中文版 | English


Alternative Title
Name pinyin
FENG Ruoqing
School number
0710 生物学
Subject category of dissertation
07 理学
Mentor unit
Publication Years
Submission date
Place of Publication


    本文从生物信息学分析方法出发,整合实验室前期对来自人参,贝母,百部等药物中上百种天然产物诱导人体细胞后检测的近千个转录组测序数据进行深入功能挖掘分析。通过系统生物学的研究手段如聚类分析,富集分析, connectivity map分析等,结合现代药物诱导人体细胞后进行的转录组测序数据研究天然化合物的潜在作用靶点和机制。同时,我们将所有天然产物的大量分析结果整合成一个基于转录组的中药功能基因组学分析平台和数据库——MecoTCM,借此加速针对不同疾病先导化合物的计算机筛选。



Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] DICKSON M, GAGNON J P. Key factors in the rising cost of new drug discovery and development[J]. Nature Reviews Drug Discovery, 2004, 3(5): 417–429.
[2] PUSHPAKOM S, IORIO F, EYERS P A. Drug Repurposing: Progress, Challenges and Recommendations.[J]. Nature Reviews. Drug Discovery, 2019, 18(1): 41–58.
[3] VANE J R, BOTTING R M. The Mechanism of Action of Aspirin.[J]. Thrombosis Research, 2003, 110(5–6): 255–258.
[4] ORAVECZ M, MÉSZÁROS J. [Traditional Chinese medicine: theoretical background and its use in China].[J]. Orvosi hetilap, 2012, 153(19): 723–731.
[5] LÓPEZ-VALLEJO F, CAULFIELD T, MARTÍNEZ-MAYORGA K. Integrating Virtual Screening and Combinatorial Chemistry for Accelerated Drug Discovery.[J]. Combinatorial Chemistry & High Throughput Screening, 2011, 14(6): 475–487.
[6] CHANDRAN U, MEHENDALE N, PATIL S. Network Pharmacology[J]. Innovative Approaches in Drug Discovery: Ethnopharmacology, Systems Biology and Holistic Targeting, 2017, 25(10): 127–164.
[7] HOPKINS A L. Network Pharmacology: The next Paradigm in Drug Discovery.[J]. Nature Chemical Biology, 2008, 4(11): 682–690.
[8] NORMILE D. Asian Medicine. The New Face of Traditional Chinese Medicine.[Z](2003–01).
[9] XUE R, FANG Z, ZHANG M. TCMID: Traditional Chinese Medicine Integrative Database for Herb Molecular Mechanism Analysis.[J]. Nucleic Acids Research, 2013, 41(Database issue): D1089-95.
[10] HUANG L, XIE D, YU Y. TCMID 2.0: A Comprehensive Resource for TCM.[J]. Nucleic Acids Research, 2018, 46(D1): D1117–D1120.
[11] FANG S, DONG L, LIU L. HERB: A High-Throughput Experiment- and Reference-Guided Database of Traditional Chinese Medicine.[J]. Nucleic Acids Research, 2021, 49(D1): D1197–D1206.
[12] LĚVĚQUE N, RENOIS F, ANDRÉOLETTI L. The Microarray Technology: Facts and Controversies.[J]. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19(1): 10–14.
[13] CORDERO F, BOTTA M, CALOGERO R A. Microarray Data Analysis and Mining Approaches.[J]. Briefings in Functional Genomics & Proteomics, 2007, 6(4): 265–281.
[14] AGAPITO G, ARBITRIO M. Microarray Data Analysis Protocol[M/OL]. AGAPITO G, //Microarray Data Analysis. New York, NY: Springer US, 2022: 263–271. https://doi.org/10.1007/978-1-0716-1839-4_17.
[15] BEHJATI S, TARPEY P S. What Is next Generation Sequencing?[J]. Archives of Disease in Childhood. Education and Practice Edition, 2013, 98(6): 236–238.
[16] LIN B, HUI J, MAO H. Nanopore Technology and Its Applications in Gene Sequencing.[J]. Biosensors, 2021, 11(7).
[17] DEAMER D, AKESON M, BRANTON D. Three Decades of Nanopore Sequencing.[J]. Nature Biotechnology, 2016, 34(5): 518–524.
[18] QIAN X, BA Y, ZHUANG Q. RNA-Seq Technology and Its Application in Fish Transcriptomics.[J]. Omics : A Journal of Integrative Biology, 2014, 18(2): 98–110.
[19] WINGETT S W, ANDREWS S. FastQ Screen: A Tool for Multi-Genome Mapping and Quality Control.[J]. F1000Research, 2018, 7: 1338.
[20] EWELS P, MAGNUSSON M, LUNDIN S. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report.[J]. Bioinformatics (Oxford, England), 2016, 32(19): 3047–3048.
[21] SAEIDIPOUR B, BAKHSHI S. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads[J]. Advances in Environmental Biology, 2013, 7(10): 2803–2809.
[22] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.[J]. Bioinformatics (Oxford, England), 2014, 30(15): 2114–2120.
[23] LI H, DURBIN R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform.[J]. Bioinformatics (Oxford, England), 2009, 25(14): 1754–1760.
[24] TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: Discovering Splice Junctions with RNA-Seq.[J]. Bioinformatics (Oxford, England), 2009, 25(9): 1105–1111.
[25] KIM D, LANGMEAD B, SALZBERG S L. HISAT: A Fast Spliced Aligner with Low Memory Requirements.[J]. Nature Methods, 2015, 12(4): 357–360.
[26] KIM D, PAGGI J M, PARK C. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype.[J]. Nature Biotechnology, 2019, 37(8): 907–915.
[27] DOBIN A, DAVIS C A, SCHLESINGER F. STAR: Ultrafast Universal RNA-Seq Aligner.[J]. Bioinformatics (Oxford, England), 2013, 29(1): 15–21.
[28] An Integrated Encyclopedia of DNA Elements in the Human Genome.[J]. Nature, 2012, 489(7414): 57–74.
[29] LI H, HANDSAKER B, WYSOKER A. The Sequence Alignment/Map Format and SAMtools.[J]. Bioinformatics (Oxford, England), 2009, 25(16): 2078–2079.
[30] ANDERS S, PYL P T, HUBER W. HTSeq--a Python Framework to Work with High-Throughput Sequencing Data.[J]. Bioinformatics (Oxford, England), 2015, 31(2): 166–169.
[31] LIAO Y, SMYTH G K, SHI W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features.[J]. Bioinformatics (Oxford, England), 2014, 30(7): 923–930.
[32] WAGNER G P, KIN K, LYNCH V J. Measurement of MRNA Abundance Using RNA-Seq Data: RPKM Measure Is Inconsistent among Samples.[J]. Theory in Biosciences = Theorie in Den Biowissenschaften, 2012, 131(4): 281–285.
[33] ZHAO S, YE Z, STANTON R. Misuse of RPKM or TPM Normalization When Comparing across Samples and Sequencing Protocols.[J]. RNA (New York, N.Y.), 2020, 26(8): 903–909.
[34] LOVE M I, HUBER W, ANDERS S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.[J]. Genome Biology, 2014, 15(12): 550.
[35] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.[J]. Bioinformatics (Oxford, England), 2010, 26(1): 139–140.
[36] LAMB J, CRAWFORD E D, PECK D. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease.[J]. Science (New York, N.Y.), 2006, 313(5795): 1929–1935.
[37] SUBRAMANIAN A, NARAYAN R, CORSELLO S M. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.[J]. Cell, 2017, 171(6): 1437-1452.e17.
[38] YU G, WANG L-G, HAN Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters.[J]. Omics : A Journal of Integrative Biology, 2012, 16(5): 284–287.
[39] RITCHIE M E, PHIPSON B, WU D. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies.[J]. Nucleic Acids Research, 2015, 43(7): e47.
[40] LEEK J T, JOHNSON W E, PARKER H S. The Sva Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments.[J]. Bioinformatics (Oxford, England), 2012, 28(6): 882–883.
[41] HAGHVERDI L, LUN A T L, MORGAN M D. Batch Effects in Single-Cell RNA-Sequencing Data Are Corrected by Matching Mutual Nearest Neighbors.[J]. Nature Biotechnology, 2018, 36(5): 421–427.
[42] HIE B, BRYSON B, BERGER B. Efficient Integration of Heterogeneous Single-Cell Transcriptomes Using Scanorama.[J]. Nature Biotechnology, 2019, 37(6): 685–691.
[43] PUZYRENKO A, JACOBS E R, SUN Y. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies[J/OL]. Cell Stress and Chaperones, 2021, 26(5): 859–868. https://doi.org/10.1007/s12192-021-01230-4.
[44] YEUNG Y-S, YIP C-W, HON C-C. Transcriptional Profiling of Vero E6 Cells Over-Expressing SARS-CoV S2 Subunit: Insights on Viral Regulation of Apoptosis and Proliferation.[J]. Virology, 2008, 371(1): 32–43.
[45] VERSTEEG G A, VAN DE NES P S, BREDENBEEK P J. The Coronavirus Spike Protein Induces Endoplasmic Reticulum Stress and Upregulation of Intracellular Chemokine MRNA Concentrations.[J]. Journal of Virology, 2007, 81(20): 10981–10990.
[46] SIU K-L, CHAN C-P, KOK K-H. Comparative Analysis of the Activation of Unfolded Protein Response by Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus HKU1.[J]. Cell & Bioscience, 2014, 4(1): 3.
[47] MINAKSHI R, PADHAN K, RANI M. The SARS Coronavirus 3a Protein Causes Endoplasmic Reticulum Stress and Induces Ligand-Independent Downregulation of the Type 1 Interferon Receptor.[J]. PloS One, 2009, 4(12): e8342.
[48] ANGELINI M M, AKHLAGHPOUR M, NEUMAN B W. Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles.[J]. MBio, 2013, 4(4).
[49] SCHULTZE J L, ASCHENBRENNER A C. COVID-19 and the Human Innate Immune System.[J]. Cell, 2021, 184(7): 1671–1692.
[50] HAYDEN M S, GHOSH S. NF-ΚB, the First Quarter-Century: Remarkable Progress and Outstanding Questions.[J]. Genes & Development, 2012, 26(3): 203–234.
[51] READ A, SCHRÖDER M. The Unfolded Protein Response: An Overview.[J]. Biology, 2021, 10(5).
[52] LIAO Y, FUNG T S, HUANG M. Upregulation of CHOP/GADD153 during Coronavirus Infectious Bronchitis Virus Infection Modulates Apoptosis by Restricting Activation of the Extracellular Signal-Regulated Kinase Pathway.[J]. Journal of Virology, 2013, 87(14): 8124–8134.
[53] FUNG T S, HUANG M, LIU D X. Coronavirus-Induced ER Stress Response and Its Involvement in Regulation of Coronavirus-Host Interactions.[J]. Virus Research, 2014, 194: 110–123.
[54] SHI Y, WANG G, CAI X-P. An Overview of COVID-19.[J]. Journal of Zhejiang University. Science. B, 2020, 21(5): 343–360.
[55] CHAMBERS D C, CAREW A M, LUKOWSKI S W. Transcriptomics and Single-Cell RNA-Sequencing.[J]. Respirology (Carlton, Vic.), 2019, 24(1): 29–36.
[56] FANG L, LI G, SUN Z. CASB: a concanavalin A‐based sample barcoding strategy for single‐cell sequencing[J]. Molecular Systems Biology, 2021, 17(4): 1–16.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
冯若轻. 基于转录组数据分析的药物功能发现以及机制研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930154-冯若轻-生物系.pdf(6297KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[冯若轻]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[冯若轻]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[冯若轻]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.