中文版 | English
Title

社交媒体行业的内容差异化与竞争:以新浪微博为例

Alternative Title
CONTENT DIFFERENTIATION AND COMPETITION IN THE SOCIAL MEDIA INDUSTRY: A CASE STUDY OF SINA WEIBO
Author
Name pinyin
LI Weiyan
School number
12032706
Degree
硕士
Discipline
0701Z1商务智能与大数据管理
Subject category of dissertation
07 理学
Supervisor
郭悦
Mentor unit
信息系统与管理工程系
Publication Years
2022-05-07
Submission date
2022-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

在互联网技术不断迭代与发展的环境背景下,社交媒体平台逐渐成为了当下最主要的信息传播途径之一,其特点是能够同时存在大量内容。然而,国内社交媒体的滥用现象也导致了在线平台的内容竞争状况愈来愈激烈。因此,通过研究社交媒体平台的信息扩散竞争机制,对维护互联网秩序、促进社交媒体平台健康发展具有十分重大的意义。

为研究社交媒体平台上信息扩散过程中竞争或合作的交互影响作用,本文选取了2021年9月至2022年1月期间新浪微博上的热门话题数据。然后使用互激 励霍克斯模型对信息扩散过程进行建模,并通过真实数据得到模型的参数估计结 果以评估这种交互效应的影响方向和大小,最后使用线性回归模型对影响这种交互效应的因素做进一步探索。

实证结果表明,在大部分情况下信息之间交互影响表现为竞争关系,即一条信息的传播会抑制其他信息的传播。同时,本文也发现了一些信息的扩散会受益于其他信息的扩散的证据,即信息之间的合作效应。更进一步发现,信息发布者 的社交网络规模、信息流大小和信息内容主题的相似程度都是影响这种交互效应大小和方向的关键因素。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] Zadeh A H , Sharda R . Hawkes Point Processes for Social Media Analytics[M]. Springer International Publishing, 2015.
[2] Appel G , Grewal L , Hadi R , et al. The future of social media in marketing[J]. Journal of the Academy of Marketing Science, 2020, 48.
[3] Chrasekaran D , Tellis G J . Diffusion of innovation[J]. Pacesetters, 1995, 7.
[4] Lakkaraju K , Speed A . Key parameters for modeling information diffusion in populations[C]// IEEE International Conference on Technologies for Homeland Security. IEEE, 2010.
[5] Guille A . DOI: 10.1145/2483574.2483575 Information Diffusion in Online Social Networks[C]// 2013.
[6] X Wang, Chen L , Shi J , et al. What makes cancer information viral on social media?[J]. Computers in Human Behavior, 2019, 93:149-156.
[7] Mao, K. Z , Tan, et al. Probabilistic Neural-Network Structure Determination for Pattern Classification.[J]. IEEE Transactions on Neural Networks, 2000.
[8] Berger, Jonah, Milkman, et al. What Makes Online Content Viral??[J]. Journal of Marketing Research (JMR), 2012.
[9] Hoogendoorn M , Treur J , Wal C , et al. An Agent-Based Model for the Interplay of Information and Emotion in Social Diffusion[C]// IEEE/WIC/ACM International Conference on Web Intelligence & Intelligent Agent Technology. IEEE, 2010.
[10] Huang N , Burtch G , Gu B , et al. Motivating User-Generated Content with Performance Feedback: Evidence from Randomized Field Experiments[J]. Social Science Electronic Publishing, 2017.
[11] Susarla A , Oh J H , Yong T . Social Networks and the Diffusion of User-Generated Content: Evidence from YouTube[J]. Information Systems Research, 2012, 23(1):23-41.
[12] Gelper S , Lans R , Bruggen G V . Competition for Attention in Online Social Networks: Implications for Seeding Strategies[J]. 2021.
[13] Luo X , Gu B , Zhang J , et al. Expert Blogs and Consumer Perceptions of Competing Brands[J]. Social Science Electronic Publishing, 2017, 41(2):371-395.
[14] Myers S A , Leskovec J . Clash of the Contagions: Cooperation and Competition in Information Diffusion[C]// IEEE. IEEE, 2012:539-548.
[15] Batrinca B , Treleaven P C . Social media analytics: a survey of techniques, tools and platforms[J]. AI & SOCIETY, 2015, 30(1):89-116.
[16] Johan, Bollen, and, et al. Twitter mood predicts the stock market[J]. Journal of Computational Science, 2011.
[17] Bo P , Lee L . Opinion Mining and Sentiment Analysis[J]. Foundations and Trends® in Information Retrieval, 2008, 2(1–2):1-135.
[18]单佳佳. 社会化媒体背景下企业品牌营销策略[J]. 东南大学学报:哲学社会科学版, 2016(S1):3.
[19] Fei X , Yun L , Zhang Z J , et al. An information diffusion model based on retweeting mechanism for online social media[J]. Physics Letters A, 2012, 376(30-31):2103-2108.
[20] Huang R , Sun X . Weibo network, information diffusion and implications for collective action in China[J]. Information, Communication & Society, 2013.
[21] Firdaus S N , Ding C , Sadeghian A . Retweet: A popular information diffusion mechanism – A survey paper[J]. Online Social Networks & Media, 2018, 6:26-40.
[22] Manish, Gupta, Jing, et al. Predicting future popularity trend of events in microblogging platforms[J]. Proceedings of the American Society for Information Science & Technology, 2013.
[23] D Li, Xu Z M , Li S , et al. A Survey on Information Diffusion in Online Social Networks: Models and Methods[J]. Chinese Journal of Computers, 2014, 254(3):31-36.
[24] Ding X . Research on propagation model of public opinion topics based on SCIR in microblogging[J]. Computer Engineering and Applications, 2015.
[25] Saito K , Nakano R , Kimura M . Prediction of Information Diffusion Probabilities for Independent Cascade Model[C]// International Conference on Knowledge-based Intelligent Information & Engineering Systems. Springer-Verlag, 2008.
[26] Cao J X , Wu J L , Shi W , et al. Sina Microblog Information Diffusion Analysis and Prediction[J]. Chinese Journal of Computers, 2014.
[27]朱晓霞, 刘萌萌, 陆君安. 公共危机中伪信息的多层网络扩散机制研究[J]. 情报学报, 2016, 35(3):10.
[28]兰娟丽, 雷宏振. 负面信息在网络群间传播的扩散机制模型的构建[J]. 统计与决策, 2015(24):4.
[29] Zhou F , Xu X , Trajce Vs Ki G , et al. A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances[J]. ACM Computing Surveys, 2021, 54(2):27:1-27:36.
[30]MD Choudhury, Lin Y R , Sundaram H , et al. How Does the Data Sampling Strategy Impact the Discovery of Information Diffusion in Social Media?[C]// International Conference on Weblogs & Social Media. DBLP, 2010.
[31]张凌, 李德, 朱礼军. 不同主题下社交网络信息扩散影响因素研究综述[J]. 图书情报知识, 2021, 38(4):12.
[32] Bacry E , Muzy J F . Hawkes model for price and trades high-frequency dynamics.
[33] Xu L , Duan J A , Whinston A . Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion[J]. Management ence, 2015, 60.
[34] Greenspan B . Survey of some recent advances in spatial-temporal point processes[J]. Dissertations & Theses - Gradworks, 2013.
[35] Newman M . The structure and function of complex networks[J]. Siam Review, 2003.

Academic Degree Assessment Sub committee
信息系统与管理工程系
Domestic book classification number
TM301.2
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/342788
DepartmentDepartment of Information Systems and Management Engineering
Recommended Citation
GB/T 7714
李玮彦. 社交媒体行业的内容差异化与竞争:以新浪微博为例[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032706-李玮彦-商学院.pdf(1876KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李玮彦]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李玮彦]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李玮彦]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.