Title | 基于分位数因子模型预测标普500的实证研究 |
Alternative Title | EMPIRICAL RESEARCH ON THE PREDICTION OF S&P 500 BASE ON THE QUANTILE FACTOR MODEL
|
Author | |
Name pinyin | ZHANG Yong
|
School number | 12032324
|
Degree | 硕士
|
Discipline | 070103 概率论与数理统计
|
Subject category of dissertation | 07 理学
|
Supervisor | |
Mentor unit | 金融系
|
Publication Years | 2022-05-06
|
Submission date | 2022-06-26
|
University | 南方科技大学
|
Place of Publication | 深圳
|
Abstract | 本文主要研究了基于分位数因子模型进行标普500预测的实证应用问题。考虑到基于一般线性回归模型框架的经典多因子模型在实证研究中往往存在一些局限性,分位数因子模型则在一定程度上有助于改善这些问题,故本文以分位数因子模型为主题探究了其在变量预测方面的优势。分位数因子模型本质上又是基于潜在因子模型的一个创新,即是潜在因子模型与分位数回归模型的一个有机结合。本文从模型结构剖析的角度出发,通过分析其底层的理论模型框架,对潜在因子模型与分位数回归模型做简要介绍,逐步引出本文的研究核心-分位数因子模型,并详细介绍了分位数因子模型的参数估计方法和因子个数选取准则。同时,根据此前相关文献所反映的金融实证研究中存在的一些实际问题,本文也同步考察了将分位数因子模型运用于研究金融中的高维面板数据时,模型中是否存在着动态因子结构的问题,同时考察由分位数因子模型估计得出的分位数因子相比于传统线性回归模型得到的PCA 均值因子是否包含了额外信息,以及这些额外信息是否具有一定的增量预测能力,并以此为导向开展了相关的实证研究。 |
Other Abstract | This paper mainly studies the empirical application of S&P 500 prediction based on quantile factor model. Considering that the classical multi-factor model is usually based on the general linear regression model framework often has some limitations in empirical research, quantile factor model can help to improve these problems to a certain extent, so this paper centers on the quantile factor model and try to explore it’s advantages in variable prediction. Essentially speaking, quantile factor model is an innovation based on latent factor model, which is an organic combination of potential factor model and quantile regression model. From the perspective of model structure analysis, this paper briefly introduces the potential factor model and quantile regression model by analyzing its underlying theoretical model framework, and eventually leads to the core of our researchquantile factor model, then we detailedly introduce the parameter estimation method and factor number selection criteria of quantile factor model. At the same time, according to some empirical research problems reflected in previous relevant literatures, this paper focuses on the study of whether there is a dynamic factor structure in the quantile factor model when it is applied to study the high-dimensional panel data of finance and economy,and this paper also studies the quantile factors estimated by the quantile factor model |
Keywords | |
Other Keyword | |
Language | Chinese
|
Training classes | 独立培养
|
Enrollment Year | 2020
|
Year of Degree Awarded | 2022-06
|
References List | [1] FAMA E F, FRENCH K R. Common risk factors in the returns on stocks and bonds[J]. Journal of Financial Economics, 1993, 33(1): 3-56. |
Academic Degree Assessment Sub committee | 金融系
|
Domestic book classification number | F832.5
|
Data Source | 人工提交
|
Document Type | Thesis |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/343001 |
Department | Department of Finance |
Recommended Citation GB/T 7714 |
章勇. 基于分位数因子模型预测标普500的实证研究[D]. 深圳. 南方科技大学,2022.
|
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
12032324-章勇-金融系.pdf(597KB) | Restricted Access | -- | Fulltext Requests |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment