中文版 | English
Title

范德华二维材料的层间相互作用:依据能带占据情况的分类研究

Alternative Title
INTERLAYER INTERACTIONS IN TWO-DIMENSIONAL VAN DER WAALS MATERIALS : A CLASSIFICATION ACCORDING TO THE OCCUPANCY OF INVOLVED BANDS
Author
Name pinyin
CHEN Yuantao
School number
11930036
Degree
硕士
Discipline
0702 物理学
Subject category of dissertation
07 理学
Supervisor
黄丽
Mentor unit
物理系
Publication Years
2022-05-11
Submission date
2022-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

近几年,二维材料的层间相互作用研究引起了人们的重视。广泛存在于二维层状材料中的层间准键作用已经被证明对二维材料的电学、磁学、声子以及层间摩擦等各类性质存在影响。通过对层间作用的设计,人们可以控制层状材料的性质,从而得到具有理想性能的二维材料;另一方面,通过层间相互作用可以高效地对层状材料的性质进行调控,进而得到更优异的性能。层间相互作用为二维材料的设计和性能调控提供了新的自由度,并发展出新的研究领域——层间工程。因此,对范德华层状材料层间相互作用的理解和各种应用探索成为研究热点。

最近的研究表明,范德华二维材料的层间相互作用不仅包含van der Waals作用,同时也存在准键作用,其中后者会引起~1 eV量级的能带劈裂和电荷在层间区域的积聚。在本文中,基于密度泛函理论,我们计算并讨论了多种二维材料的层间准键作用带来的能带结构变化,同时,根据层间作用涉及到的能带的占据情况,我们对层间相互作用进行了分类。

首先,我们选择了具有类似几何结构但能带占据类型不同的三种二维材料(砷烯、SnP3和InP3)作为例子进行研究。结构优化的结果表明,SnP3和InP3从单层到双层都存在明显的结构转变。为了排除这种结构变化带来的影响,我们选取了两层结构中的单层作为“中间结构”,讨论了单层到“中间结构”的能带演化;

然后,我们讨论了从“中间结构”到双层由于层间作用带来的能带结构变化;

最后,根据层间准键作用涉及的在费米能级附近能带的不同占据情况,我们将层间相互作用划分为两大类,即大类I:同种占据能带间的相互作用;大类II:不同种占据能带间的相互作用。其中,每一大类中的相互作用类型根据实际能带的占据情况又可以分作不同的小类,如第I大类中两个满占据能带之间的满-满作用;第II大类中空占能带和满占能带之间的满-空作用等。其中,对于第I大类,由于反键态能量升高大于成键态的能量下降,因而是去稳定的,所以有着较弱的层间作用(如砷烯的层间结合能约为20 meV/AA2)。而对于第II大类,能带的变化造成总能量下降增强了稳定性,因而拥有较强的层间作用(如SnP3的层间结合能约为102 meV/AA2)。进一步的计算表明,我们的分类可以推广到一般的二维材料中,并且为判断层间相互作用强弱提供了理论基础。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thincarbon films[J]. Science, 2004, 306(5696): 666-669.
[2] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. ChemicalReviews, 2010, 110(1): 132-145.
[3] GEIM A K, NOVOSELOV K S. The rise of graphene[M]//Nanoscience and technology: acollection of reviews from nature journals. World Scientific, 2010: 11-19.
[4] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Substrate-induced band gap ingraphene on hexagonal boron nitride: Ab initio density functional calculations[J]. PhysicalReview B, 2007, 76(7): 073103.
[5] SON Y W, COHEN M L, LOUIE S G. Energy gaps in graphene nanoribbons[J]. PhysicalReview Letters, 2006, 97(21): 216803.
[6] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of twodimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[7] LI R, CHENG Y, HUANG W. Recent progress of Janus 2D transition metal chalcogenides:from theory to experiments[J]. Small, 2018, 14(45): 1802091.
[8] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
[9] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: synthesis, transport propertiesand electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.
[10] CONSTANTINESCU G, KUC A, HEINE T. Stacking in bulk and bilayer hexagonal boronnitride[J]. Physical Review Letters, 2013, 111(3): 036104.
[11] FUJIMOTO Y. Formation and physical properties of h − BN atomic layers: a first-principlesdensity-functional study[J]. Advances in Materials Science and Engineering, 2017, 2017.
[12] WU J, YUAN H, MENG M, et al. High electron mobility and quantum oscillations in nonencapsulated ultrathin semiconducting Bi2O2Se[J]. Nature Nanotechnology, 2017, 12(6): 530-534.
[13] ARORA H, ERBE A. Recent progress in contact, mobility, and encapsulation engineering ofInSe and GaSe[J]. InfoMat, 2021, 3(6): 662-693.
[14] SHANG J, PAN L, WANG X, et al. Tunable electric properties of bilayer InSe with differentinterlayer distances and external electric field[J]. Semiconductor Science and Technology, 2018,33(3): 034002.
[15] SUN Y, LUO S, ZHAO X G, et al. InSe: a two-dimensional material with strong interlayercoupling[J]. Nanoscale, 2018, 10(17): 7991-7998.46
[16] HONG Y L, LIU Z, WANG L, et al. Chemical vapor deposition of layered two-dimensionalMoSi2N4 materials[J]. Science, 2020, 369(6504): 670-674.
[17] NOVOSELOV K S. Discovery of 2D van der Waals layered MoSi2N4family[J]. NationalScience Review, 2020, 7(12): 1842-1844.
[18] MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. ChemicalSociety Reviews, 2014, 43(18): 6537-6554.
[19] GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459):419-425.
[20] CHEN C, CHEN X, DENG B, et al. Probing interlayer interaction via chiral phonons in layeredhoneycomb materials[J]. Physical Review B, 2021, 103(3): 035405.
[21] XIA J, YAN J, WANG Z, et al. Strong coupling and pressure engineering in WSe2 − MoSe2heterobilayers[J]. Nature Physics, 2021, 17(1): 92-98.
[22] LIU X Y, ZENG H D, ZHANG H, et al. Tunable electronic properties of two-dimensional type-I1T − SN2/ℎ𝐵𝑁 and type-II 1T − XN2/ℎ𝐵𝑁(X= Se, Te) van der Waals heterostructures fromfirst-principle study[J]. Applied Surface Science, 2021, 542: 148659.
[23] QIU X, JI W. Illuminating interlayer interactions[J]. Nature Materials, 2018, 17(3): 211-213.
[24] XIAO D, LIU G B, FENG W, et al. Coupled spin and valley physics in monolayers of MoS2and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108(19): 196802.
[25] LIU Y, GAO Y, ZHANG S, et al. Valleytronics in transition metal dichalcogenides materials[J].Nano Research, 2019, 12(11): 2695-2711.
[26] PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyondblack phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299.
[27] ZHANG S, XIE M, LI F, et al. Semiconducting group 15 monolayers: a broad range of bandgaps and high carrier mobilities[J]. Angewandte Chemie, 2016, 128(5): 1698-1701.
[28] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a highhole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[29] QIAO J, KONG X, HU Z X, et al. High-mobility transport anisotropy and linear dichroism infew-layer black phosphorus[J]. Nature Communications, 2014, 5(1): 1-7.
[30] KAMAL C, EZAWA M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenicsystems[J]. Physical Review B, 2015, 91(8): 085423.
[31] GUO S, ZHANG Y, GE Y, et al. 2D V-V binary materials: status and challenges[J]. AdvancedMaterials, 2019, 31(39): 1902352.
[32] ZHU Z, GUAN J, TOMÁNEK D. Structural Transition in Layered As1−𝑥P𝑥 Compounds: AComputational Study[J]. Nano Letters, 2015, 15(9): 6042-6046.
[33] SHOJAEI F, KANG H S. Electronic structure and carrier mobility of two-dimensional 𝛼 arsenicphosphide[J]. The Journal of Physical Chemistry C, 2015, 119(34): 20210-20216.
[34] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451-10453.47
[35] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced byliquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[36] ZHANG K, FENG Y, WANG F, et al. Two dimensional hexagonal boron nitride (2D-hBN):synthesis, properties and applications[J]. Journal of Materials Chemistry C, 2017, 5(46): 11992-12022.
[37] LI L, WU M. Binary compound bilayer and multilayer with vertical polarizations: twodimensional ferroelectrics, multiferroics, and nanogenerators[J]. ACS Nano, 2017, 11(6): 6382-6388.
[38] YASUDA K, WANG X, WATANABE K, et al. Stacking-engineered ferroelectricity in bilayerboron nitride[J]. Science, 2021, 372(6549): 1458-1462.
[39] VIZNER STERN M, WASCHITZ Y, CAO W, et al. Interfacial ferroelectricity by van der Waalssliding[J]. Science, 2021, 372(6549): 1462-1466.
[40] ZHAO X, LI Y, LIANG R, et al. Enhanced valley polarization at valence/conduction bandin transition-metal-doped WTe2 under strain force[J]. Applied Surface Science, 2020, 504:144367.
[41] ZHAO X, QIU B, HU G, et al. Transition-metal doping/adsorption induced valley polarizationin Janus WSSe: first-principles calculations[J]. Applied Surface Science, 2019, 490: 172-177.
[42] HE C C, XU S G, ZHAO Y J, et al. All-boron planar ferromagnetic structures: from clusters tomonolayers[J]. Nanoscale, 2021, 13(21): 9881-9887.
[43] HONG Y L, LIU Z, WANG L, et al. Chemical vapor deposition of layered two-dimensionalMoSi2N4 materials[J]. Science, 2020, 369(6504): 670-674.
[44] GUO J, LU Z, WANG K, et al. Large valley polarization in a novel two-dimensional semiconductor (𝐻 − 𝑍𝑟𝑋)2(X= Cl, Br, I)[J]. Journal of Physics: Condensed Matter, 2021, 34(7):075701.
[45] SUSNER M A, CHYASNAVICHYUS M, MCGUIRE M A, et al. Metal thio-and selenophosphates as multifunctional van der Waals layered materials[J]. Advanced Materials, 2017, 29(38): 1602852.
[46] CHITTARI B L, PARK Y, LEE D, et al. Electronic and magnetic properties of single-layerMPX3 metal phosphorous trichalcogenides[J]. Physical Review B, 2016, 94(18): 184428.
[47] WU Y, ZHOU J, KE C, et al. Strain modulation of the spin-valley polarization in monolayermanganese chalcogenophosphates alloys[J]. Journal of Physics: Condensed Matter, 2021, 33(29): 295503.
[48] JAZIRI N, BOUGHAMOURA A, MÜLLER J, et al. A comprehensive review of ThermoelectricGenerators: Technologies and common applications[J]. Energy Reports, 2020, 6: 264-287.
[49] BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: From history, a windowto the future[J]. Materials Science and Engineering: R: Reports, 2019, 138: 100501.
[50] YIN Z, SHENG C, HU R, et al. Strong interlayer coupling in two-dimensional PbSe with highthermoelectric performance[J]. Journal of Physics: Condensed Matter, 2021, 33(32): 325701.
[51] WANG F Q, GUO Y, WANG Q, et al. Exceptional thermoelectric properties of layered GeAs2[J]. Chemistry of Materials, 2017, 29(21): 9300-9307.48
[52] JIANG P, WANG C, CHEN D, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J].Physical Review B, 2019, 99(14): 144401.
[53] SIVADAS N, OKAMOTO S, XU X, et al. Stacking-dependent magnetism in bilayer CrI3[J].Nano Letters, 2018, 18(12): 7658-7664.
[54] KONG X, YOON H, HAN M J, et al. Switching interlayer magnetic order in bilayer CrI3 bystacking reversal[J]. Nanoscale, 2021, 13(38): 16172-16181.
[55] GUSAKOVA J, WANG X, SHIAU L L, et al. Electronic properties of bulk and monolayerTMDs: theoretical study within DFT framework (GVJ-2e method)[J]. Physica Status Solidi A,2017, 214(12): 1700218.
[56] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.
[57] GANATRA R, ZHANG Q. Few-layer MoS2: a promising layered semiconductor[J]. ACS Nano,2014, 8(5): 4074-4099.
[58] PADILHA J, PEELAERS H, JANOTTI A, et al. Nature and evolution of the band-edge statesin MoS2: From monolayer to bulk[J]. Physical Review B, 2014, 90(20): 205420.
[59] DAVIES F H, PRICE C J, TAYLOR N T, et al. Band alignment of transition metal dichalcogenide heterostructures[J]. Physical Review B, 2021, 103(4): 045417.
[60] ZHAO Y, QIAO J, YU P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2[J]. Advanced Materials, 2016, 28(12): 2399-2407.
[61] KASAI H, TOLBORG K, SIST M, et al. X-ray electron density investigation of chemical bonding in van der Waals materials[J]. Nature Materials, 2018, 17(3): 249-252.
[62] WANG V, LIU Y, KAWAZOE Y, et al. Role of interlayer coupling on the evolution of bandedges in few-layer phosphorene[J]. The Journal of Physical Chemistry Letters, 2015, 6(24):4876-4883.
[63] ZHANG G, HUANG S, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 1-9.
[64] WANG C, ZHOU X, ZHOU L, et al. Bethe-Slater-curve-like behavior and interlayer spinexchange coupling mechanisms in two-dimensional magnetic bilayers[J]. Physical Review B,2020, 102(2): 020402.
[65] TAKAO Y, ASAHINA H, MORITA A. Electronic structure of black phosphorus in tight bindingapproach[J]. Journal of the Physical Society of Japan, 1981, 50(10): 3362-3369.
[66] DONG S, ZHANG A, LIU K, et al. Ultralow-frequency collective compression mode and stronginterlayer coupling in multilayer black phosphorus[J]. Physical Review Letters, 2016, 116(8):087401.
[67] ZHANG G, HUANG S, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 1-9.
[68] HUANG S, ZHANG G, FAN F, et al. Strain-tunable van der Waals interactions in few-layerblack phosphorus[J]. Nature Communications, 2019, 10(1): 1-7.
[69] HUANG S, LU Y, WANG F, et al. Layer-Dependent Pressure Effect on the Electronic Structureof 2D Black Phosphorus[J]. Physical Review Letters, 2021, 127(18): 186401.49
[70] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica,1967, 34(1): 149-154.
[71] VILLEGAS C E, ROCHA A, MARINI A. Anomalous temperature dependence of the band gapin black phosphorus[J]. Nano Letters, 2016, 16(8): 5095-5101.
[72] ZHANG K, GUO Y, JI Q, et al. Enhancement of van der Waals Interlayer Coupling through PolarJanus MoSSe[J]. Journal of the American Chemical Society, 2020, 142(41): 17499-17507.
[73] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 1927,389(20): 457-484.
[74] FOCK V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J].Zeitschrift für Physik, 1930, 61(1): 126-148.
[75] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B):B864.
[76] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J].Physical Review, 1965, 140(4A): A1133.
[77] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical review, 1964, 136(3B):B864.
[78] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J].Physical review, 1965, 140(4A): A1133.
[79] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J/OL]. Phys.Rev. B, 1992, 46: 6671-6687. https://link.aps.org/doi/10.1103/PhysRevB.46.6671.
[80] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J/OL]. Phys. Rev. Lett., 1996, 77: 3865-3868. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865.
[81] HAFNER J. Ab-initio simulations of materials using VASP: Density-functional theory andbeyond[J/OL]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21057. DOI: https://doi.org/10.1002/jcc.21057.
[82] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials[J/OL]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
[83] BLAHA P, SCHWARZ K, TRAN F, et al. WIEN2k: An APW+lo program for calculating theproperties of solids[J/OL]. The Journal of Chemical Physics, 2020, 152(7): 074101. https://doi.org/10.1063/1.5143061.
[84] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J/OL]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495. DOI: https://doi.org/10.1002/jcc.20495.
[85] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J/OL]. TheJournal of Chemical Physics, 2010, 132(15): 154104. https://doi.org/10.1063/1.3382344.50
[86] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion correcteddensity functional theory[J/OL]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21759. DOI: https://doi.org/10.1002/jcc.21759.
[87] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waalsdensity functional[J/OL]. Journal of Physics: Condensed Matter, 2009, 22(2): 022201. https://doi.org/10.1088/0953-8984/22/2/022201.
[88] KLIMES J, BOWLER D, MICHAELIDES. Van der Waals density functionals applied to solids[J/OL]. Phys. Rev. B, 2011, 83: 195131. https://link.aps.org/doi/10.1103/PhysRevB.83.195131.
[89] DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): energyresolved visualization of chemical bonding in solids based on density-functional calculations[J/OL]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624. https://doi.org/10.1021/j100135a014.
[90] DERINGER V L, Tchougr 茅 effAndrei L., DRONSKOWSKI R. Crystal Orbital HamiltonPopulation (COHP) Analysis As Projected from Plane-Wave Basis Sets[J/OL]. The Journal ofPhysical Chemistry A, 2011, 115(21): 5461-5466. https://doi.org/10.1021/jp202489s.
[91] MAINTZ S, DERINGER V L, Tchougr 茅 effAndrei L., 等. Analytic projection from planewave and PAW wavefunctions and application to chemical-bonding analysis in solids[J/OL].Journal of Computational Chemistry, 2013, 34(29): 2557-2567. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23424. DOI: https://doi.org/10.1002/jcc.23424.
[92] NELSON R, ERTURAL C, GEORGE J, et al. LOBSTER: Local orbital projections,atomic charges, and chemical-bonding analysis from projector-augmented-wave-based densityfunctional theory[J/OL]. Journal of Computational Chemistry, 2020, 41(21): 1931-1940. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26353. DOI: https://doi.org/10.1002/jcc.26353.
[93] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm withoutlattice bias[J/OL]. Journal of Physics: Condensed Matter, 2009, 21(8): 084204. https://doi.org/10.1088/0953-8984/21/8/084204.
[94] SANVILLE E, KENNY S D, SMITH R, et al. Improved grid-based algorithm for Bader chargeallocation[J/OL]. Journal of Computational Chemistry, 2007, 28(5): 899-908. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20575. DOI: https://doi.org/10.1002/jcc.20575.
[95] HENKELMAN G, ARNALDSSON A, JóNSSON H. A fast and robust algorithm for Baderdecomposition of charge density[J/OL]. Computational Materials Science, 2006, 36(3): 354-360. https://www.sciencedirect.com/science/article/pii/S0927025605001849. DOI: https://doi.org/10.1016/j.commatsci.2005.04.010.
[96] YU M, TRINKLE D R. Accurate and efficient algorithm for Bader charge integration[J/OL].The Journal of Chemical Physics, 2011, 134(6): 064111. https://doi.org/10.1063/1.3553716.
[97] SUN Z, YUAN K, CHANG Z, et al. Ultra-low thermal conductivity and high thermoelectricperformance of two-dimensional triphosphides (InP3, GaP3, SbP3𝑎𝑛𝑑SnP3): A comprehensivefirst-principles study[J]. Nanoscale, 2020, 12(5): 3330-3342.
[98] JING Y, MA Y, LI Y, et al. GeP3: A small indirect band gap 2D crystal with high carriermobility and strong interlayer quantum confinement[J]. Nano Letters, 2017, 17(3): 1833-1838.
[99] LIU H Y, YANG C L, WANG M S, et al. 2D AlP3 with high carrier mobility and tunable bandstructure[J]. Journal of Physics: Condensed Matter, 2019, 32(5): 055001.
[100] YAO S, ZHANG X, ZHANG Z, et al. 2D Triphosphides: SbP3𝑎𝑛𝑑GaP3 monolayer as promising photocatalysts for water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5948-5954.
[101] LIU J, LIU C S, YE X J, et al. Monolayer InP3 as a reversible anode material for ultrafast charging lithium-and sodium-ion batteries: a theoretical study[J]. Journal of Materials Chemistry A,2018, 6(8): 3634-3641.
[102] MIAO N, XU B, BRISTOWE N C, et al. Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer[J]. Journal of the American Chemical Society,2017, 139(32): 11125-11131.
[103] LU B, ZHENG X, LI Z. Two-Dimensional Lateral Heterostructures of Triphosphides: AlP3–GaP3 as a Promising Photocatalyst for Water Splitting[J]. ACS Applied Materials & Interfaces,2020, 12(48): 53731-53738.
[104] WEI S, WANG C, FAN S, et al. Strain tunable pudding-mold-type band structure and thermoelectric properties of SnP3 monolayer[J]. Journal of Applied Physics, 2020, 127(15): 155103.
[105] GONG P L, ZHANG F, HUANG L F, et al. Multifunctional two-dimensional semiconductors SnP3: universal mechanism of layer-dependent electronic phase transition[J]. Journal ofPhysics: Condensed Matter, 2018, 30(47): 475702.
[106] SUN S, MENG F, WANG H, et al. Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations[J].Journal of Materials Chemistry A, 2018, 6(25): 11890-11897.
[107] ZHANG S, NIU X, XIE Y, et al. High intrinsic ZT in InP3 monolayer at room temperature[J].Journal of Physics: Condensed Matter, 2019, 31(36): 365501.
[108] SLASSI A, GALI S M, PERSHIN A, et al. Interlayer bonding in two-dimensional materials:the special case of SnP3 and GeP3[J]. The Journal of Physical Chemistry Letters, 2020, 11(11):4503-4510.
[109] ZHANG S, YAN Z, LI Y, et al. Atomically thin arsenene and antimonene: semimetalsemiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie, 2015, 127(10):3155-3158.
[110] ZHU Z, GUAN J, TOMÁNEK D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study[J]. Physical Review B, 2015, 91(16):161404.
[111] BLÖCHL P E. Projector augmented-wave method[J/OL]. Phys. Rev. B, 1994, 50: 17953-17979.https://link.aps.org/doi/10.1103/PhysRevB.50.17953.
[112] LI Y, YANG S, LI J. Modulation of the Electronic Properties of Ultrathin Black Phosphorusby Strain and Electrical Field[J/OL]. The Journal of Physical Chemistry C, 2014, 118(41):23970-23976. https://doi.org/10.1021/jp506881v.
[113] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulombpotential[J/OL]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. https://doi.org/10.1063/1.1564060.
[114] SCHIFERL D, BARRETT C. The crystal structure of arsenic at 4.2, 78 and 299 K[J]. Journalof Applied Crystallography, 1969, 2(1): 30-36.
[115] KINOMURA N, TERAO K, KIKKAWA S, et al. Synthesis and crystal structure of InP3[J].Materials Research Bulletin, 1983, 18(1): 53-57.
[116] GULLMAN J, OLOFSSON O. The crystal structure of SnP3 and a note on the crystal structureof GeP3[J]. Journal of Solid State Chemistry, 1972, 5(3): 441-445.
[117] PETKOV V, BILLINGE S, LARSON P, et al. Structure of nanocrystalline materials usingatomic pair distribution function analysis: Study of LiMoS2[J]. Physical Review B, 2002, 65(9): 092105.
[118] KECIK D, DURGUN E, CIRACI S. Stability of single-layer and multilayer arsenene and theirmechanical and electronic properties[J]. Physical Review B, 2016, 94(20): 205409.
[119] WANG D D, GONG X G, YANG J H. Unusual interlayer coupling in layered Cu-based ternarychalcogenides CuMCh2(M=Sb, Bi; Ch=S, Se)[J]. Nanoscale, 2021, 13(35): 14621-14627.
[120] LIU Y, WANG T, ROBERTSON J, et al. Band structure, band offsets, and intrinsic defectproperties of few-layer arsenic and antimony[J]. The Journal of Physical Chemistry C, 2020,124(13): 7441-7448.
[121] İYIKANAT F, TORUN E, SENGER R T, et al. Stacking-dependent excitonic properties ofbilayer blue phosphorene[J]. Physical Review B, 2019, 100(12): 125423.
[122] MOUNET N, GIBERTINI M, SCHWALLER P, et al. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds[J]. Nature Nanotechnology, 2018, 13(3): 246-252.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O469
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343002
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
陈元滔. 范德华二维材料的层间相互作用:依据能带占据情况的分类研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930036-陈元滔-物理系.pdf(12697KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[陈元滔]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[陈元滔]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈元滔]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.