[1] LEE D, CHA G, YANG M H, et al. Individualness and determinantal point processes for pedestrian detection[C]//European Conference on Computer Vision. [S.l.]: Springer, 2016: 330-346.
[2] 周永虎. 视频流中基于头肩特征的运动人体检测与跟踪 [D]. [出版地不详]: 西安电子科技大学, 2013.
[3] WU Y, YU T, HUA G. A statistical field model for pedestrian detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05): volume 1.[S.l.]: IEEE, 2005: 1023-1030.
[4] TUZEL O, PORIKLI F, MEER P. Pedestrian detection via classification on riemannian manifolds[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(10): 1713-1727.
[5] ZHIPING W. Pedestrian tracking algorithm based on human body characteristics identificationand kalman filter[J]. Electronics Optics & Control, 2016, 23(11): 97-102.
[6] 应俊. 基于计算机视觉的电梯轿厢内人数统计研究 [D]. [出版地不详]: 杭州电子科技大学, 2013.
[7] 冯化纲. 基于立体视觉的客流监控预警系统设计与实现 [J]. 计算机与数字工程, 2021, 49(4): 731-735.
[8] 鲍华. 复杂场景下基于局部分块和上下文信息的单视觉目标跟踪 [D]. [出版地不详]: 中国科学技术大学, 2017.
[9] GERONIMO D, LOPEZ A M, SAPPA A D, et al. Survey of pedestrian detection for advanceddriver assistance systems[J]. IEEE transactions on pattern analysis and machine intelligence,2009, 32(7): 1239-1258.
[10] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation: an accelerator for attributereduction in rough set theory[J]. Artificial intelligence, 2010, 174(9-10): 597-618.
[11] CHEN Y, ZHOU X S, HUANG T S. One-class svm for learning in image retrieval[C]//Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205): volume 1. [S.l.]: IEEE, 2001: 34-37.
[12] WANG X, HAN T X, YAN S. An hog-lbp human detector with partial occlusion handling[C]//2009 IEEE 12th international conference on computer vision. [S.l.]: IEEE, 2009: 32-39.
[13] 肖军, 朱世鹏, 黄杭, 等. 基于光流法的运动目标检测与跟踪算法 [J]. 东北大学学报 (自然科学版), 2016, 37(6): 770.
[14] DU X, EL-KHAMY M, LEE J, et al. Fused dnn: A deep neural network fusion approach to fastand robust pedestrian detection[C]//2017 IEEE winter conference on applications of computervision (WACV). [S.l.]: IEEE, 2017: 953-961.
[15] 汪冲, 席志红, 肖春丽. 基于背景差分的运动目标检测方法 [J]. 应用科技, 2009, 36(10):16-18.
[16] 刘琳. 基于人体头肩特征的行人检测方法研究与应用 [D]. [出版地不详]: 南京理工大学,2015.
[17] RETTKOWSKI J, BOUTROS A, GÖHRINGER D. Real-time pedestrian detection on a xilinxzynq using the hog algorithm[C]//2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig). [S.l.]: IEEE, 2015: 1-8.
[18] BENENSON R, MATHIAS M, TIMOFTE R, et al. Pedestrian detection at 100 frames persecond[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE,2012: 2903-2910.
[19] 李春艳, 王立, 卢欣, 等. 一种双目立体视觉相机标定方法 [J]. 空间控制技术与应用, 2010,36(3): 51-54.
[20] 邹朋朋, 张滋黎, 王平, 等. 基于共线向量与平面单应性的双目相机标定方法 [J]. 光学学报, 2018, 37(11): 1115006.
[21] TANNER R, STUDER M, ZANOLI A, et al. People detection and tracking with tof sensor[C]//2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.[S.l.]: IEEE, 2008: 356-361.
[22] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE transactions on pattern analysis and machineintelligence, 2009, 32(9): 1627-1645.
[23] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术 [J]. 中国激光, 2014(2): 1-10.
[24] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computervision and pattern recognition. [S.l.: s.n.], 2014: 580-587.
[25] DONG L, PARAMESWARAN V, RAMESH V, et al. Fast crowd segmentation using shapeindexing[C]//2007 IEEE 11th International Conference on Computer Vision. [S.l.]: IEEE, 2007:1-8.
[26] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks forvisual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[27] VIOLA P, JONES M J, SNOW D. Detecting pedestrians using patterns of motion and appearance[J]. International Journal of Computer Vision, 2005, 63(2): 153-161.
[28] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.[S.l.: s.n.], 2017: 652-660.
[29] DU X, ANG M H, RUS D. Car detection for autonomous vehicle: Lidar and vision fusionapproach through deep learning framework[C]//2017 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS). [S.l.]: IEEE, 2017: 749-754.
[30] KU J, MOZIFIAN M, LEE J, et al. Joint 3d proposal generation and object detection from viewaggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). [S.l.]: IEEE, 2018: 1-8.
[31] 刘昊, 魏志强, 李臻, 等. 一种多相机系统的研究与实现 [J]. 中国海洋大学学报 (自然科学版), 2015, 3.
[32] 常昕, 陈晓冬, 张佳琛, 等. 基于激光雷达和相机信息融合的目标检测及跟踪 [J]. 光电工程, 2019, 46(7): 180420-1.
[33] 黄元捷. 基于随机蕨丛的改进型 TLD 跟踪算法 [J]. 计算机光盘软件与应用, 2015, 18(2):127-128.
[34] 梁锡宁, 杨刚, 余学才, 等. 一种动态模板匹配的卡尔曼滤波跟踪方法 [J]. 光電工程, 2010,37(10): 29-33.
[35] 钟必能. 复杂动态场景中运动目标检测与跟踪算法研究 [D]. [出版地不详]: 哈尔滨: 哈尔滨工业大学, 2010.
[36] NGO V, CASADEVALL A, CODINA M, et al. A pipeline hog feature extraction for real-timepedestrian detection on fpga[C]//2017 IEEE East-West Design & Test Symposium (EWDTS).[S.l.]: IEEE, 2017: 1-6.
[37] CHERKASSKY V, MA Y. Practical selection of svm parameters and noise estimation for svmregression[J]. Neural networks, 2004, 17(1): 113-126.
[38] LI J, WANG H, ZHANG L, et al. The research of random sample consensus matching algorithm in pca-sift stereo matching method[C]//2019 Chinese Control And Decision Conference(CCDC). [S.l.]: IEEE, 2019: 3338-3341.
[39] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprintarXiv:1804.02767, 2018.
[40] 【必备】目标检测中的评价指标有哪些?[EB/OL]. (2020-08-01)
[2021-06-04]. https://cloud.tencent.com/developer/article/1624811.
[41] XING Y, LI A, CUI Z, et al. Moving target tracking algorithm based on improved kernelizedcorrelation filter[J]. Infrared and Laser Engineering, 2016, 45(s1): S126004.
[42] AIZENBERG N N, AIZENBERG I N. Cnn based on multi-valued neuron as a model of associative memory for grey scale images[C]//CNNA’92 Proceedings Second International Workshopon Cellular Neural Networks and Their Applications. [S.l.]: IEEE, 1992: 36-41.
[43] ZHANG H, ZHANG J, WU Q, et al. Extended kernel correlation filter for abrupt motion tracking[J]. KSII Transactions on Internet and Information Systems (TIIS), 2017, 11(9): 4438-4460.
[44] TAN S, LIU Y, LI Y. Improved kernel correlation filter tracking with gaussian scale space[C]//Infrared Technology and Applications, and Robot Sensing and Advanced Control: volume10157. [S.l.]: SPIE, 2016: 713-719.
[45] XU F, WANG H, SONG Y, et al. A multi-scale kernel correlation filter tracker with featureintegration and robust model updater[C]//2017 29th Chinese Control And Decision Conference(CCDC). [S.l.]: IEEE, 2017: 1934-1939.
[46] MARIN J, VÁZQUEZ D, GERÓNIMO D, et al. Learning appearance in virtual scenariosfor pedestrian detection[C]//2010 IEEE computer society conference on computer vision andpattern recognition. [S.l.]: IEEE, 2010: 137-144.
Edit Comment