中文版 | English
Title

微地震速度模型和高精度定位贝叶斯反演方法

Alternative Title
BAYESIAN INVERSION FOR MICROSEISMIC VELOCITY OPTIMIZATIONAND HIGH PRECISION EVENT LOCATION
Author
Name pinyin
JIANG Xingda
School number
11749289
Degree
博士
Discipline
080102 固体力学
Subject category of dissertation
08 工学
Supervisor
张伟
Mentor unit
地球与空间科学系
Publication Years
2021-11-16
Submission date
2022-06-24
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

       微地震监测技术是评估非常规油气水力压裂裂缝发展的重要手段。 速度模型的准确性对微地震成像结果起着举足轻重的作用。 传统方法根据声波测井信号建立初始模型,然后利用射孔事件信息进一步优化速度模型。 该方法受限于射孔事件个数较少和射线路径覆盖范围较窄, 反演过程中稳定性较差,遇到复杂地层时反演误差较大,严重影响微地震事件定位精度。 为了提高微地震事件定位准确度,本文在利用微地震信号约束反演过程的基础上, 以灵活优化速度模型的层位结构和速度值为出发点, 探讨了复杂地质条件下的速度模型校正方法和微地震事件定位精度提升手段, 并致力于满足实际微地震监测的需求, 主要获得了以下几个成果:

        针对复杂地质条件下初始速度模型误差较大、 微地震事件定位精度较差的难题,本文首次将贝叶斯变维方法应用于井中速度模型校正, 反演过程中同时优化速度模型的层位个数、深度以及各层速度值,在射孔事件和微地震事件等有效信号的约束下, 获得稀疏的等效速度模型。 理论和实际数据应用均表明,该方法受声波测井信息影响较小, 可以有效提高微地震事件定位精度。
        速度模型和微地震事件位置联合反演存在折衷风险, 为了防止微地震事件定位结果出现系统偏差, 本文将主事件定位方法和贝叶斯速度参数推导方法相结合,提出了增量虚拟主事件(IPM)方法。 IPM 方法迭代优化微地震事件位置和速度模型精度, 减少了反演参数个数,保证反演稳定性。 理论和实际数据应用
均表明, IPM 方法适用于不同地质条件速度模型优化, 成倍级减小了微地震事件定位偏差。
       当遇到水力压裂地区存在强各向异性特征严重影响微地震事件定位精度时,本文基于 IPM 方法推断了 VTI 介质各向异性参数。 在固定维反演测试中, IPM方法定量预测了各向异性参数的不确定性。 在变维反演测试中, IPM 方法成功获得稀疏的等效各向异性速度模型, 减少了微地震事件定位偏差。
       针对贝叶斯反演中应用 MCMC 采样方法需要多次迭代、影响计算速率的问题, 本文结合打靶法原理简单和最短路径法对速度结构适用性强的特点,开发了适于多个检波器走时快速计算的各向同性和 VTI 介质射线追踪算法。 该算法简洁高效,用稀疏的节点推断出高精度的走时和射线路径, 有助于提升速度模
型反演效率,便于实时定位。

      本文提出的速度校正方法克服了传统方法约束信息少、 速度模型适用性差、定位误差大、反演效率低的问题,适用于复杂地质条件下的微地震监测, 减少了微地震事件定位偏差到十米量级,反演效率提升了数十倍。 适合于实际水力压裂生产,为提高非常规能源油气采收率提供了有效的保障。
 

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2017
Year of Degree Awarded
2022-01-05
References List

[1] 邹才能. 非常规油气地质学[M]. 北京:地质出版社, 2014: 11-23.
[2] Board N E. A primer for understanding Canadian shale gas[R]. Canada, 2009: 1-10.
[3] 王鸿勋. 水力压裂原理[M]. 北京:石油工业出版社, 1987: 1-4.
[4] 蒋星达. 微地震井中监测速度模型校正方法和资料解释[D]. 合肥:中国科学技术大学, 2017: 5-10.
[5] 彪仿俊,刘合,张士诚. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学, 2011, 28(10): 228-235.
[6] 江海宇. 油田压裂微地震地面监测速度模型校正及定位研究[D]. 吉林:吉林大学, 2016: 1-8.
[7] 梁兵,朱广生. 油气田勘探开发中的微震监测方法[M]. 北京:石油工业出版社, 2004: 11-31.
[8] Shawn C M, Theodore I U. The role of passive microseismic monitoring in theinstrumented oil field[J]. Leading Edge, 2001, 20(06): 636-639.
[9] Power D V, Schuster C L, Hay R, et al. Detection of hydraulic fracture orientationand dimensions in cased wells[J]. Journal of Petroleum Technology, 1976, 28(09):1116-1124.
[10] Varnes D J. Landslide Analysis and Control[J]. Slope Movement Types & Processes, 1978, 8(03): 12-15.
[11] 刘劲松,王赟,姚振兴. 微地震信号到时自动拾取方法[J]. 地球物理学报, 2013, 56(05): 1660-1666.
[12] Wu S, Wang Y, Zhan Y, et al. Automatic microseismic event detection by bandlimited phase-only correlation[J]. Physics of the Earth and Planetary Interiors, 2016, 261: 3-16.
[13] 余洋洋,梁春涛,康亮,等. 微地震地面监测系统的优化设计[J].石油地球物理勘, 2017, 52(5): 974-983.
[14] 王亚娟,李怀良,庹先国,等. 一种强噪声微地震信号 P 震相初至拾取的新方法[J]. 石油物探, 2020, 59(03): 356-365.
[15] 谭玉阳,何川,张洪亮. 基于初至旅行时差的微地震速度模型反演[J]. 石油地球物理勘探, 2015, 50(01): 54-60.
[16] 崔庆辉,尹成,刁瑞,等. 地面微地震监测速度模型优化方法研究[J]. 地球物理学进, 2018, 33(01): 163-167.
[17] Xue Q, Wang Y, Zhan Y, et al. An efficient GPU implementation for locating microseismic sources using 3D elastic wave time-reversal imaging[J]. Computers & Geosciences, 2015, 82: 89-97.
[18] 王璐琛,常旭,王一博. 干涉走时微地震震源定位方法[J]. 地球物理学报,2016, 59(8): 3037-3045.
[19] Zheng Y, Wang Y, Chang X. Wave equation based microseismic source locationand velocity inversion[J]. Physics of the Earth and Planetary Interiors, 2016, 261:46-53.
[20] 田宵. 井下微地震监测方法研究[D]. 合肥:中国科学技术大学, 2018: 1-10.
[21] Yu Y, Liang C, Wu F, et al. On the accuracy and efficiency of the joint source scanning algorithm for hydraulic fracturing monitoring[J]. Geophysics, 2018, 83(5): KS77-KS85.
[22] 曾志毅,张建中. 利用微地震记录互相关成像的震源定位方法[J]. 石油地球物理勘探, 2020, 55(02): 360-372.
[23] 谭玉阳,胡隽,张海江,等. 利用全波形匹配方法确定水力压裂诱发地震震源机制[J]. 地球物理学报, 2019, 62(11): 4417-4436.
[24] 李晗,常旭. 微地震震源机制研究进展[J]. 中国科学:地球科学, 2021, 51(03):325-338.
[25] 张宪旭,杨光明,蔡文芮,等. 煤层下部地层地震成像研究[J]. 煤田地质与勘探, 2015, 43(02): 83-85.
[26] 张永成,郝海金,李兵,等. 煤层气水平井微地震成像裂缝监测应用研究[J]. 煤田地质与勘探, 2018, 46(04): 67-71.
[27] Maxwell S. Microseismic imaging of hydraulic fracturing[M]. Houston: Societyof Exploration Geophysicists, 2014: 1-11.
[28] 李仕彦. 水力压裂地面微地震监测系统及震源定位方法研究[D]. 成都:西南石油大学, 2013: 6-10.
[29] Warpinski N R, Sullivan R B, Uhl J E, et al. Improved Microseismic Fracture Mapping Using Perforation Timing Measurements for Velocity Calibration[J]. SPE Journal, 2005, 3: 14-23.
[30] Pei D, Quirein J A, Cornish B E, et al. SPWLA 49th annual logging symposium [C].Austin: Petroleum Press, 2008: 1-9.
[31] Pavlis G L. Appraising earthquake hypocenter location errors: A complete,practical approach for single-event locations[J]. Bulletin of the Seismological Society of America, 1986, 76(6): 1699-1717.
[32] 宋维琪,冯超. 微地震有效事件自动识别与定位方法[J]. 石油地球物理勘探,2013, 48(2): 283-288.
[33] Pei D, Quirein J A, Cornish B E, et al. Velocity calibration for microseismic monitoring: A very fast simulated annealing (VFSA) approach for joint-objective optimization[J]. Geophysics, 2009, 74(6): WCB47-WCB55.
[34] Tian X, Zhang W, Zhang J. Cross double-difference inversion for microseismicevent location using data from a single monitoring well[J]. Geophysics, 2016, 81(5): KS183-KS194.
[35] 隋微波,刘荣全,崔凯. 水力压裂分布式光纤声波传感监测的应用与研究进展[J]. 中国科学:技术科学, 2021, 51(4): 1-17.
[36] Rentsch S, Buske S, S. Lüth, et al. 67th EAGE Conference & Exhibition[C]. Paris:European Association of Geoscientists & Engineers, 2005: cp-1-00596.
[37] Haldorsen B U, Brooks N J, Milenkovic M. Locating microseismic sources usingmigration-based deconvolution[J]. Geophysics, 2013, 78(5): KS73-KS84.
[38] Tian X, Zhang W, Zhang J. Cross double‐difference inversion for simultaneousvelocity model update and microseismic event location[J]. Geophysical Prospecting, 2017, 65(5), 259-273.
[39] Warpinski N R, Du J. SPE hydraulic fracturing technology conference[C].Houston: Society of Petroleum Engineers, 2013: 1-15.
[40] Wilson S, Raymer D, Jones R. SEG Annual Meeting Technical Program Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2003: 1565-1568.
[41] Zhou H W. Multiscale traveltime tomography[J]. Geophysics, 2003, 68(5): 1639-1649.
[42] Zhou H W. Multiscale deformable-layer tomography[J]. Geophysics, 2006, 71(3):R11-R19.
[43] Li J, Zhang H, Rodi W L, et al. Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths[J]. Geophysical Journal International, 2013, 195(3): 1917-1931.
[44] Li J, Li C, Morton S A, et al. Microseismic joint location and anisotropic velocityinversion for hydraulic fracturing in a tight Bakken reservoir[J]. Geophysics, 2014,79(5): 111-C122.
[45] Grechka V, Yaskevich S. Azimuthal anisotropy in microseismic monitoring: A Bakken case study[J]. Geophysics, 2014, 79(1): KS1-KS12.
[46] Bardainne T, Gaucher E. Constrained tomography of realistic velocity models in microseismic monitoring using calibration shots[J]. Geophysical Prospecting,2010, 58(5): 739-753.
[47] 蒋星达,张伟,王仔轩,等. 基于总变分(TV)正则化约束的微地震井下速度模型校正[J]. 物探化探计算技术, 2018, 040(005): 559-564.
[48] Grechka V, Li Z, Howell B, et al. High-resolution microseismic imaging[J]. Leading Edge, 2017, 36(10): 822-828.
[49] Lin Y, Zhang H, Jia X. Target-oriented imaging of hydraulic fractures by applying the staining algorithm for downhole microseismic migration[J]. Journal of Applied Geophysics, 2018, 150: 278-283.
[50] Warpinski N. Microseismic Monitoring: Inside and Out[J]. Journal of PetroleumTechnology, 2009, 61(11): 80-85.
[51] Erwemi A, Walsh J, Bennett L, et al. SEG Annualing Meeting Technical ProgramExpanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2010: 508-512.
[52] Maxwell S C, Bennett L, Jones M. SEG Annualing Meeting Technical ProgramExpanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2010: 2130-2134.
[53] Woerpel C. SEG Annualing Meeting Technical Program Expanded Abstracts[C].Houston: Society of Petroleum Engineers, 2010: 2135-2139.
[54] Grechka V, Singh P, Das I. Estimation of effective anisotropy simultaneously with locations of microseismic events[J]. Geophysics, 2011, 76(6): WC143-WC155.
[55] Pei D, Carmichael J, Waltman C, et al. SEG Annualing Meeting Technical Program Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2014: 2278-2282.
[56] Zhang Z, Du J, Gao F. Simultaneous inversion for microseismic event location and velocity model in Vaca Muerta Formation[J]. Geophysics, 2018, 83(3): KS23-KS34.
[57] Zhang Z, Du J, Mavko G M. Reservoir characterization using perforation shots:Anisotropy, attenuation and uncertainty analysis[J]. Geophysical Journal International, 2019, 216(1): 470-485.
[58] Pirli M, Heiner I. Computational seismology: a practical introduction[J]. Journal of Seismology, 2017, 21(3): 567-570.
[59] Cerveny V. Seismic ray theory[M]. London: Cambridge University Press, 2005:14-32.
[60] 张雁雁. 水平层状 VTI 介质两点射线追踪方法研究[D]. 哈尔滨:哈尔滨工业大学, 2020: 20-26.
[61] 邴琦, 孙章庆, 韩复兴, 等. 地震波射线追踪方法综述——方法、 分类、 发展现状与趋势[J]. 地球物理学进展, 2020, 35(02): 536-547.
[62] Julian B, Gubbins D. Three-Dimensional Seismic Ray Tracing[J]. Journal ofGeophysics, 1977, 43(1): 95-113.
[63] Moser T J. Shortest path calculation of seismic ray[J]. Geophysics, 1991, 56(1):59-67.
[64] Schneider W A J, Ranzinger K A, Balch A H, et al. A dynamic programmingapproach to first arrival traveltime computation in media with arbitrarily distributed velocities[J]. Geophysics, 1991, 57(1): 39-50.
[65] Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime interpolation[J]. Geophysical Prospecting, 1993, 41(1): 99-111.
[66] Fischer R, Lees J M. Shortest path ray tracing with sparse graphs[J]. Geophysics, 1993, 58(7): 987-996.
[67] 张建中,陈世军,徐初伟. 动态网络最短路径射线追踪[J]. 地球物理学报, 2004(05): 900-905.
[68] 王辉,常旭. 基于图形结构的三维射线追踪方法[J]. 地球物理学报, 2000(04):534-541.
[69] 张美根,程冰洁,李小凡,等. 一种最短路径射线追踪的快速算法[J]. 地球物理学报, 2006(05):1467-1474.
[70] 赵后越,张美根. 起伏地表条件下各向异性地震波最短路径射线追踪[J]. 地球物理学报, 2014, 57(09): 2910-2917.
[71] Bai C Y, Greenhalgh S, Zhou B. 3D ray tracing using a modified shortest-pathmethod[J]. Geophysics, 2007, 72(4): T27-T36.
[72] Bai C Y, Huang G J, Li X L, et al. Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography[J]. Geophysical Journal International, 2013, 195(2), 1068-1087.
[73] Bai C Y, Li X L, Wang Q L, et al. Multiple arrival tracking within irregular triangular or tetrahedral cell model[J]. Journal of Geophysics and Engineering, 2012, 9(1): 29-38.
[74] 王华忠,方正茂,徐兆涛,等. 地震波旅行时计算[J]. 石油地球物理勘探,1999, 34(02): 155-163.
[75] 张赛民,周竹生,陈灵君,等. 对旅行时进行抛物型插值的地震射线追踪方法[J]. 地球物理学进展, 2007(01): 43-48.
[76] 梅胜全,邓飞,钟本善,等. 基于改进的双线性旅行时插值的三维射线追踪[J]. 物探化探计算技术, 2010, 32(02): 152-157.
[77] 黄靓,黄政宇. 线性插值射线追踪的改进方法[J]. 湘潭大学自然科学学报,2002(04): 105-108.
[78] 王琦,朱盼,叶佩,等. 起伏地表地震波旅行时混合网格线性插值射线追踪计算方法[J]. 石油地球物理勘探, 2018, 53(01): 35-46.
[79] 王家映. 地球物理资料非线性反演方法讲座(一)地球物理反演问题概述[J].工程地球物理学报, 2007, 4(1): 1-3.
[80] 王家映. 地球物理反演理论[M]. 北京:高等教育出版社, 2002: 113-132.
[81] Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse problems[M]. Elsevier, 2018: 93-127.
[82] Parker R L. Understanding Inverse Theory[J]. Annual Review of Earth & Planetary Sciences, 1977, 5(1): 35-64.
[83] Tarantola A. Inverse problem theory and methods for model parameter estimation[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2005: 51-54.
[84] Sen M K, Stoffa P L. Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion[J]. Geophysical Prospecting, 1996, 44(2): 313-350.
[85] Ray A, Key K. Bayesian inversion of marine CSEM data with a transdimensionalself parametrizing algorithm[J]. Geophysical Journal International, 2012, 191(3):1135-1151.
[86] Bayes T. An essay towards solving a problem in the doctrine of chances[J]. Philosophical transactions of the Royal Society of London, 1763(53): 370-418.
[87] Laplace P S. A philosophical essay on probabilities[M]. Hoboken: Wiley, 1902:43-56.
[88] Guo R, Dosso S E, Liu J, et al. Non-linearity in Bayesian 1-D magnetotelluricinversion[J]. Geophysical Journal International, 2011, 185(2): 663-675.
[89] 印兴耀,周琪超,宗兆云,等. 基于 t 分布为先验约束的叠前 AVO 反演[J]. 石油物探, 2014, 53(01): 84-92.
[90] 袁成,李景叶,陈小宏. 地震岩相识别概率表征方法[J]. 地球物理学报, 2016,59(01): 287-298.
[91] Kolbjørnsen O, Buland A, Hauge R, et al. Bayesian seismic inversion for stratigraphic horizon, lithology, and fluid prediction[J]. Geophysics, 2020, 85(3): R207-R221.
[92] Mosegaard K, Tarantola A. Monte Carlo sampling of solutions to inverse problems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12431-12447.
[93] Schott J J, Roussignol M, Menvielle M, et al. Bayesian inversion with Markovchains—II. The one-dimensional DC multilayer case[J]. Geophysical Journal International, 1999, 138(3): 769-783.
[94] Buland A, Kolbjørnsen O. Bayesian inversion of CSEM and magnetotelluric data[J]. Geophysics, 2012, 77(1): E33-E42.
[95] Grana D. Bayesian petroelastic inversion with multiple prior models[J]. Geophysics, 2020, 85(5): M57-M71.
[96] Yustres Á, Asensio L, Alonso J, et al. A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow[J]. Computational Geosciences, 2012, 16(1): 1-20.
[97] Robert C P, Chopin N, Rousseau J. Harold Jeffreys’s theory of probability revisited[J]. Statistical Science, 2009, 24(2): 141-172.
[98] Ulrych T J, Sacchi M D, Woodbury A. A Bayes tour of inversion: A tutorial[J]. Geophysics, 2001, 66(1): 55-69.
[99] Malinverno A, Briggs V A. Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes[J]. Geophysics, 2004, 69(4): 1005-1016.
[100] 肖爽,巴晶,符力耘,等. 基于高斯先验和马尔科夫随机场约束的非线性叠前地震反演研究及应用[J]. 地球物理学进展, 2020, 35(6): 2250-2258.
[101] 胡华锋,印兴耀,吴国忱. 基于贝叶斯分类的储层物性参数联合反演方法[J]. 石油物探, 2012, 51(03): 225-232.
[102] 刘彦,吕庆田,李晓斌,等. 基于模型降阶的贝叶斯方法在三维重力反演中的实践[J]. 地球物理学报, 2015, 58(12): 4727-4739.
[103] 杨培杰,印兴耀. 非线性二次规划贝叶斯叠前反演[J]. 地球物理学报, 2008,51(06): 1876-1882.
[104] 张世鑫,印兴耀,张繁昌. 基于三变量柯西分布先验约束的叠前三参数反演方法[J]. 石油地球物理勘探, 2011, 46(05): 737-743.
[105] 赵小龙,吴国忱,曹丹平. 多尺度地震资料稀疏贝叶斯联合反演方法[J]. 石油地球物理勘探, 2016, 51(06): 1156-1163.
[106] Alemie W, Sacchi M D. High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution[J]. Geophysics, 2011, 76(3): R43-R55.
[107] Yin X, Zhang S. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014, 79(5): R221-R232.
[108] Theune U, Jensås I Ø, Eidsvik J. Analysis of prior models for a blocky inversion of seismic AVA data[J]. Geophysics, 2010, 75(3): C25-C35.
[109] Visser G, Guo P, Saygin E. Bayesian transdimensional seismic full-waveforminversion with a dipping layer parameterization[J]. Geophysics, 2019, 84(6): R845-R858.
[110] 何沛阳,卢建旗,李山有,等. 地震预警震级估算方法的不确定性评估模型——以τ~p_(max)法为例[J]. 内陆地震, 2020, 34(04): 317-329.
[111] Guitton A, Symes W W. Robust inversion of seismic data using the Huber norm[J]. Geophysics, 2003, 68(4): 1310-1319.
[112] 印海燕. AVO 叠前反演方法研究[D]. 青岛:中国石油大学, 2008: 14-22.
[113] Avseth P, Mukerji T, Jørstad A, et al. Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system[J]. Geophysics, 2001, 66(4): 1157-1176.
[114] Eidsvik J, Avseth P, Omre H, et al. Stochastic reservoir characterization usingprestack seismic data[J]. Geophysics, 2004, 69(4): 978-993.
[115] 田军,吴国忱,宗兆云. 鲁棒性 AVO 三参数反演方法及不确定性分析[J]. 石油地球物理勘探, 2013, 48(03): 443-449.
[116] de Figueiredo L P, Grana D, Roisenberg M, et al. Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion[J]. Geophysics, 2019, 84(5): M1-M13.
[117] 姚铭,高刚,胡瑞卿,等. 一种改进的贝叶斯反演算法[J]. 地球物理学进展,2020, 35(05): 1911-1918.
[118] Scales J A, Snieder R. What is noise?[J]. Geophysics, 1998, 63(4): 1122-1124.
[119] Minson S E, Simons M, Beck J L, et al. Bayesian inversion for finite fault earthquake source models–II: the 2011 great Tohoku-oki, Japan earthquake[J]. Geophysical Journal International, 2014, 198(2): 922-940.
[120] 黄捍东,赵迪,任敦占,等. 基于贝叶斯理论的薄层反演方法[J]. 石油地球物理勘探, 2014, 46(06): 919-924.
[121] 苑闻京. 叠前反演和地震吸收技术在复杂天然气藏地震预测中的应用[J]. 地球物理学进展, 2012, 27(03): 1107-1115.
[122] 张繁昌,肖张波,印兴耀. 地震数据约束下的贝叶斯随机反演[J]. 石油地球物理勘, 2014, 49(01): 176-182.
[123] Mallick S. Model-based inversion of amplitude-variations-with-offset data using agenetic algorithm[J]. Geophysics, 1995, 60(4): 939-954.
[124] 余小东, 陆从德, 王绪本. 时间域航空电磁数据的自适应变维贝叶斯反演研究[J]. 地球物理学进展, 2020, 35(05): 2023-2032.
[125] Duijndam A J W. Bayesian estimation in seismic inversion. Part I:princiles[J]. Geophysical Prospecting, 1988, 36(8): 878-898.
[126] 刘艳杰. 参数反演的贝叶斯方法及其应用研究[D]. 淄博:山东理工大学, 2020:34-40
[127] Downton J E, Lines L R. SEG Annual Meeting Technical Program ExpandedAbstracts[C]. Houston: Society of Exploration Geophysicists, 2001, 251-254.
[128] Kjønsberg H, Hauge R, Kolbjørnsen O, et al. Bayesian Monte Carlo method for seismic predrill prospect assessment[J]. Geophysics, 2010, 75(2): O9-O19.
[129] Michalak A M, Hirsch A, Bruhwiler L, et al. Maximum likelihood estimation ofcovariance parameters for Bayesian atmospheric trace gas surface flux inversions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D24107):1-16.
[130] Zhu H, Li S, Fomel S, et al. A Bayesian approach to estimate uncertainty for fullwaveform inversion using a priori information from depth migration[J]. Geophysics, 2016, 81(5): R307-R323.
[131] Guo R, Dosso S E, Liu J, et al. Frequency-and spatial-correlated noise on layered magnetotelluric inversion[J]. Geophysical Journal International, 2014, 199(2):1205-1213.
[132] Oliver D S, Alfonzo M. Calibration of imperfect models to biased observations[J]. Computational Geosciences, 2018, 22(1): 145-161.
[133] Sambridge M. Geophysical inversion with a neighbourhood algorithm—I.Searching a parameter space[J]. Geophysical journal international, 1999, 138(2):479-494.
[134] Malinverno A, Parker R L. Two ways to quantify uncertainty in geophysicalinverse problems[J]. Geophysics, 2006, 71(3): W15-W27.
[135] Dettmer J, Molnar S, Steininger G, et al. Transdimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models[J]. Geophysical Journal International, 2012, 188(2): 719-734.
[136] Irving J, Singha K. Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities[J]. Water Resources Research, 2010,46(11): 1-16
[137] Grana D, Passos de Figueiredo L, Azevedo L. Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction[J]. Geophysics, 2019, 84(6): M15-M24.
[138] Bodin T, Sambridge M, Rawlinson N, et al. Transdimensional tomography with unknown data noise[J]. Geophysical Journal International, 2012, 189(3): 1536-1556.
[139] Sambridge M, Gallagher K, Jackson A, et al. Transdimensional inverse problems, model comparison and the evidence[J]. Geophysical Journal International, 2006, 167(2): 528-542.
[140] Chen J, Kemna A, Hubbard S S. A comparison between Gauss-Newton andMarkov-chain Monte Carlo–based methods for inverting spectral inducedpolarization data for Cole-Cole parameters[J]. Geophysics, 2008, 73(6): F247-F259.
[141] Bodin T, Sambridge M, Gallagher K. A self-parametrizing partition model approach to tomographic inverse problems[J]. Inverse Problems, 2009, 25(5):055009.
[142] Bodin T, Sambridge M, Tkalčić H, et al. Transdimensional inversion of receiverfunctions and surface wave dispersion[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B02301): 1-24.
[143] 尹彬,胡祥云. 非线性反演的贝叶斯方法研究综述[J]. 地球物理学进展, 2016,31(03): 1027-1032.
[144] 李承瑾,郭荣文,柳建新,等. 跨维贝叶斯反演在地球物理中的研究进展[J]. 工程地球物理学报, 2018, 15(04): 501-508.
[145] Sambridge M, Bodin T, Gallagher K, et al. Transdimensional inference in thegeosciences[J]. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 2013, 371(1984): 20110547.
[146] Akaike H. Likelihood and the Bayes procedure[J]. Trabajos de estadística y deinvestigación operativa, 1980, 31(1): 143-166.
[147] Yabuki T, Matsu'Ura M. Geodetic data inversion using a Bayesian informationcriterion for spatial distribution of fault slip[J]. Geophysical Journal International,1992, 109(2): 363-375.
[148] Fukahata Y, Yagi Y, Matsu'ura M. Waveform inversion for seismic source processes using ABIC with two sorts of prior constraints: Comparison between proper and improper formulations[J]. Geophysical research letters, 2003, 30(6): 38-1 – 38-4.
[149] Xiong Z, Zhuang J, Zhou S, et al. Crustal strain-rate fields estimated from GNSS data with a Bayesian approach and its correlation to seismic activity in Mainland China[J]. Tectonophysics, 2021, 815: 229003.
[150] Duijndam A J W. Bayesian estimation in seismic inversion. Part II: Uncertaintyanalysis[J]. Geophysical Prospecting, 1988, 36(8): 899-918.
[151] Grana D. Bayesian linearized rock-physics inversion[J]. Geophysics, 2016, 81(6): D625-D641.
[152] Buland A, Omre H. Bayesian linearized AVO inversion[J]. Geophysics, 2003,68(1): 185-198.
[153] Tarantola A, Valette B. Inverse problems= quest for information[J]. Journal ofgeophysics, 1982, 50(1): 159-170.
[154] Metropolis N, Ulam S. The monte carlo method[J]. Journal of the American statistical association, 1949, 44(247): 335-341.
[155] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The journal of chemical physics, 1953,21(6): 1087-1092.
[156] Hastings W K. Monte Carlo sampling methods using Markov chains and theirapplications[J]. Biometrika, 1970, 57(1): 97-109.
[157] Smith A F M, Roberts G O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1993, 55(1): 3-23.
[158] Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4): 711-732.
[159] 张广智, 王丹阳,印兴耀,等. 基于 MCMC 的叠前地震反演方法研究[J]. 地球物理学报, 2011, 54(11): 2926-2932.
[160] 王朋岩,李耀华,赵荣. 叠后 MCMC 法岩性反演算法研究[J]. 地球物理学进展, 2015, 30(04): 1918-1925.
[161] Bagnardi M, Hooper A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.
[162] Grandis H, Menvielle M, Roussignol M. Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case[J]. Geophysical Journal International, 1999, 138(3): 757-768.
[163] Ulvmoen M, Omre H. Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1—Methodology[J].Geophysics, 2010, 75(2): R21-R35.
[164] Schwarz G. Estimating the dimension of a model[J]. Annals of statistics, 1978,6(2): 461-464.
[165] Malinverno A. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem[J]. Geophysical Journal International, 2002, 151(3): 675-688.
[166] Zhu D, Gibson R. Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method[J]. Geophysics, 2018(83): R321-R334.
[167] Vrugt J A, Ter Braak C J F, Clark M P, et al. Treatment of input uncertainty inhydrologic modeling: Doing hydrology backward with Markov chain Monte Carlosimulation[J]. Water Resources Research, 2008, 44(12): W00B09.
[168] Laloy E, Vrugt J A. High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM (ZS) and high‐performance computing[J]. Water Resources Research, 2012, 48(1): W01526.
[169] Ray A, Alumbaugh D L, Hoversten G M, et al. Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering[J]. Geophysics, 2013, 78(6): E271-E280.
[170] Sambridge M. A parallel tempering algorithm for probabilistic sampling andmultimodal optimization[J]. Geophysical Journal International, 2014, 196(1): 357-374.
[171] Bodin T, Sambridge M. Seismic tomography with the reversible jump algorithm[J]. Geophysical Journal International, 2009, 178(3), 1411-1436.
[172] Hong T, Sen M K. A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis[J]. Geophysical Journal International, 2009,177(1): 14-32.
[173] 王文涛,朱培民. 地震储层预测中贝叶斯反演方法的研究[J]. 石油天然气学报, 2009(05): 263-266.
[174] Chen J, Kemna A, Hubbard S S. A comparison between Gauss-Newton and Markov-chain Monte Carlo–based methods for inverting spectral inducedpolarization data for Cole-Cole parameters[J]. Geophysics, 2008, 73(6): F247-F259.
[175] Sacchi M D, Ulrych T J. High-resolution velocity gathers and offset space reconstruction[J]. Geophysics, 1995, 60(4): 1169-1177.
[176] Agostinetti N P, Malinverno A. Receiver function inversion by transdimensional Monte Carlo sampling[J]. Geophysical Journal International, 2010, 181(2): 858-872.
[177] Stein S, Wysession M. An introduction to seismology, earthquakes, and earthstructure[M]. Blackwell Publishing Ltd, 2003: 29-30.
[178] Markov G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. Canbridge University Press, 2003:24-30, 83-86.
[179] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
[180] 刘玲君,谢中华,杨萃. 基于边界线性走时插值的射线追踪算法[J]. 华南理工大学学报(自然科学版), 2014, 42(05): 23-28.
[181] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966.
[182] Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media[J].Geophysics, 1997, 62(4): 1292-1309.
[183] Sena A G. Seismic traveltime equations for azimuthally anisotropic and isotropic media: Estimation of interval elastic properties[J]. Geophysics, 1991, 56(12):2090-2101.
[184] Byun B S, Corrigan D, Gaiser J E. Anisotropic velocity analysis for lithologydiscrimination[J]. Geophysics, 1989, 54(12): 1564-1574.
[185] 赵爱华,丁志峰. 一种弱各向异性介质地震波群速度的近似表示新方法[J].地球物理学进展, 2005(04): 916-919.
[186] Geiger L. Probability method for the determination of earthquake epicenters from the arrival time only[J]. Bull. St. Louis Univ, 1912, 8(1): 56-71.
[187] Bouchaala F, Vavryčuk V, Fischer T. Accuracy of the master-event and doubledifference locations: Synthetic tests and application to seismicity in West Bohemia,Czech Republic[J]. Journal of seismology, 2013, 17(3): 841-859.
[188] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368.
[189] Got J L, Okubo P. New insights into Kilauea's volcano dynamics brought by largescale relative relocation of microearthquakes[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B7): 5-1-5-13.
[190] Golub G H, Reinsch C. Singular value decomposition and least squaressolutions[M]. Berlin: Linear algebra, 1971: 134-151.
[191] Jansky J, Plicka V, Eisner L. Feasibility of joint 1D velocity model and eventlocation inversion by the neighbourhood algorithm[J]. Geophysical Prospecting,2010, 58(2): 229-234.
[192] Gei D, Eisner L, Suhadolc P. Feasibility of estimating vertical transverse isotropy from microseismic data recorded by surface monitoring arrays[J]. Geophysics,2011, 76(6): WC117-WC126.
[193] Jing H, Zhou H W, Li A. Quantification of the impact of seismic anisotropy inmicroseismic location[J]. International Journal of Geosciences, 2016, 7(07): 884-890.
[194] Gajek W, Malinowski M. Errors in microseismic events locations introduced by neglecting anisotropy during velocity model calibration in downhole monitoring[J]. Journal of Applied Geophysics, 2021, 184: 104222.

Academic Degree Assessment Sub committee
地球与空间科学系
Domestic book classification number
P315.08
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/342791
DepartmentDepartment of Earth and Space Sciences
Recommended Citation
GB/T 7714
蒋星达. 微地震速度模型和高精度定位贝叶斯反演方法[D]. 哈尔滨. 哈尔滨工业大学,2021.
Files in This Item:
File Name/Size DocType Version Access License
11749289-蒋星达-地球与空间科学(14964KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[蒋星达]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[蒋星达]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[蒋星达]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.