[1] SONG P, LIU Y, YU X, et al. Prevalence of epilepsy in China between 1990 and 2015: A systematic review and meta–analysis[J]. Journal of Global Health, 2017, 7(2): 20706-20716.
[2] FIEST K M, SAURO K M, WIEBE S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies[J]. Neurology, 2017, 88(3): 296-303.
[3] BERG A T. Defining intractable epilepsy[J]. Advances in Neurology, 2006, 97: 5-10.
[4] ZHAO X, ZHOU Z, ZHU W, et al. Role of conventional magnetic resonance imaging in the screening of epilepsy with structural abnormalities: A pictorial essay[J]. American Journal of Nuclear Medicine and Molecular Imaging, 2017, 7(3): 126-137.
[5] FISHER R S, ACEVEDO C, ARZIMANOGLOU A, et al. Ilae official report: A practicalclinical definition of epilepsy[J]. Epilepsia, 2014, 55(4): 475-482.
[6] PASQUIER B, PÉOC’H M, FABRE-BOCQUENTIN B, et al. Surgical pathology of drugresistant partial epilepsy. a 10-year-experience with a series of 327 consecutive resections[J].Epileptic Disorders, 2002, 4(2): 99-119.
[7] WANG Z I, ALEXOPOULOS A V, JONES S E, et al. The pathology of magnetic-resonanceimaging-negative epilepsy[J]. Modern Pathology, 2013, 26(8): 1051-1058.
[8] SEVERINO M, GERALDO A F, UTZ N, et al. Definitions and classification of malformations of cortical development: Practical guidelines[J]. Brain, 2020, 143(10): 2874-2894.
[9] GIEDD J N. Structural magnetic resonance imaging of the adolescent brain[J]. Annals of The New York Academy of Sciences, 2004, 1021(1): 77-85.
[10] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88.
[11] YUAN J, RAN X, LIU K, et al. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review[J]. Journal of Neuroscience Methods, 2021: 109441-109455.
[12] POMINOVA M, ARTEMOV A, SHARAEV M, et al. Voxelwise 3d convolutional and recurrent neural networks for epilepsy and depression diagnostics from structural and functional MRI data[C]//2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2018:299-307.
[13] ALAVERDYAN Z, JUNG J, BOUET R, et al. Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Applicationto epilepsy lesion screening[J]. Medical Image Analysis, 2020, 60: 101618-101631.
[14] CARMO D, SILVA B, YASUDA C, et al. Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks[J]. Heliyon, 2021, 7(2): e06226.
[15] EL AZAMI M, HAMMERS A, JUNG J, et al. Detection of lesions underlying intractable epilepsy on t1-weighted mri as an outlier detection problem[J]. PloS One, 2016, 11(9):e0161498.
[16] MUNSELL B, WU G, FRIDRIKSSON J, et al. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning[J]. Brain and Language, 2019, 193: 45-57.
[17] GLEICHGERRCHT E, MUNSELL B, BHATIA S, et al. Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery[J]. Epilepsia, 2018, 59 (9): 1643-1654.
[18] MEMARIAN N, KIM S, DEWAR S, et al. Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy[J]. Computers in Biology And Medicine, 2015, 64: 67-78.
[19] BERNHARDT B C, HONG S J, BERNASCONI A, et al. Magnetic resonance imaging pattern learning in temporal lobe epilepsy: Classification and prognostics[J]. Annals of Neurology, 2015, 77(3): 436-446.
[20] SAMSON K. ‘deep learning’model using artificial intelligence predicts surgical success in intractable temporal lobe epilepsy[J]. Neurology Today, 2018, 18(23): 50-55.
[21] CANTOR-RIVERA D, KHAN A R, GOUBRAN M, et al. Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative mr imaging[J]. Computerized Medical Imaging and Graphics, 2015, 41: 14-28.
[22] WANG J, LI Y, WANG Y, et al. Multimodal data and machine learning for detecting specific biomarkers in pediatric epilepsy patients with generalized tonic-clonic seizures[J]. Frontiers in Neurology, 2018, 9: 1038-1052.
[23] JIANG H Y, LIU R N, GAO F F, et al. Hemisphere symmetry feature based on tensor space and recognition of epilepsy[J]. Journal of Northeastern University (Natural Science), 2017, 38(7): 923-927.
[24] DEL GAIZO J, MOFRAD N, JENSEN J H, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion mri[J]. Brain And Behavior, 2017, 7(10): e00801.
[25] LIEDLGRUBER M, BUTZ K, HÖLLER Y, et al. Can spharm-based features from automated or manually segmented hippocampi distinguish between mci and tle?[C]//Scandinavian Conference on Image Analysis. Springer, 2019: 465-476.
[26] HÖLLER Y, BUTZ K H, THOMSCHEWSKI A C, et al. Prediction of cognitive decline in temporal lobe epilepsy and mild cognitive impairment by eeg, mri, and neuropsychology[J]. Computational Intelligence And Neuroscience, 2020, 2020.
[27] KANG L, CHEN J, HUANG J, et al. Identifying epilepsy based on machine-learning technique with diffusion kurtosis tensor[J]. CNS Neuroscience & Therapeutics, 2021: 354-363.
[28] TORLAY L, PERRONE-BERTOLOTTI M, THOMAS E, et al. Machine learning–xgboost analysis of language networks to classify patients with epilepsy[J]. Brain Informatics, 2017, 4(3): 159-169.
[29] GHAZI N, SOLTANIAN-ZADEH H. Structural connectivity of temporal lobe structures detects temporal lobe epilepsy[C]//2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2016: 30-34.
[30] YAN M, LIU L, CHEN S, et al. A deep learning method for prediction of benign epilepsy with centrotemporal spikes[C]//ISBRA. 2018: 253-258.
[31] ITO Y, FUKUDA M, MATSUZAWA H, et al. Deep learning-based diagnosis of temporal lobe epilepsy associated with hippocampal sclerosis: An mri study[J]. Epilepsy Research, 2021, 178: 106815-106822.
[32] GLEICHGERRCHT E, MUNSELL B, KELLER S, et al. Radiological identification of temporal lobe epilepsy using artificial intelligence: A feasibility study[J]. Brain Communications, 2021.
[33] JIANG H, GAO F, DUAN X, et al. Transfer learning and fusion model for classification of epileptic pet images[M]//Innovation in Medicine and Healthcare Systems, and Multimedia. Springer, 2019: 71-79.
[34] EL AZAMI M, HAMMERS A, COSTES N, et al. Computer aided diagnosis of intractable epilepsy with mri imaging based on textural information[C]//2013 International Workshop on Pattern Recognition in Neuroimaging. IEEE, 2013: 90-93.
[35] AHMED B, THESEN T, BLACKMON K, et al. Hierarchical conditional random fields for outlier detection: An application to detecting epileptogenic cortical malformations[C]// International Conference on Machine Learning. 2014: 1080-1088.
[36] GILL R S, HONG S J, FADAIE F, et al. Deep convolutional networks for automated detection of epileptogenic brain malformations[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2018: 490-497.
[37] DEV K, JOGI P S, NIYAS S, et al. Automatic detection and localization of focal cortical dysplasia lesions in mri using fully convolutional neural network[J]. Biomed. Signal Process. Control., 2019, 52: 218-225.
[38] AMINPOUR A, EBRAHIMI M, WIDJAJA E. Lesion localization in paediatric epilepsy using patch-based convolutional neural network[C]//International Conference on Image Analysis and Recognition. Springer, 2020: 216-227.
[39] HOUSE P M, KOPELYAN M, BRANIEWSKA N, et al. Automated detection and segmentation of focal cortical dysplasias (fcds) with artificial intelligence: Presentation of a novel convolutional neural network and its prospective clinical validation[J]. Epilepsy Research, 2021, 172: 106594-106603.
[40] ACHARYA U R, HAGIWARA Y, DESHPANDE S N, et al. Characterization of focal eeg signals: A review[J]. Future Generation Computer Systems, 2019, 91: 290-299.
[41] BOONYAKITANONT P, LEK-UTHAI A, CHOMTHO K, et al. A review of feature extraction and performance evaluation in epileptic seizure detection using eeg[J]. Biomedical Signal Processing and Control, 2020, 57: 101702-101729.
[42] YASAKA K, ABE O. Deep learning and artificial intelligence in radiology: Current applications and future directions[J]. PLoS Medicine, 2018, 15(11): e1002707.
[43] ABBASI B, GOLDENHOLZ D M. Machine learning applications in epilepsy[J]. Epilepsia, 2019, 60(10): 2037-2047.
[44] PEREIRA F, MITCHELL T M, BOTVINICK M. Machine learning classifiers and fmri: A tutorial overview[J]. NeuroImage, 2009, 45: s199-s209.
[45] RAMACHANDRAM D, TAYLOR G W. Deep multimodal learning: A survey on recent advances and trends[J]. IEEE Signal Processing Magazine, 2017, 34(6): 96-108.
[46] CHANG K, BAI H X, ZHOU H, et al. Residual convolutional neural network for the determination of idh status in low-and high-grade gliomas from mr imaging[J]. Clinical Cancer Research, 2018, 24(5): 1073-1081.
[47] GUO Z, LI X, HUANG H, et al. Deep learning-based image segmentation on multimodal medical imaging[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3(2): 162-169.
[48] LIU S, LIU S, CAI W, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease[J]. IEEE Transactions on Biomedical Engineering, 2014, 62(4): 1132-1140.
[49] SUK H I, LEE S W, SHEN D, et al. Hierarchical feature representation and multimodal fusion with deep learning for ad/MCI diagnosis[J]. NeuroImage, 2014, 101: 569-582.
[50] KIM J, LEE B. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Human Brain Mapping, 2018, 39(9):3728-3741.
[51] FENG C, ELAZAB A, YANG P, et al. Deep learning framework for alzheimer’s disease diagnosis via 3d-CNN and fsbi-lstm[J]. IEEE Access, 2019, 7: 63605-63618.
[52] HAO X, BAO Y, GUO Y, et al. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease[J]. Medical Image Analysis, 2020, 60:101625-101637.
[53] LIANG S, ZHANG R, LIANG D, et al. Multimodal 3d densenet for idh genotype prediction in gliomas[J]. Genes, 2018, 9(8): 382-398.
[54] GUO X, WANG J, WANG X, et al. Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms[J]. European Radiology, 2022, 32(2): 761-770.
[55] NEUBAUER T, WIMMER M, BERG A, et al. Soft tissue sarcoma co-segmentation in combined mri and pet/ct data[M]//Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures. Springer, 2020: 97-105.
[56] RAJALINGAM B, PRIYA R. Multimodal medical image fusion based on deep learning neural network for clinical treatment analysis[J]. International Journal of ChemTech Research, 2018,11(06): 160-176.
[57] MUHAMMAD G, HOSSAIN M S. Covid-19 and non-covid-19 classification using multi-layers fusion from lung ultrasound images[J]. Information Fusion, 2021, 72: 80-88.
[58] HE S, PEREIRA D, PEREZ J D, et al. Multi-channel attention-fusion neural network for brain age estimation: Accuracy, generality, and interpretation with 16,705 healthy MRIs across lifespan[J]. Medical Image Analysis, 2021, 72: 102091-102107.
[59] GUO W, WANG J, WANG S. Deep multimodal representation learning: A survey[J]. IEEE Access, 2019, 7: 63373-63394.
[60] LIU S, WANG Y S, ZHANG Q, et al. Chinese color nest project: An accelerated longitudinal brain-mind cohort[J]. Developmental Cognitive Neuroscience, 2021, 52: 101020-101034.
[61] MCAULIFFE M J, LALONDE F M, MCGARRY D, et al. Medical image processing, analysis and visualization in clinical research[C]//Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001. IEEE, 2001: 381-386.
[62] SMITH S M. Bet: Brain extraction tool[J]. FMRIB TR00SMS2b, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, John Radcliffe Hospital, Headington, UK, 2000.
[63] JENKINSON M, SMITH S. A global optimisation method for robust affine registration of brain images[J]. Medical Image Analysis, 2001, 5(2): 143-156.
[64] CUI Z, ZHONG S, XU P, et al. Panda: a pipeline toolbox for analyzing brain diffusion images[J]. Frontiers in Human Neuroscience, 2013, 7: 42-57.
[65] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[R]. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
[66] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. J. Mach. Learn. Res., 2014, 15: 1929-1958.
[67] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//ICML. 2015: 448-456.
[68] MANASSI M, SAYIM B, HERZOG M H. When crowding of crowding leads to uncrowding[J]. Journal of Vision, 2013, 13(13): 10-10.
[69] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[70] TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. Mlp-mixer: An all-mlp architecture for vision[J]. ArXiv Preprint ArXiv:2105.01601, 2021.
[71] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J]. ArXiv Preprint ArXiv:2010.11929, 2020.
[72] DAIR.AI. Ml visuals[EB/OL]. https://github.com/dair-ai/ml-visuals Accessed January 15, 2021.
[73] SONE D, BEHESHTI I. Clinical application of machine learning models for brain imaging in epilepsy: A review[J]. Frontiers in Neuroscience, 2021, 15: 761-774.
[74] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2921-2929.
[75] WANG H, WANG Z, DU M, et al. Score-cam: Score-weighted visual explanations for convolutional neural networks[C]//Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020: 24-25.
[76] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of The IEEE International Conference on Computer Vision. 2017: 618-626.
[77] CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-cam++: Improved visual explanations for deep convolutional networks[J]. ArXiv Preprint ArXiv:1710.11063, 2017.
[78] JIANG P T, ZHANG C B, HOU Q, et al. Layercam: Exploring hierarchical class activation maps for localization[J]. IEEE Transactions on Image Processing, 2021, 30: 5875-5888.
[79] ZHAO Y, AHMED B, THESEN T, et al. A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 373-382.
[80] WAGSTYL K, ADLER S, PIMPEL B, et al. Planning stereoelectroencephalography usingautomated lesion detection: Retrospective feasibility study[J]. Epilepsia, 2020, 61(7): 1406-1416.
[81] WIDJAJA E, GEIBPRASERT S, OTSUBO H, et al. Diffusion tensor imaging assessment of the epileptogenic zone in children with localization-related epilepsy[J]. American Journal of Neuroradiology, 2011, 32(10): 1789-1794.
[82] WINSTON G P, MICALLEF C, SYMMS M R, et al. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy[J]. Epilepsy Research, 2014, 108(2): 336-339.
Edit Comment