[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3):209-249.
[2] ZHANG SW, SUN KX, ZHENG RS, et al. Cancer incidence and mortality in China, 2015[J]. Journal of the National Cancer Center, 2021, 1(1):2-11.
[3] 肖佳龙, 郑莹. 全球肺癌的流行及预防进展[J]. 中国癌症杂志, 2020, 30(10): 721-725.
[4] THAI A A, SOLOMON B J, SEQUIST L V, et al. Lung cancer[J]. The Lancet, 2021, 398(10299):535-554.
[5] NIEDERHUBER J E, ARMITAGE J O, DOROSHOW J H, et al. Abeloff's Clinical Oncology[M]. Philadelphia:Elsevier, 2020.
[6] DEVITA V T, ROSENBERG S A, LAWRENCE T S. DeVita, Hellman, and Rosenberg's Cancer[M]. Wolters Kluwer Health, 2018.
[7] LACOVOM J, BOHNENKAMP S. Non-Small Cell Lung Cancer: Part II[J]. Medsurg Nursing, 2021, 30(1):62-64.
[8] VARELLA-GARCIA M. Chromosomal and genomic changes in lung cancer[J]. Cell Adhesion & Migration, 2010, 4(1):100-106.
[9] SINGAL G, MILLER P G, AGARWALA V, et al. Association of Patient Characteristics and Tumor Genomics With Clinical Outcomes Among Patients With Non-Small Cell Lung Cancer Using a Clinicogenomic Database[J]. JAMA, 2019, 321(14):1391-1399.
[10] GELATTI A C Z, DRILON A, SANTINI F C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC)[J]. Lung Cancer, 2019, 137:113-122.
[11] DOGAN S, SHEN R, ANG D C, et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers[J]. Clinical Cancer Research, 2012, 18(22):6169-6177.
[12] SEKIDO Y, FONG K M, MINNA J D. Molecular genetics of lung cancer[J]. Annual Review of Medicine, 2003, 54:73-87.
[13] FERRER I, ZUGAZAGOITIA J, HERBERTZ S, et al. KRAS-Mutant non-small cell lung cancer: From biology to therapy[J]. Lung Cancer, 2018, 124:53-64.
[14] SHEDDEN K, TAYLOR J M G, ENKEMANN S A, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study[J]. Nature Medicine, 2008, 14(8):822-827.
[15] HOU J, AERTS J, DEN HAMER B, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction[J]. PLOS ONE, 2010, 5(4):e10312.
[16] OKAYAMA H, KOHNO T, ISHII Y, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas[J]. Cancer Research, 2012, 72(1):100-111.
[17] ETTINGER D S, WOOD D E, AISNER D L, et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021[J]. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19(3):254-266.
[18] SKOULIDIS F, LI B T, DY G K, et al. Sotorasib for Lung Cancers with KRASp.G12C Mutation[J]. The New England Journal of Medicine, 2021, 384(25):2371-2381.
[19] KLEIN C A. Cancer progression and the invisible phase of metastatic colonization[J]. Nature Reviews Cancer, 2020, 20(11):681-694.
[20] GOMIS R R, GAWRZAK S. Tumor cell dormancy[J]. Molecular Oncology, 2017, 11(1):62-78.
[21] PASTUSHENKO I, BLANPAIN C. EMT Transition States during Tumor Progression and Metastasis[J]. Trends in Cell Biology, 2019, 29(3):212-226.
[22] MIETTINEN P J, EBNER R, LOPEZ A R, et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors[J]. The Journal of Cell Biology, 1994, 127(6):2021-2036.
[23] LI X, DENG W, NAIL C D, et al. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation[J]. Oncogene, 2006, 25(4):609-621.
[24] KIM K, LU ZF, HAY E D. Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT[J]. Cell Biology International, 2002, 26(5):463-476.
[25] TIMMERMAN L A, GREGO-BESSA J G, RAYA A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J]. Genes & Development, 2004, 18(1):99-115.
[26] AIELLO N M, KANG YB. Context-dependent EMT programs in cancer metastasis[J]. The Journal of Experimental Medicine, 2019, 216(5):1016-1026.
[27] AKHTAR M, HAIDER A, RASHID S, et al. Paget's "Seed and Soil" Theory of Cancer Metastasis: An Idea Whose Time has Come[J]. Advances in Anatomic Pathology, 2019, 26(1):69-74.
[28] FARES J, FARES M Y, KHACHFE H H, et al. Molecular principles of metastasis: a hallmark of cancer revisited[J]. Signal Transduction and Targeted Therapy, 2020, 5(1):28.
[29] HAMIDI H, IVASKA J. Every step of the way: integrins in cancer progression and metastasis[J]. Nature Reviews Cancer, 2018, 18(9):533-548.
[30] HART I R, FIDLER I J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma[J]. Cancer Research, 1980, 40(7):2281-2287.
[31] GREENE H S, HARVEY E K. The relationship between the dissemination of tumor cells and the distribution of metastases[J]. Cancer Research, 1964, 24:799-811.
[32] YEH A C, RAMASWAMY S. Mechanisms of Cancer Cell Dormancy--Another Hallmark of Cancer?[J]. Cancer Research, 2015, 75(23):5014-5022.
[33] ZHENG XF, CARSTENS J L, KIM J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer[J]. Nature, 2015, 527(7579):525-530.
[34] TRAN HD, LUITEL K, KIM M, et al. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer[J]. Cancer Research, 2014, 74(21):6330-6340.
[35] GANESH K, MASSAGUé J. Targeting metastatic cancer[J]. Nature Medicine, 2021, 27(1):34-44.
[36] YOUSEFI M, BAHRAMI T, SALMANINEJAD A, et al. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options[J]. Cell Oncology, 2017, 40(5):419-441.
[37] IMPROTA G, ZUPA A, FILLMORE H, et al. Protein pathway activation mapping of brain metastasis from lung and breast cancers reveals organ type specific drug target activation[J]. Journal of Proteome Research, 2011, 10(7):3089-3097.
[38] FORNETTI J, WELM A L, STEWART S A, et al. Understanding the Bone in Cancer Metastasis[J]. Journal of Bone and Mineral Research, 2018, 33(12):2099-2113.
[39] ZHENG XQ, HUANG JF, LIN JL, et al. Incidence, prognostic factors, and a nomogram of lung cancer with bone metastasis at initial diagnosis: a population-based study[J]. Translational Lung Cancer Research, 2019, 8(4):367-379.
[40] WU S, PAN Y, MAO YY, et al. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review[J]. Translational Lung Cancer Research, 2021, 10(1):439-451.
[41] NGUYEN D X, CHIANG A C, ZHANG XH, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis[J]. Cell, 2009, 138(1):51-62.
[42] 解婧, 于观贞, 王杰军. δ原钙黏附素亚家族的生物学功能研究进展[J]. 中华普通外科学文献, 2010, 04(4):70-72.
[43] KAHR I, VANDEPOELE K, VAN ROY F, et al. Delta-protocadherins in health and disease[J]. Progress in Molecular Biology and Translational Science, 2013, 116:169-192.
[44] HEGGEM M A, BRADLEY R S. The cytoplasmic domain of Xenopus NF-protocadherin interacts with TAF1/set[J]. Developmental Cell, 2003, 4(3):419-429.
[45] SETHI S, MADDEN B, DEBIEC H, et al. Protocadherin 7-Associated Membranous Nephropathy[J]. Journal of the American Society of Nephrology: JASN, 2021, 32(5):1249-1261.
[46] MORISHITA H, YAGI T. Protocadherin family: diversity, structure, and function[J]. Current Opinion in Cell Biology, 2007, 19(5):584-92.
[47] KIM SY, YASUDA S, TANAKA H, et al. Non-clustered protocadherin[J]. Cell Adhesion & Migration, 2011, 5(2):97-105.
[48] BRASCH J, HARRISON O, HONIG B, et al. Thinking outside the cell: how cadherins drive adhesion[J]. Trends in Cell Biology, 2012, 22(6):299-310.
[49] BISOGNI A J, GHAZANFAR S, WILLIAMS E O, et al. Tuning of delta-protocadherin adhesion through combinatorial diversity[J]. eLife, 2018, 7:e41050.
[50] PANCHO A, AERTS T, MITSOGIANNIS M D, et al. Protocadherins at the Crossroad of Signaling Pathways[J]. Frontiers in Molecular Neuroscience, 2020, 13:117.
[51] XIAO HJ, SUN ZL, WAN J, et al. Overexpression of protocadherin 7 inhibits neuronal survival by downregulating BIRC5 in vitro[J]. Experimental Cell Research, 2018, 366(1):71-80.
[52] WANG YY, KERRISK CAMPBELL M, TOM I, et al. PCDH7 interacts with GluN1 and regulates dendritic spine morphology and synaptic function[J]. Scientific Reports, 2020, 10(1):10951.
[53] REN D, ZHU XP, KONG R, et al. Targeting Brain-Adaptive Cancer Stem Cells Prohibits Brain Metastatic Colonization of Triple-Negative Breast Cancer[J]. Cancer Research, 2018, 78(8):2052-2064.
[54] VAN ROY F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer[J]. Nature Reviews Cancer, 2014, 14(2):121-34.
[55] ZHANG ST, FU XH. The Clinical Significance and Biological Function of PCDH7 in Cervical Cancer[J]. Cancer Management and Research, 2021, 13:3841-3847.
[56] XU SQ, WU XY, TAO ZH, et al. Effect of aberrantly methylated androgen receptor target gene PCDH7 on the development of androgen-independent prostate cancer cells[J]. Genes & Genomics, 2020, 42(3):299-307.
[57] LIN YL, WANG YL, FU XL, et al. Low expression of protocadherin7 (PCDH7) is a potential prognostic biomarker for primary non-muscle invasive bladder cancer[J]. Oncotarget, 2016, 7(19):28384-28392.
[58] LI AM, TIAN AX, ZHANG RX, et al. Protocadherin-7 induces bone metastasis of breast cancer[J]. Biochemical and Biophysical Research Communications, 2013, 436(3):486-490.
[59] VAN DER WEYDEN L, OFFORD V, TURNER G, et al. Membrane protein regulators of melanoma pulmonary colonisation identified using a CRISPRa screen and spontaneous metastasis assay in mice[J]. G3 (Bethesda,Md), 2021, 11(7):jkab157.
[60] ZHOU XR, UPDEGRAFF B, GUO YB, et al. PROTOCADHERIN 7 Acts through SET and PP2A to Potentiate MAPK Signaling by EGFR and KRAS during Lung Tumorigenesis[J]. Cancer Research,2017, 77(1):187-197.
[61] KIM JY, CHO KH, JEONG BY, et al. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol[J]. Experimental & Molecular Medicine, 2020, 52(7):1152-1163.
[62] LEE CH, HUNG HW, HUNG PH, et al. Epidermal growth factor receptor regulates β-catenin location, stability, and transcriptional activity in oral cancer[J]. Molecular Cancer, 2010, 9(1):64.
[63] LIU H, WANG XC, SHEN PB, et al. The basicfunctions of phosphoglycerate kinase 1 and its roles in cancer and other diseases[J]. European Journal of Pharmacology, 2022, 920:174835.
Edit Comment