-8531.
[34] JIAO K, LI X. A Three‐Dimensional Non‐isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells with Phosphoric Acid Doped Polybenzimidazole Membranes [J]. Fuel Cells, 2010, 10(3): 351-362.
[35] JOURDANI M, MOUNIR H, MARJANI A. Three-dimensional PEM fuel cells modeling using COMSOL multiphysics [J]. The International Journal of Multiphysics, 2017, 11(4): 427-442.
[36] JEON D H, KIM K N, BAEK S M, et al. The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells [J]. International Journal of Hydrogen Energy, 2011, 36(19): 12499-12511.
[37] 白世杰, 刘永峰, 裴普成, 等. 阳极压力降对质子交换膜燃料电池性能的影响 [J]. 电源技术, 2019, 43(05): 801-804.
[38] KANCHAN B K, RANDIVE P, PATI S. Implications of non-uniform porosity distribution in gas diffusion layer on the performance of a high temperature PEM fuel cell [J]. International Journal of Hydrogen Energy, 2021, 46(35): 18571-18588.
[39] JABER T J, JARALLA R, SULAIMAN M A, et al. Numerical Study on High Temperature PEM Fuel Cell (HTPEMFC); proceedings of the ICTEA: International Conference on Thermal Engineering, F, 2017 [C].
[40] KAHVECI E E, TAYMAZ I. Assessment of single-serpentine PEM fuel cell model developed by computational fluid dynamics [J]. Fuel, 2018, 217: 51-58.
[41] JHA V, HARIHARAN R, KRISHNAMURTHY B. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells [J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311.
[42] TURKMEN A C, CELIK C. The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells [J]. Fuel, 2018, 222: 465-474.
[43] XIA L, NI M, HE Q, et al. Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity [J]. Applied Energy, 2021, 300: 117357.
[44] LAI Y-W, LEE K-R, YANG S-Y, et al. Production of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ cathode with graded porosity for improving proton-conducting solid oxide fuel cells [J]. Ceramics International, 2019, 45(17): 22479-22485.
[45] CHUN J H, JO D H, KIM S G, et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells [J]. Renewable energy, 2013, 58: 28-33.
[46] WILKINSON D P, ST-PIERRE J. In-plane gradients in fuel cell structure and conditions for higher performance [J]. Journal of Power Sources, 2003, 113(1): 101-108.
[47] CHU H-S, YEH C, CHEN F. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell [J]. Journal of power sources, 2003, 123(1): 1-9.
[48] CHEN F, CHANG M-H, HSIEH P-T. Two-phase transport in the cathode gas diffusion layer of PEM fuel cell with a gradient in porosity [J]. International Journal of Hydrogen Energy, 2008, 33(10): 2525-2529.
[49] HUANG Y-X, CHENG C-H, WANG X-D, et al. Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells [J]. Energy, 2010, 35(12): 4786-4794.
[50] MA X, ZHANG X, YANG J, et al. Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells [J]. Energy Conversion and Management, 2021, 227: 113579.
[51] ZHAN N, WU W, WANG S. Pore network modeling of liquid water and oxygen transport through the porosity-graded bilayer gas diffusion layer of polymer electrolyte membrane fuel cells [J]. Electrochimica Acta, 2019, 306: 264-276.
[52] CARCADEA E, VARLAM M, ISMAIL M, et al. PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers [J]. International Journal of Hydrogen Energy, 2020, 45(14): 7968-7980.
[53] XING L, WANG Y, DAS P K, et al. Homogenization of current density of PEM fuel cells by in-plane graded distributions of platinum loading and GDL porosity [J]. Chemical Engineering Science, 2018, 192: 699-713.
[54] XING L, SHI W, SU H, et al. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization [J]. Energy, 2019, 177: 445-464.
[55] LIM I S, PARK J Y, KANG D G, et al. Numerical study for in-plane gradient effects of cathode gas diffusion layer on PEMFC under low humidity condition [J]. International Journal of Hydrogen Energy, 2020, 45(38): 19745-19760.
[56] 王诚, 赵波, 张剑波. 质子交换膜燃料电池膜电极的关键技术 [J]. 科技导报, 2016, 34(06): 62-68.
[57] LIU Z, ZENG X, GE Y, et al. Multi-objective optimization of operating conditions and channel structure for a proton exchange membrane fuel cell [J]. International journal of heat and mass transfer, 2017, 111: 289-298.
[58] LIU Y, BAI S, WEI P, et al. Numerical and experimental investigation of the asymmetric humidification and dynamic temperature in proton exchange membrane fuel cell [J]. Fuel Cells, 2020, 20(1): 48-59.
[59] PAN W, CHEN X, WANG F, et al. Mass transfer enhancement of PEM fuel cells with optimized flow channel dimensions [J]. International Journal of Hydrogen Energy, 2021, 46(57): 29541-29555.
[60] SIVERTSEN B R, DJILALI N. CFD-based modelling of proton exchange membrane fuel cells [J]. Journal of Power Sources, 2005, 141(1): 65-78.
[61] BERNING T, DJILALI N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study [J]. Journal of Power Sources, 2003, 124(2): 440-452.
[62] GUVELIOGLU G H, STENGER H G. Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells [J]. Journal of Power Sources, 2005, 147(1-2): 95-106.
[63] WISHART J, DONG Z, SECANELL M. Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model [J]. Journal of Power Sources, 2006, 161(2): 1041-1055.
[64] 张洪霞, 沈承, 韩福江, 等. 质子交换膜燃料电池的水平衡 [J]. 化学通报, 2011, 74(11): 1026-1032.
[65] 张雪霞, 蒋宇, 孙腾飞, 等. 质子交换膜燃料电池水淹和膜干故障诊断研究综述 [J]. 西南交通大学学报, 2020, 55(04): 828-838+864.
[66] CHANG Y, QIN Y, YIN Y, et al. Humidification strategy for polymer electrolyte membrane fuel cells–A review [J]. Applied Energy, 2018, 230: 643-662.
[67] YANG X-G, YE Q, CHENG P. In-plane transport effects on hydrogen depletion and carbon corrosion induced by anode flooding in proton exchange membrane fuel cells [J]. International journal of heat and mass transfer, 2012, 55(17-18): 4754-4765.
[68] 涂正凯,余意. 质子交换膜燃料电池水热管理技术基础及应用 [M]. 北京: 科学出版社, 2017.
[69] TOMADAKIS M M, ROBERTSON T J. Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results [J]. Journal of Composite Materials, 2005, 39(2): 163-188.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TM911.4
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/342779
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
欧阳惠颖. 气体扩散层孔隙率对质子交换膜燃料电池性能影响的数值模拟研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032294-欧阳惠颖-中国科学院深(3337KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[欧阳惠颖]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[欧阳惠颖]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[欧阳惠颖]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.