[1] DICKSON M, GAGNON J P. Key factors in the rising cost of new drug discovery and development[J]. Nature Reviews Drug Discovery, 2004, 3(5): 417–429.
[2] PUSHPAKOM S, IORIO F, EYERS P A. Drug Repurposing: Progress, Challenges and Recommendations.[J]. Nature Reviews. Drug Discovery, 2019, 18(1): 41–58.
[3] VANE J R, BOTTING R M. The Mechanism of Action of Aspirin.[J]. Thrombosis Research, 2003, 110(5–6): 255–258.
[4] ORAVECZ M, MÉSZÁROS J. [Traditional Chinese medicine: theoretical background and its use in China].[J]. Orvosi hetilap, 2012, 153(19): 723–731.
[5] LÓPEZ-VALLEJO F, CAULFIELD T, MARTÍNEZ-MAYORGA K. Integrating Virtual Screening and Combinatorial Chemistry for Accelerated Drug Discovery.[J]. Combinatorial Chemistry & High Throughput Screening, 2011, 14(6): 475–487.
[6] CHANDRAN U, MEHENDALE N, PATIL S. Network Pharmacology[J]. Innovative Approaches in Drug Discovery: Ethnopharmacology, Systems Biology and Holistic Targeting, 2017, 25(10): 127–164.
[7] HOPKINS A L. Network Pharmacology: The next Paradigm in Drug Discovery.[J]. Nature Chemical Biology, 2008, 4(11): 682–690.
[8] NORMILE D. Asian Medicine. The New Face of Traditional Chinese Medicine.[Z](2003–01).
[9] XUE R, FANG Z, ZHANG M. TCMID: Traditional Chinese Medicine Integrative Database for Herb Molecular Mechanism Analysis.[J]. Nucleic Acids Research, 2013, 41(Database issue): D1089-95.
[10] HUANG L, XIE D, YU Y. TCMID 2.0: A Comprehensive Resource for TCM.[J]. Nucleic Acids Research, 2018, 46(D1): D1117–D1120.
[11] FANG S, DONG L, LIU L. HERB: A High-Throughput Experiment- and Reference-Guided Database of Traditional Chinese Medicine.[J]. Nucleic Acids Research, 2021, 49(D1): D1197–D1206.
[12] LĚVĚQUE N, RENOIS F, ANDRÉOLETTI L. The Microarray Technology: Facts and Controversies.[J]. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19(1): 10–14.
[13] CORDERO F, BOTTA M, CALOGERO R A. Microarray Data Analysis and Mining Approaches.[J]. Briefings in Functional Genomics & Proteomics, 2007, 6(4): 265–281.
[14] AGAPITO G, ARBITRIO M. Microarray Data Analysis Protocol[M/OL]. AGAPITO G, //Microarray Data Analysis. New York, NY: Springer US, 2022: 263–271. https://doi.org/10.1007/978-1-0716-1839-4_17.
[15] BEHJATI S, TARPEY P S. What Is next Generation Sequencing?[J]. Archives of Disease in Childhood. Education and Practice Edition, 2013, 98(6): 236–238.
[16] LIN B, HUI J, MAO H. Nanopore Technology and Its Applications in Gene Sequencing.[J]. Biosensors, 2021, 11(7).
[17] DEAMER D, AKESON M, BRANTON D. Three Decades of Nanopore Sequencing.[J]. Nature Biotechnology, 2016, 34(5): 518–524.
[18] QIAN X, BA Y, ZHUANG Q. RNA-Seq Technology and Its Application in Fish Transcriptomics.[J]. Omics : A Journal of Integrative Biology, 2014, 18(2): 98–110.
[19] WINGETT S W, ANDREWS S. FastQ Screen: A Tool for Multi-Genome Mapping and Quality Control.[J]. F1000Research, 2018, 7: 1338.
[20] EWELS P, MAGNUSSON M, LUNDIN S. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report.[J]. Bioinformatics (Oxford, England), 2016, 32(19): 3047–3048.
[21] SAEIDIPOUR B, BAKHSHI S. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads[J]. Advances in Environmental Biology, 2013, 7(10): 2803–2809.
[22] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.[J]. Bioinformatics (Oxford, England), 2014, 30(15): 2114–2120.
[23] LI H, DURBIN R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform.[J]. Bioinformatics (Oxford, England), 2009, 25(14): 1754–1760.
[24] TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: Discovering Splice Junctions with RNA-Seq.[J]. Bioinformatics (Oxford, England), 2009, 25(9): 1105–1111.
[25] KIM D, LANGMEAD B, SALZBERG S L. HISAT: A Fast Spliced Aligner with Low Memory Requirements.[J]. Nature Methods, 2015, 12(4): 357–360.
[26] KIM D, PAGGI J M, PARK C. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype.[J]. Nature Biotechnology, 2019, 37(8): 907–915.
[27] DOBIN A, DAVIS C A, SCHLESINGER F. STAR: Ultrafast Universal RNA-Seq Aligner.[J]. Bioinformatics (Oxford, England), 2013, 29(1): 15–21.
[28] An Integrated Encyclopedia of DNA Elements in the Human Genome.[J]. Nature, 2012, 489(7414): 57–74.
[29] LI H, HANDSAKER B, WYSOKER A. The Sequence Alignment/Map Format and SAMtools.[J]. Bioinformatics (Oxford, England), 2009, 25(16): 2078–2079.
[30] ANDERS S, PYL P T, HUBER W. HTSeq--a Python Framework to Work with High-Throughput Sequencing Data.[J]. Bioinformatics (Oxford, England), 2015, 31(2): 166–169.
[31] LIAO Y, SMYTH G K, SHI W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features.[J]. Bioinformatics (Oxford, England), 2014, 30(7): 923–930.
[32] WAGNER G P, KIN K, LYNCH V J. Measurement of MRNA Abundance Using RNA-Seq Data: RPKM Measure Is Inconsistent among Samples.[J]. Theory in Biosciences = Theorie in Den Biowissenschaften, 2012, 131(4): 281–285.
[33] ZHAO S, YE Z, STANTON R. Misuse of RPKM or TPM Normalization When Comparing across Samples and Sequencing Protocols.[J]. RNA (New York, N.Y.), 2020, 26(8): 903–909.
[34] LOVE M I, HUBER W, ANDERS S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.[J]. Genome Biology, 2014, 15(12): 550.
[35] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.[J]. Bioinformatics (Oxford, England), 2010, 26(1): 139–140.
[36] LAMB J, CRAWFORD E D, PECK D. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease.[J]. Science (New York, N.Y.), 2006, 313(5795): 1929–1935.
[37] SUBRAMANIAN A, NARAYAN R, CORSELLO S M. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.[J]. Cell, 2017, 171(6): 1437-1452.e17.
[38] YU G, WANG L-G, HAN Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters.[J]. Omics : A Journal of Integrative Biology, 2012, 16(5): 284–287.
[39] RITCHIE M E, PHIPSON B, WU D. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies.[J]. Nucleic Acids Research, 2015, 43(7): e47.
[40] LEEK J T, JOHNSON W E, PARKER H S. The Sva Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments.[J]. Bioinformatics (Oxford, England), 2012, 28(6): 882–883.
[41] HAGHVERDI L, LUN A T L, MORGAN M D. Batch Effects in Single-Cell RNA-Sequencing Data Are Corrected by Matching Mutual Nearest Neighbors.[J]. Nature Biotechnology, 2018, 36(5): 421–427.
[42] HIE B, BRYSON B, BERGER B. Efficient Integration of Heterogeneous Single-Cell Transcriptomes Using Scanorama.[J]. Nature Biotechnology, 2019, 37(6): 685–691.
[43] PUZYRENKO A, JACOBS E R, SUN Y. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies[J/OL]. Cell Stress and Chaperones, 2021, 26(5): 859–868. https://doi.org/10.1007/s12192-021-01230-4.
[44] YEUNG Y-S, YIP C-W, HON C-C. Transcriptional Profiling of Vero E6 Cells Over-Expressing SARS-CoV S2 Subunit: Insights on Viral Regulation of Apoptosis and Proliferation.[J]. Virology, 2008, 371(1): 32–43.
[45] VERSTEEG G A, VAN DE NES P S, BREDENBEEK P J. The Coronavirus Spike Protein Induces Endoplasmic Reticulum Stress and Upregulation of Intracellular Chemokine MRNA Concentrations.[J]. Journal of Virology, 2007, 81(20): 10981–10990.
[46] SIU K-L, CHAN C-P, KOK K-H. Comparative Analysis of the Activation of Unfolded Protein Response by Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus HKU1.[J]. Cell & Bioscience, 2014, 4(1): 3.
[47] MINAKSHI R, PADHAN K, RANI M. The SARS Coronavirus 3a Protein Causes Endoplasmic Reticulum Stress and Induces Ligand-Independent Downregulation of the Type 1 Interferon Receptor.[J]. PloS One, 2009, 4(12): e8342.
[48] ANGELINI M M, AKHLAGHPOUR M, NEUMAN B W. Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles.[J]. MBio, 2013, 4(4).
[49] SCHULTZE J L, ASCHENBRENNER A C. COVID-19 and the Human Innate Immune System.[J]. Cell, 2021, 184(7): 1671–1692.
[50] HAYDEN M S, GHOSH S. NF-ΚB, the First Quarter-Century: Remarkable Progress and Outstanding Questions.[J]. Genes & Development, 2012, 26(3): 203–234.
[51] READ A, SCHRÖDER M. The Unfolded Protein Response: An Overview.[J]. Biology, 2021, 10(5).
[52] LIAO Y, FUNG T S, HUANG M. Upregulation of CHOP/GADD153 during Coronavirus Infectious Bronchitis Virus Infection Modulates Apoptosis by Restricting Activation of the Extracellular Signal-Regulated Kinase Pathway.[J]. Journal of Virology, 2013, 87(14): 8124–8134.
[53] FUNG T S, HUANG M, LIU D X. Coronavirus-Induced ER Stress Response and Its Involvement in Regulation of Coronavirus-Host Interactions.[J]. Virus Research, 2014, 194: 110–123.
[54] SHI Y, WANG G, CAI X-P. An Overview of COVID-19.[J]. Journal of Zhejiang University. Science. B, 2020, 21(5): 343–360.
[55] CHAMBERS D C, CAREW A M, LUKOWSKI S W. Transcriptomics and Single-Cell RNA-Sequencing.[J]. Respirology (Carlton, Vic.), 2019, 24(1): 29–36.
[56] FANG L, LI G, SUN Z. CASB: a concanavalin A‐based sample barcoding strategy for single‐cell sequencing[J]. Molecular Systems Biology, 2021, 17(4): 1–16.
Edit Comment