中文版 | English
Title

基于超导电路系统的量子模拟

Alternative Title
ENGINEERING SPERCONDUCTING CIRCUITFOR QUANTUM SIMULATION
Author
Name pinyin
WEN Yating
School number
11930035
Degree
硕士
Discipline
0702 物理学
Subject category of dissertation
07 理学
Supervisor
陈远珍
Mentor unit
物理系
Publication Years
2022-05-12
Submission date
2022-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

量子多体系统是由多个相互作用粒子组成的物理系统,它的希尔伯特空间会 随着系统尺寸增加而指数增加,是数值模拟中最具挑战性的研究对象之一。过去, 研究人员试图使用各种技术来模拟这些系统,包括蒙特卡罗模拟,甚至精确对角 化。1982 年 Feynman 提出是否能做出一个量子计算机,它能模拟量子系统。量子 计算机模拟量子系统按原理来分有两种类型:数值量子模拟和类比量子模拟。本论 文主要基于超导电路量子化理论设计超导电路,使该电路能够类比量子模拟 BoseHubbard 模型和 Su-Schrieffer-Heeger(SSH) 模型。以 Transmon 为耦合器,连接两个 改造后的 C-shunt 磁通量子比特,组合成 CSFQ-Transmon-CSFQ 电路,该电路在同 一参数下可以实现:1、抑制最近邻比特间的 XY 相互作用下,ZZ 相互作用强度还 能达到几十 MHz 的量级;2、抑制 ZZ 相互作用的同时,还可以调节 XY 相互作用强 度;3、XY 和 ZZ 相互作用强度还可调节至量级相当。拓展 CSFQ-Transmon-CSFQ 电路,设计电路 CSFQ-Transmon 链具有多可调自由度的特点,在同一电路参数下: 1、改造后的 C-shunt 磁通量子比特的频率和非谐性同时可调,并且非谐性可以连 续地从负值调到正值;2、次近邻比特间的耦合强度远远小于最近邻比特间的耦合 强度,最近邻比特间的耦合强度可以连续地从负值调到正值。超导量子电路可调 控、易扩展,有潜力成为研究多体量子系统的实验平台。

Other Abstract

Quantum multi-body system is a physical system composed of multiple interacting particles. Its Hilbert space will increase exponentially with the increase of system size. It is one of the most challenging research objects in numerical simulation. In the past, researchers have tried to use various techniques to simulate these systems, including Monte Carlo simulation and even accurate diagonalization. In 1982, Feynman proposed whether we can make a quantum computer, which can simulate quantum systems. Quantum computer simulate quantum system which can be divided into two types according to the principle: numerical quantum simulation and analog quantum simulation. This paper mainly designs the superconducting circuit based on the quantization theory of superconducting circuit, which circuit can simulate the Bose-Hubbard model and Su-SchriefferHeeger (SSH) model by analogy. With Transmon as the coupler, two modified C-shunt flux qubits are connected and combined into a CSFQ-Transmon-CSFQ circuit. The circuit can realize under the same parameters: 1. Under the suppression of XY interaction between nearest neighbors, the intensity of ZZ interaction can reach the order of tens of MHz; 2. While restraining ZZ interaction, XY interaction intensity can also be adjusted; 3. The intensity of XY and ZZ interaction can also be adjusted to the same order of magnitude. Expand the CSFQ-Transmon-CSFQ circuit and design the CSFQ-Transmon chain which has the characteristics of multiple adjustable degrees of freedom. Under the same circuit parameters: 1. The frequency and anharmonicity of the modified C-shunt flux qubit are adjustable at the same time, and the anharmonicity can be continuously adjusted from negative value to positive value; 2. The coupling strength between the next nearest neighbor qubits is much less than that between the nearest neighbor qubits, and the coupling strength between the nearest neighbor qubits can be continuously adjusted from negative to positive. Superconducting quantum circuits are adjustable and easy to expand, which has the potential to become an experimental platform for the study of multi-body quantum systems.

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] Feynman R P. Simulating physics with computers[J]. Int J Theor Phys, 1982, 21: 467–488.
[2] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring[J].Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.
[3] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information[C]//2010.
[4] Juan Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation[J]. NaturePhysics, 2012, 8: 264-266.
[5] Bouchiat V, Denis Vion, P. Joyez, et al. Quantum coherence with a single cooper pair[J]. PhysicaScripta, 1998, 1998: 165-170.
[6] Bialczak, Radoslaw Radek Cezary. Development of the fundamental components of a superconducting qubit quantum computer[D]. University of California, Santa Barbara, 2011.
[7] Koch, Jens and Yu, Terri M. and Gambetta, Jay and Houck, A. A. and Schuster, D. I. and Majer,J. and Blais, Alexandre and Devoret, M. H. and Girvin, S. M. and Schoelkopf, R. J. Chargeinsensitive qubit design derived from the cooper pair box[J]. Phys. Rev. A, 2007, 76: 042319.
[8] You, J. Q. and Hu, Xuedong and Ashhab, S. and Nori, Franco. Low-decoherence flux qubit[J].Phys. Rev. B, 2007, 75: 140515.
[9] Manucharyan, Vladimir E. and Koch, Jens and Glazman, Leonid I. and Devoret, Michel H.Fluxonium: Single cooper-pair circuit free of charge offsets[J]. Science, 2009, 326(5949):113–116.
[10] Le, Dat Thanh and Grimsmo, Arne and M̈uller, Clemens and Stace, T. M. Doubly nonlinearsuperconducting qubit[J]. Phys. Rev. A, 2019, 100: 062321.
[11] Agustin Di Paolo and Arne L Grimsmo and Peter Groszkowski and Jens Koch and AlexandreBlais. Control and coherence time enhancement of the 0–π qubit[J]. New Journal ofPhysics, 2019, 21(4): 043002.
[12] Dempster, Joshua M. and Fu, Bo and Ferguson, David G. and Schuster, D. I. and Koch, Jens.Understanding degenerate ground states of a protected quantum circuit in the presence of disorder[J]. Phys. Rev. B, 2014, 90: 094518.
[13] Tan, Xinsheng and Zhao, Yuxin and Liu, Qiang and Xue, Guangming and Yu, Haifeng andWang, Z. D. and Yu, Yang. Realizing and manipulating space-time inversion symmetric topological semimetal bands with superconducting quantum circuits[J]. npj Quantum Materials,2017, 2: 60.
[14] Tan, Xinsheng and Zhang, Dan-Wei and Liu, Qiang and Xue, Guangming and Yu, Hai-Fengand Zhu, Yan-Qing and Yan, Hui and Zhu, Shi-Liang and Yu, Yang. Topological maxwellmetal bands in a superconducting qutrit[J]. Phys. Rev. Lett., 2018, 120: 130503.
[15] Tan, Xinsheng and Li, Mengmeng and Li, Danyu and Dai, Kunzhe and Yu, Haifeng and Yu,Yang. Demonstration of hopf-link semimetal bands with superconducting circuits[J]. AppliedPhysics Letters, 2018, 112(17): 172601.
[16] Mei, Feng and Chen, Gang and Tian, Lin and Zhu, Shi-Liang and Jia, Suotang. Robust quantumstate transfer via topological edge states in superconducting qubit chains[J]. Phys. Rev. Applied,2018, 98(1): 012331.
[17] Mei, Feng and Chen, Gang and Tian, Lin and Zhu, Shi-Liang and Jia, Suotang. Topologydependent quantum dynamics and entanglement-dependent topological pumping in superconducting qubit chains[J]. Phys. Rev. Applied, 2018, 98(3): 032323.
[18] Xu, Kai and Chen, Jin-Jun and Zeng, Yu and Zhang, Yu-Ran and Song, Chao and Liu, Wuxin andGuo, Qiujiang and Zhang, Pengfei and Xu, Da and Deng, Hui and Huang, Keqiang and Wang,H. and Zhu, Xiaobo and Zheng, Dongning and Fan, Heng. Emulating many-body localizationwith a superconducting quantum processor[J]. Phys. Rev. Lett., 2018, 120: 050507.
[19] Ye, Yangsen and Ge, Zi-Yong and Wu, Yulin and Wang, Shiyu and Gong, Ming and Zhang, YuRan and Zhu, Qingling and Yang, Rui and Li, Shaowei and Liang, Futian and Lin, Jin and Xu,Yu and Guo, Cheng and Sun, Lihua and Cheng, Chen and Ma, Nvsen and Meng, Zi Yang andDeng, Hui and Rong, Hao and Lu, Chao-Yang and Peng, Cheng-Zhi and Fan, Heng and Zhu,Xiaobo and Pan, Jian-Wei. Propagation and localization of collective excitations on a 24-qubitsuperconducting processor[J]. Phys. Rev. Lett., 2019, 123: 050502.
[20] W. Cai and J. Han and Feng Mei and Y. Xu and Y. Ma and X. Li and H. Wang and Y. P. Song andZheng-Yuan Xue and Zhang-qi Yin and Suotang Jia and Luyan Sun. Observation of topologicalmagnon insulator states in a superconducting circuit[J]. Physical Review Letters, 2019, 123(8).
[21] Guo, Qiujiang and Cheng, Chen and Li, Hekang and Xu, Shibo and Zhang, Pengfei and Wang,Zhen and Song, Chao and Liu, Wuxin and Ren, Wenhui and Dong, Hang and Mondaini, Rubemand Wang, H. Stark many-body localization on a superconducting quantum processor[J]. Phys.Rev. Lett., 2021, 127: 240502.
[22] Roushan, P. and Neill, C. and Chen, Yu and Kolodrubetz, M. and Quintana, C. and Leung, N.and Fang, M. and Barends, R. and Campbell, B. and Chen, Z. and Chiaro, B. and Dunsworth,A. and Jeffrey, E. and Kelly, J. and Megrant, A. and Mutus, J. and O’Malley, P. J. J. and Sank,D. and Vainsencher, A. and Wenner, J. and White, T. and Polkovnikov, A. and Cleland, A. N.and Martinis, J. M. Observation of topological transitions in interacting quantum circuits[J].Nature, 2014, 515(7526): 241-244.
[23] Leppäkangas, Juha and Braumüller, Jochen and Hauck, Melanie and Reiner, Jan-Michael andSchwenk, Iris and Zanker, Sebastian and Fritz, Lukas and Ustinov, Alexey V. and Weides, Martin and Marthaler, Michael. Quantum simulation of the spin-boson model with a microwavecircuit[J]. Phys. Rev. A, 2018, 97: 052321.
[24] Rymarz, Martin and Bosco, Stefano and Ciani, Alessandro and DiVincenzo, David P. Hardwareencoding grid states in a nonreciprocal superconducting circuit[J]. Phys. Rev. X, 2021, 11:011032.65参考文献
[25] Yan, Fei and Krantz, Philip and Sung, Youngkyu and Kjaergaard, Morten and Campbell, DanielL. and Orlando, Terry P. and Gustavsson, Simon and Oliver, William D. Tunable couplingscheme for implementing high-fidelity two-qubit gates[J]. Phys. Rev. Applied, 2018, 10:054062.
[26] Antonio Barone, Gianfranco Paternó. Weak superconductivity – phenomenological aspects[M].1982: 1-24.
[27] Nguyen, Long B. and Lin, Yen-Hsiang and Somoroff, Aaron and Mencia, Raymond and Grabon,Nicholas and Manucharyan, Vladimir E. High-coherence fluxonium qubit[J]. Physical ReviewX, 2019, 9(4).
[28] Zhang, Helin and Chakram, Srivatsan and Roy, Tanay and Earnest, Nathan and Lu, Yao andHuang, Ziwen and Weiss, D. K. and Koch, Jens and Schuster, David I. Universal fast-fluxcontrol of a coherent, low-frequency qubit[J]. Phys. Rev. X, 2021, 11: 011010.
[29] Zhu, Guanyu and Ferguson, David G. and Manucharyan, Vladimir E. and Koch, Jens. Circuitqed with fluxonium qubits: Theory of the dispersive regime[J]. Physical Review B, 2013, 87(2).
[30] Viola, Giovanni and Catelani, Gianluigi. Collective modes in the fluxonium qubit[J]. Phys.Rev. B, 2015, 92: 224511.
[31] Mooij, J. E. and Nazarov, Yu. V. Superconducting nanowires as quantum phase-slip junctions[J]. Nature Physics, 2006, 2(3): 169-172.
[32] Robertson, T. L. and Plourde, B. L. T. and Reichardt, P. A. and Hime, T. and Wu, C.-E. andClarke, John. Quantum theory of three-junction flux qubit with non-negligible loop inductance:Towards scalability[J]. Phys. Rev. B, 2006, 73: 174526.
[33] Orlando, T. P. and Mooij, J. E. and Tian, Lin and van der Wal, Caspar H. and Levitov, L. S. andLloyd, Seth and Mazo, J. J. Superconducting persistent-current qubit[J]. Phys. Rev. B, 1999,60: 15398-15413.
[34] Steffen, Matthias and Kumar, Shwetank and DiVincenzo, David P. and Rozen, J. R. and Keefe,George A. and Rothwell, Mary Beth and Ketchen, Mark B. High-coherence hybrid superconducting qubit[J]. Phys. Rev. Lett., 2010, 105: 100502.
[35] Chiorescu, I. and Nakamura, Y. and Harmans, C. J. P. M. and Mooij, J. E. Coherent quantumdynamics of a superconducting flux qubit[J]. Science, 2003, 299(5614): 1869–1871.
[36] Chow, Jerry M. and Córcoles, A. D. and Gambetta, Jay M. and Rigetti, Chad and Johnson, B.R. and Smolin, John A. and Rozen, J. R. and Keefe, George A. and Rothwell, Mary B. andKetchen, Mark B. and Steffen, M. Simple all-microwave entangling gate for fixed-frequencysuperconducting qubits[J]. Physical Review Letters, 2011, 107(8).
[37] Ferguson, David G. and Houck, A. A. and Koch, Jens. Symmetries and collective excitationsin large superconducting circuits[J]. Phys. Rev. X, 2013, 3: 011003.
[38] N. Earnest and S. Chakram and Y. Lu and N. Irons and R. K. Naik and N. Leung and L. Ocolaand D. A. Czaplewski and B. Baker and Jay Lawrence and Jens Koch and D. I. Schuster. Realization of a λ system with metastable states of a capacitively shunted fluxonium[J]. PhysicalReview Letters, 2018, 120(15).
[39] Vladimir Eduardovich Manucharyan. Superinductance[D]. Yale University, 2012.
[40] Kounalakis, M. and Dickel, C. and Bruno, A. and Langford, N. K. and Steele, G. A. Tuneablehopping and nonlinear cross-kerr interactions in a high-coherence superconducting circuit[J].npj Quantum Information, 2018, 4: 38.
[41] Zhao, Peng and Xu, Peng and Lan, Dong and Chu, Ji and Tan, Xinsheng and Yu, Haifengand Yu, Yang. High-contrast 𝑧𝑧 interaction using superconducting qubits with opposite-signanharmonicity[J]. Phys. Rev. Lett., 2020, 125: 200503.
[42] Xu, Xuexin and Ansari, M.H. Zz freedom in two-qubit gates[J]. Phys. Rev. Applied, 2021, 15:064074.
[43] Ku, Jaseung and Xu, Xuexin and Brink, Markus and McKay, David C. and Hertzberg, Jared B.and Ansari, Mohammad H. and Plourde, B. L. T. Suppression of unwanted zz interactions in ahybrid two-qubit system[J]. Phys. Rev. Lett., 2020, 125: 200504.
[44] Zhao, Peng and Xu, Peng and Lan, Dong and Tan, Xinsheng and Yu, Haifeng and Yu, Yang.Switchable next-nearest-neighbor coupling for controlled two-qubit operations[J]. Phys. Rev.Applied, 2020, 14: 064016.
[45] Wei, K. X. and Magesan, E. and Lauer, I. and Srinivasan, S. and Bogorin, D. F. and Carnevale,S. and Keefe, G. A. and Kim, Y. and Klaus, D. and Landers, W. and Sundaresan, N. and Wang,C. and Zhang, E. J. and Steffen, M. and Dial, O. E. and McKay, D. C. and Kandala, A. Quantumcrosstalk cancellation for fast entangling gates and improved multi-qubit performance[A]. 2021:arXiv:2106.00675. arXiv: 2106.00675.
[46] Emely Wiegand. Waveguide quantum electrodynamics in superconducting circuits[D].Chalmers University of Technology, 2019.
[47] Purcell E M. Spontaneous emission probabilities at radio frequencies[J]. Phys. Rev, 1946, 69:681.
[48] Blais, Alexandre and Huang, Ren-Shou and Wallraff, Andreas and Girvin, S. M. andSchoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: Anarchitecture for quantum computation[J]. Phys. Rev. A, 2004, 69: 062320.
[49] Blais, Alexandre and Huang, Ren-Shou and Wallraff, Andreas and Girvin, S. M. andSchoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: Anarchitecture for quantum computation[J]. Phys. Rev. A, 2004, 69: 062320.
[50] Krantz, P. and Kjaergaard, M. and Yan, F. and Orlando, T. P. and Gustavsson, S. and Oliver, W.D. A quantum engineer’s guide to superconducting qubits[J]. Applied Physics Reviews, 2019,6(2): 021318.
[51] Bose, S. N. . Plancks gesetz und lichtquantenhypothese[J]. Zeitschrift Für Physik, 1924, 26(1):178-181.
[52] Einstein, A. Quantentheorie des einatomigen idealen gases[M]. 1924.
[53] Andrews, M. R. and Townsend, C. G. and Miesner, H. -J. and Durfee, D. S. and Kurn, D. M. andKetterle, W. Observation of interference between bose-einstein condensates[C]//APS MeetingAbstracts: APS April Meeting Abstracts. 1997: J19.01.
[54] London, F. The 𝜆-phenomenon of liquid helium and the bose-einstein degeneracy[J]. Nature,1938, 141(3571): 643-644.
[55] Kapitza and P. Viscosity of liquid helium below the 𝜆-point[J]. Nature, 1938, 141(3558): 74.
[56] Fisher, Matthew P. A. and Weichman, Peter B. and Grinstein, G. and Fisher, Daniel S. Bosonlocalization and the superfluid-insulator transition[J]. Phys. Rev. B, 1989, 40: 546-570.
[57] Penrose, Oliver and Onsager, Lars. Bose-einstein condensation and liquid helium[J]. Phys.Rev., 1956, 104: 576-584.
[58] Asbóth, János K. and Oroszlány, László and Pályi, András. A short course on topologicalinsulators: Band-structure topology and edge states in one and two dimensions[A]. 2015: 1-22.arXiv: 1509.02295.
[59] Gurarie, V. and Pollet, L. and Prokof’ev, N. V. and Svistunov, B. V. and Troyer, M. Phasediagram of the disordered bose-hubbard model[J]. Phys. Rev. B, 2009, 80: 214519.
[60] ZHANG C, RIEGER H. Phase diagrams of the disordered bose-hubbard model with cavitymediated long-range and nearest-neighbor interactions[J]. The European Physical Journal B,2020, 93(2).

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O413.3
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343004
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
文雅婷. 基于超导电路系统的量子模拟[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930035-文雅婷-物理系.pdf(3446KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[文雅婷]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[文雅婷]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[文雅婷]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.