中文版 | English
Title

基于转录组数据分析的药物功能发现以及机制研究

Alternative Title
FUNCTIONAL AND MECHANISTIC INVESTIGATION OF DRUGS (CANDIDATES) BASED ON TRANSCRIPTIOME DATA ANALYSIS
Author
Name pinyin
FENG Ruoqing
School number
11930154
Degree
硕士
Discipline
0710 生物学
Subject category of dissertation
07 理学
Supervisor
胡宇慧
Mentor unit
药理学系
Publication Years
2022-04-28
Submission date
2022-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

    具有良好临床疗效的先导化合物发现是一个高风险、耗时、且花费高昂的过程。传统中药具有长期临床使用历史,包含了丰富的活性天然产物资源,具有广泛的疾病治疗潜力。然而由于中药的使用主要依靠经验的积累,特别是中药传统的多成分、多靶点整体作用特点,使其难以通过传统实验手段和方法解释其作用原理和机制,从而限制了传统中药的开发和推广。近年来高速发展的功能基因组学手段,比如基于高通量核酸测序的转录组学实验技术,以及对应的生物信息学计算分析方法,可以通过对大量的药物引起的基因表达数据进行挖掘以及整合,实现化合物功能和靶点、以及作用机制的高效研究。

    本文从生物信息学分析方法出发,整合实验室前期对来自人参,贝母,百部等药物中上百种天然产物诱导人体细胞后检测的近千个转录组测序数据进行深入功能挖掘分析。通过系统生物学的研究手段如聚类分析,富集分析, connectivity map分析等,结合现代药物诱导人体细胞后进行的转录组测序数据研究天然化合物的潜在作用靶点和机制。同时,我们将所有天然产物的大量分析结果整合成一个基于转录组的中药功能基因组学分析平台和数据库——MecoTCM,借此加速针对不同疾病先导化合物的计算机筛选。

    结合MecoTCM和新型冠状病毒感染后宿主转录组动态变化,我们从MecoTCM中筛选到一系列有抗新冠病毒潜力的化合物,并且通过体外细胞实验验证出13个具有抗新冠感染能力的化合物。更进一步地,我们通过MecoTCM的转录组通路研究数据对药物抗新冠的机制做了深入的分析,提出药物通过激活细胞内质网应激通路实现抑制新冠病毒复制感染的新机制。

    综上,本课题利用化合物诱导的转录组学数据,从生物信息学角度探索了高效预测天然化合物生物功能和作用机制的计算分析方法,为推动中药现代化进程提供了前沿的策略。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-07
References List

[1] DICKSON M, GAGNON J P. Key factors in the rising cost of new drug discovery and development[J]. Nature Reviews Drug Discovery, 2004, 3(5): 417–429.
[2] PUSHPAKOM S, IORIO F, EYERS P A. Drug Repurposing: Progress, Challenges and Recommendations.[J]. Nature Reviews. Drug Discovery, 2019, 18(1): 41–58.
[3] VANE J R, BOTTING R M. The Mechanism of Action of Aspirin.[J]. Thrombosis Research, 2003, 110(5–6): 255–258.
[4] ORAVECZ M, MÉSZÁROS J. [Traditional Chinese medicine: theoretical background and its use in China].[J]. Orvosi hetilap, 2012, 153(19): 723–731.
[5] LÓPEZ-VALLEJO F, CAULFIELD T, MARTÍNEZ-MAYORGA K. Integrating Virtual Screening and Combinatorial Chemistry for Accelerated Drug Discovery.[J]. Combinatorial Chemistry & High Throughput Screening, 2011, 14(6): 475–487.
[6] CHANDRAN U, MEHENDALE N, PATIL S. Network Pharmacology[J]. Innovative Approaches in Drug Discovery: Ethnopharmacology, Systems Biology and Holistic Targeting, 2017, 25(10): 127–164.
[7] HOPKINS A L. Network Pharmacology: The next Paradigm in Drug Discovery.[J]. Nature Chemical Biology, 2008, 4(11): 682–690.
[8] NORMILE D. Asian Medicine. The New Face of Traditional Chinese Medicine.[Z](2003–01).
[9] XUE R, FANG Z, ZHANG M. TCMID: Traditional Chinese Medicine Integrative Database for Herb Molecular Mechanism Analysis.[J]. Nucleic Acids Research, 2013, 41(Database issue): D1089-95.
[10] HUANG L, XIE D, YU Y. TCMID 2.0: A Comprehensive Resource for TCM.[J]. Nucleic Acids Research, 2018, 46(D1): D1117–D1120.
[11] FANG S, DONG L, LIU L. HERB: A High-Throughput Experiment- and Reference-Guided Database of Traditional Chinese Medicine.[J]. Nucleic Acids Research, 2021, 49(D1): D1197–D1206.
[12] LĚVĚQUE N, RENOIS F, ANDRÉOLETTI L. The Microarray Technology: Facts and Controversies.[J]. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19(1): 10–14.
[13] CORDERO F, BOTTA M, CALOGERO R A. Microarray Data Analysis and Mining Approaches.[J]. Briefings in Functional Genomics & Proteomics, 2007, 6(4): 265–281.
[14] AGAPITO G, ARBITRIO M. Microarray Data Analysis Protocol[M/OL]. AGAPITO G, //Microarray Data Analysis. New York, NY: Springer US, 2022: 263–271. https://doi.org/10.1007/978-1-0716-1839-4_17.
[15] BEHJATI S, TARPEY P S. What Is next Generation Sequencing?[J]. Archives of Disease in Childhood. Education and Practice Edition, 2013, 98(6): 236–238.
[16] LIN B, HUI J, MAO H. Nanopore Technology and Its Applications in Gene Sequencing.[J]. Biosensors, 2021, 11(7).
[17] DEAMER D, AKESON M, BRANTON D. Three Decades of Nanopore Sequencing.[J]. Nature Biotechnology, 2016, 34(5): 518–524.
[18] QIAN X, BA Y, ZHUANG Q. RNA-Seq Technology and Its Application in Fish Transcriptomics.[J]. Omics : A Journal of Integrative Biology, 2014, 18(2): 98–110.
[19] WINGETT S W, ANDREWS S. FastQ Screen: A Tool for Multi-Genome Mapping and Quality Control.[J]. F1000Research, 2018, 7: 1338.
[20] EWELS P, MAGNUSSON M, LUNDIN S. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report.[J]. Bioinformatics (Oxford, England), 2016, 32(19): 3047–3048.
[21] SAEIDIPOUR B, BAKHSHI S. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads[J]. Advances in Environmental Biology, 2013, 7(10): 2803–2809.
[22] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.[J]. Bioinformatics (Oxford, England), 2014, 30(15): 2114–2120.
[23] LI H, DURBIN R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform.[J]. Bioinformatics (Oxford, England), 2009, 25(14): 1754–1760.
[24] TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: Discovering Splice Junctions with RNA-Seq.[J]. Bioinformatics (Oxford, England), 2009, 25(9): 1105–1111.
[25] KIM D, LANGMEAD B, SALZBERG S L. HISAT: A Fast Spliced Aligner with Low Memory Requirements.[J]. Nature Methods, 2015, 12(4): 357–360.
[26] KIM D, PAGGI J M, PARK C. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype.[J]. Nature Biotechnology, 2019, 37(8): 907–915.
[27] DOBIN A, DAVIS C A, SCHLESINGER F. STAR: Ultrafast Universal RNA-Seq Aligner.[J]. Bioinformatics (Oxford, England), 2013, 29(1): 15–21.
[28] An Integrated Encyclopedia of DNA Elements in the Human Genome.[J]. Nature, 2012, 489(7414): 57–74.
[29] LI H, HANDSAKER B, WYSOKER A. The Sequence Alignment/Map Format and SAMtools.[J]. Bioinformatics (Oxford, England), 2009, 25(16): 2078–2079.
[30] ANDERS S, PYL P T, HUBER W. HTSeq--a Python Framework to Work with High-Throughput Sequencing Data.[J]. Bioinformatics (Oxford, England), 2015, 31(2): 166–169.
[31] LIAO Y, SMYTH G K, SHI W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features.[J]. Bioinformatics (Oxford, England), 2014, 30(7): 923–930.
[32] WAGNER G P, KIN K, LYNCH V J. Measurement of MRNA Abundance Using RNA-Seq Data: RPKM Measure Is Inconsistent among Samples.[J]. Theory in Biosciences = Theorie in Den Biowissenschaften, 2012, 131(4): 281–285.
[33] ZHAO S, YE Z, STANTON R. Misuse of RPKM or TPM Normalization When Comparing across Samples and Sequencing Protocols.[J]. RNA (New York, N.Y.), 2020, 26(8): 903–909.
[34] LOVE M I, HUBER W, ANDERS S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.[J]. Genome Biology, 2014, 15(12): 550.
[35] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.[J]. Bioinformatics (Oxford, England), 2010, 26(1): 139–140.
[36] LAMB J, CRAWFORD E D, PECK D. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease.[J]. Science (New York, N.Y.), 2006, 313(5795): 1929–1935.
[37] SUBRAMANIAN A, NARAYAN R, CORSELLO S M. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.[J]. Cell, 2017, 171(6): 1437-1452.e17.
[38] YU G, WANG L-G, HAN Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters.[J]. Omics : A Journal of Integrative Biology, 2012, 16(5): 284–287.
[39] RITCHIE M E, PHIPSON B, WU D. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies.[J]. Nucleic Acids Research, 2015, 43(7): e47.
[40] LEEK J T, JOHNSON W E, PARKER H S. The Sva Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments.[J]. Bioinformatics (Oxford, England), 2012, 28(6): 882–883.
[41] HAGHVERDI L, LUN A T L, MORGAN M D. Batch Effects in Single-Cell RNA-Sequencing Data Are Corrected by Matching Mutual Nearest Neighbors.[J]. Nature Biotechnology, 2018, 36(5): 421–427.
[42] HIE B, BRYSON B, BERGER B. Efficient Integration of Heterogeneous Single-Cell Transcriptomes Using Scanorama.[J]. Nature Biotechnology, 2019, 37(6): 685–691.
[43] PUZYRENKO A, JACOBS E R, SUN Y. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies[J/OL]. Cell Stress and Chaperones, 2021, 26(5): 859–868. https://doi.org/10.1007/s12192-021-01230-4.
[44] YEUNG Y-S, YIP C-W, HON C-C. Transcriptional Profiling of Vero E6 Cells Over-Expressing SARS-CoV S2 Subunit: Insights on Viral Regulation of Apoptosis and Proliferation.[J]. Virology, 2008, 371(1): 32–43.
[45] VERSTEEG G A, VAN DE NES P S, BREDENBEEK P J. The Coronavirus Spike Protein Induces Endoplasmic Reticulum Stress and Upregulation of Intracellular Chemokine MRNA Concentrations.[J]. Journal of Virology, 2007, 81(20): 10981–10990.
[46] SIU K-L, CHAN C-P, KOK K-H. Comparative Analysis of the Activation of Unfolded Protein Response by Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus HKU1.[J]. Cell & Bioscience, 2014, 4(1): 3.
[47] MINAKSHI R, PADHAN K, RANI M. The SARS Coronavirus 3a Protein Causes Endoplasmic Reticulum Stress and Induces Ligand-Independent Downregulation of the Type 1 Interferon Receptor.[J]. PloS One, 2009, 4(12): e8342.
[48] ANGELINI M M, AKHLAGHPOUR M, NEUMAN B W. Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles.[J]. MBio, 2013, 4(4).
[49] SCHULTZE J L, ASCHENBRENNER A C. COVID-19 and the Human Innate Immune System.[J]. Cell, 2021, 184(7): 1671–1692.
[50] HAYDEN M S, GHOSH S. NF-ΚB, the First Quarter-Century: Remarkable Progress and Outstanding Questions.[J]. Genes & Development, 2012, 26(3): 203–234.
[51] READ A, SCHRÖDER M. The Unfolded Protein Response: An Overview.[J]. Biology, 2021, 10(5).
[52] LIAO Y, FUNG T S, HUANG M. Upregulation of CHOP/GADD153 during Coronavirus Infectious Bronchitis Virus Infection Modulates Apoptosis by Restricting Activation of the Extracellular Signal-Regulated Kinase Pathway.[J]. Journal of Virology, 2013, 87(14): 8124–8134.
[53] FUNG T S, HUANG M, LIU D X. Coronavirus-Induced ER Stress Response and Its Involvement in Regulation of Coronavirus-Host Interactions.[J]. Virus Research, 2014, 194: 110–123.
[54] SHI Y, WANG G, CAI X-P. An Overview of COVID-19.[J]. Journal of Zhejiang University. Science. B, 2020, 21(5): 343–360.
[55] CHAMBERS D C, CAREW A M, LUKOWSKI S W. Transcriptomics and Single-Cell RNA-Sequencing.[J]. Respirology (Carlton, Vic.), 2019, 24(1): 29–36.
[56] FANG L, LI G, SUN Z. CASB: a concanavalin A‐based sample barcoding strategy for single‐cell sequencing[J]. Molecular Systems Biology, 2021, 17(4): 1–16.

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
Q291
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/342781
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
冯若轻. 基于转录组数据分析的药物功能发现以及机制研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930154-冯若轻-生物系.pdf(6297KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[冯若轻]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[冯若轻]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[冯若轻]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.