[1] Feynman R P. Simulating physics with computers[J]. Int J Theor Phys, 1982, 21: 467–488.
[2] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring[J].Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.
[3] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information[C]//2010.
[4] Juan Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation[J]. NaturePhysics, 2012, 8: 264-266.
[5] Bouchiat V, Denis Vion, P. Joyez, et al. Quantum coherence with a single cooper pair[J]. PhysicaScripta, 1998, 1998: 165-170.
[6] Bialczak, Radoslaw Radek Cezary. Development of the fundamental components of a superconducting qubit quantum computer[D]. University of California, Santa Barbara, 2011.
[7] Koch, Jens and Yu, Terri M. and Gambetta, Jay and Houck, A. A. and Schuster, D. I. and Majer,J. and Blais, Alexandre and Devoret, M. H. and Girvin, S. M. and Schoelkopf, R. J. Chargeinsensitive qubit design derived from the cooper pair box[J]. Phys. Rev. A, 2007, 76: 042319.
[8] You, J. Q. and Hu, Xuedong and Ashhab, S. and Nori, Franco. Low-decoherence flux qubit[J].Phys. Rev. B, 2007, 75: 140515.
[9] Manucharyan, Vladimir E. and Koch, Jens and Glazman, Leonid I. and Devoret, Michel H.Fluxonium: Single cooper-pair circuit free of charge offsets[J]. Science, 2009, 326(5949):113–116.
[10] Le, Dat Thanh and Grimsmo, Arne and M̈uller, Clemens and Stace, T. M. Doubly nonlinearsuperconducting qubit[J]. Phys. Rev. A, 2019, 100: 062321.
[11] Agustin Di Paolo and Arne L Grimsmo and Peter Groszkowski and Jens Koch and AlexandreBlais. Control and coherence time enhancement of the 0–π qubit[J]. New Journal ofPhysics, 2019, 21(4): 043002.
[12] Dempster, Joshua M. and Fu, Bo and Ferguson, David G. and Schuster, D. I. and Koch, Jens.Understanding degenerate ground states of a protected quantum circuit in the presence of disorder[J]. Phys. Rev. B, 2014, 90: 094518.
[13] Tan, Xinsheng and Zhao, Yuxin and Liu, Qiang and Xue, Guangming and Yu, Haifeng andWang, Z. D. and Yu, Yang. Realizing and manipulating space-time inversion symmetric topological semimetal bands with superconducting quantum circuits[J]. npj Quantum Materials,2017, 2: 60.
[14] Tan, Xinsheng and Zhang, Dan-Wei and Liu, Qiang and Xue, Guangming and Yu, Hai-Fengand Zhu, Yan-Qing and Yan, Hui and Zhu, Shi-Liang and Yu, Yang. Topological maxwellmetal bands in a superconducting qutrit[J]. Phys. Rev. Lett., 2018, 120: 130503.
[15] Tan, Xinsheng and Li, Mengmeng and Li, Danyu and Dai, Kunzhe and Yu, Haifeng and Yu,Yang. Demonstration of hopf-link semimetal bands with superconducting circuits[J]. AppliedPhysics Letters, 2018, 112(17): 172601.
[16] Mei, Feng and Chen, Gang and Tian, Lin and Zhu, Shi-Liang and Jia, Suotang. Robust quantumstate transfer via topological edge states in superconducting qubit chains[J]. Phys. Rev. Applied,2018, 98(1): 012331.
[17] Mei, Feng and Chen, Gang and Tian, Lin and Zhu, Shi-Liang and Jia, Suotang. Topologydependent quantum dynamics and entanglement-dependent topological pumping in superconducting qubit chains[J]. Phys. Rev. Applied, 2018, 98(3): 032323.
[18] Xu, Kai and Chen, Jin-Jun and Zeng, Yu and Zhang, Yu-Ran and Song, Chao and Liu, Wuxin andGuo, Qiujiang and Zhang, Pengfei and Xu, Da and Deng, Hui and Huang, Keqiang and Wang,H. and Zhu, Xiaobo and Zheng, Dongning and Fan, Heng. Emulating many-body localizationwith a superconducting quantum processor[J]. Phys. Rev. Lett., 2018, 120: 050507.
[19] Ye, Yangsen and Ge, Zi-Yong and Wu, Yulin and Wang, Shiyu and Gong, Ming and Zhang, YuRan and Zhu, Qingling and Yang, Rui and Li, Shaowei and Liang, Futian and Lin, Jin and Xu,Yu and Guo, Cheng and Sun, Lihua and Cheng, Chen and Ma, Nvsen and Meng, Zi Yang andDeng, Hui and Rong, Hao and Lu, Chao-Yang and Peng, Cheng-Zhi and Fan, Heng and Zhu,Xiaobo and Pan, Jian-Wei. Propagation and localization of collective excitations on a 24-qubitsuperconducting processor[J]. Phys. Rev. Lett., 2019, 123: 050502.
[20] W. Cai and J. Han and Feng Mei and Y. Xu and Y. Ma and X. Li and H. Wang and Y. P. Song andZheng-Yuan Xue and Zhang-qi Yin and Suotang Jia and Luyan Sun. Observation of topologicalmagnon insulator states in a superconducting circuit[J]. Physical Review Letters, 2019, 123(8).
[21] Guo, Qiujiang and Cheng, Chen and Li, Hekang and Xu, Shibo and Zhang, Pengfei and Wang,Zhen and Song, Chao and Liu, Wuxin and Ren, Wenhui and Dong, Hang and Mondaini, Rubemand Wang, H. Stark many-body localization on a superconducting quantum processor[J]. Phys.Rev. Lett., 2021, 127: 240502.
[22] Roushan, P. and Neill, C. and Chen, Yu and Kolodrubetz, M. and Quintana, C. and Leung, N.and Fang, M. and Barends, R. and Campbell, B. and Chen, Z. and Chiaro, B. and Dunsworth,A. and Jeffrey, E. and Kelly, J. and Megrant, A. and Mutus, J. and O’Malley, P. J. J. and Sank,D. and Vainsencher, A. and Wenner, J. and White, T. and Polkovnikov, A. and Cleland, A. N.and Martinis, J. M. Observation of topological transitions in interacting quantum circuits[J].Nature, 2014, 515(7526): 241-244.
[23] Leppäkangas, Juha and Braumüller, Jochen and Hauck, Melanie and Reiner, Jan-Michael andSchwenk, Iris and Zanker, Sebastian and Fritz, Lukas and Ustinov, Alexey V. and Weides, Martin and Marthaler, Michael. Quantum simulation of the spin-boson model with a microwavecircuit[J]. Phys. Rev. A, 2018, 97: 052321.
[24] Rymarz, Martin and Bosco, Stefano and Ciani, Alessandro and DiVincenzo, David P. Hardwareencoding grid states in a nonreciprocal superconducting circuit[J]. Phys. Rev. X, 2021, 11:011032.65参考文献
[25] Yan, Fei and Krantz, Philip and Sung, Youngkyu and Kjaergaard, Morten and Campbell, DanielL. and Orlando, Terry P. and Gustavsson, Simon and Oliver, William D. Tunable couplingscheme for implementing high-fidelity two-qubit gates[J]. Phys. Rev. Applied, 2018, 10:054062.
[26] Antonio Barone, Gianfranco Paternó. Weak superconductivity – phenomenological aspects[M].1982: 1-24.
[27] Nguyen, Long B. and Lin, Yen-Hsiang and Somoroff, Aaron and Mencia, Raymond and Grabon,Nicholas and Manucharyan, Vladimir E. High-coherence fluxonium qubit[J]. Physical ReviewX, 2019, 9(4).
[28] Zhang, Helin and Chakram, Srivatsan and Roy, Tanay and Earnest, Nathan and Lu, Yao andHuang, Ziwen and Weiss, D. K. and Koch, Jens and Schuster, David I. Universal fast-fluxcontrol of a coherent, low-frequency qubit[J]. Phys. Rev. X, 2021, 11: 011010.
[29] Zhu, Guanyu and Ferguson, David G. and Manucharyan, Vladimir E. and Koch, Jens. Circuitqed with fluxonium qubits: Theory of the dispersive regime[J]. Physical Review B, 2013, 87(2).
[30] Viola, Giovanni and Catelani, Gianluigi. Collective modes in the fluxonium qubit[J]. Phys.Rev. B, 2015, 92: 224511.
[31] Mooij, J. E. and Nazarov, Yu. V. Superconducting nanowires as quantum phase-slip junctions[J]. Nature Physics, 2006, 2(3): 169-172.
[32] Robertson, T. L. and Plourde, B. L. T. and Reichardt, P. A. and Hime, T. and Wu, C.-E. andClarke, John. Quantum theory of three-junction flux qubit with non-negligible loop inductance:Towards scalability[J]. Phys. Rev. B, 2006, 73: 174526.
[33] Orlando, T. P. and Mooij, J. E. and Tian, Lin and van der Wal, Caspar H. and Levitov, L. S. andLloyd, Seth and Mazo, J. J. Superconducting persistent-current qubit[J]. Phys. Rev. B, 1999,60: 15398-15413.
[34] Steffen, Matthias and Kumar, Shwetank and DiVincenzo, David P. and Rozen, J. R. and Keefe,George A. and Rothwell, Mary Beth and Ketchen, Mark B. High-coherence hybrid superconducting qubit[J]. Phys. Rev. Lett., 2010, 105: 100502.
[35] Chiorescu, I. and Nakamura, Y. and Harmans, C. J. P. M. and Mooij, J. E. Coherent quantumdynamics of a superconducting flux qubit[J]. Science, 2003, 299(5614): 1869–1871.
[36] Chow, Jerry M. and Córcoles, A. D. and Gambetta, Jay M. and Rigetti, Chad and Johnson, B.R. and Smolin, John A. and Rozen, J. R. and Keefe, George A. and Rothwell, Mary B. andKetchen, Mark B. and Steffen, M. Simple all-microwave entangling gate for fixed-frequencysuperconducting qubits[J]. Physical Review Letters, 2011, 107(8).
[37] Ferguson, David G. and Houck, A. A. and Koch, Jens. Symmetries and collective excitationsin large superconducting circuits[J]. Phys. Rev. X, 2013, 3: 011003.
[38] N. Earnest and S. Chakram and Y. Lu and N. Irons and R. K. Naik and N. Leung and L. Ocolaand D. A. Czaplewski and B. Baker and Jay Lawrence and Jens Koch and D. I. Schuster. Realization of a λ system with metastable states of a capacitively shunted fluxonium[J]. PhysicalReview Letters, 2018, 120(15).
[39] Vladimir Eduardovich Manucharyan. Superinductance[D]. Yale University, 2012.
[40] Kounalakis, M. and Dickel, C. and Bruno, A. and Langford, N. K. and Steele, G. A. Tuneablehopping and nonlinear cross-kerr interactions in a high-coherence superconducting circuit[J].npj Quantum Information, 2018, 4: 38.
[41] Zhao, Peng and Xu, Peng and Lan, Dong and Chu, Ji and Tan, Xinsheng and Yu, Haifengand Yu, Yang. High-contrast 𝑧𝑧 interaction using superconducting qubits with opposite-signanharmonicity[J]. Phys. Rev. Lett., 2020, 125: 200503.
[42] Xu, Xuexin and Ansari, M.H. Zz freedom in two-qubit gates[J]. Phys. Rev. Applied, 2021, 15:064074.
[43] Ku, Jaseung and Xu, Xuexin and Brink, Markus and McKay, David C. and Hertzberg, Jared B.and Ansari, Mohammad H. and Plourde, B. L. T. Suppression of unwanted zz interactions in ahybrid two-qubit system[J]. Phys. Rev. Lett., 2020, 125: 200504.
[44] Zhao, Peng and Xu, Peng and Lan, Dong and Tan, Xinsheng and Yu, Haifeng and Yu, Yang.Switchable next-nearest-neighbor coupling for controlled two-qubit operations[J]. Phys. Rev.Applied, 2020, 14: 064016.
[45] Wei, K. X. and Magesan, E. and Lauer, I. and Srinivasan, S. and Bogorin, D. F. and Carnevale,S. and Keefe, G. A. and Kim, Y. and Klaus, D. and Landers, W. and Sundaresan, N. and Wang,C. and Zhang, E. J. and Steffen, M. and Dial, O. E. and McKay, D. C. and Kandala, A. Quantumcrosstalk cancellation for fast entangling gates and improved multi-qubit performance[A]. 2021:arXiv:2106.00675. arXiv: 2106.00675.
[46] Emely Wiegand. Waveguide quantum electrodynamics in superconducting circuits[D].Chalmers University of Technology, 2019.
[47] Purcell E M. Spontaneous emission probabilities at radio frequencies[J]. Phys. Rev, 1946, 69:681.
[48] Blais, Alexandre and Huang, Ren-Shou and Wallraff, Andreas and Girvin, S. M. andSchoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: Anarchitecture for quantum computation[J]. Phys. Rev. A, 2004, 69: 062320.
[49] Blais, Alexandre and Huang, Ren-Shou and Wallraff, Andreas and Girvin, S. M. andSchoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: Anarchitecture for quantum computation[J]. Phys. Rev. A, 2004, 69: 062320.
[50] Krantz, P. and Kjaergaard, M. and Yan, F. and Orlando, T. P. and Gustavsson, S. and Oliver, W.D. A quantum engineer’s guide to superconducting qubits[J]. Applied Physics Reviews, 2019,6(2): 021318.
[51] Bose, S. N. . Plancks gesetz und lichtquantenhypothese[J]. Zeitschrift Für Physik, 1924, 26(1):178-181.
[52] Einstein, A. Quantentheorie des einatomigen idealen gases[M]. 1924.
[53] Andrews, M. R. and Townsend, C. G. and Miesner, H. -J. and Durfee, D. S. and Kurn, D. M. andKetterle, W. Observation of interference between bose-einstein condensates[C]//APS MeetingAbstracts: APS April Meeting Abstracts. 1997: J19.01.
[54] London, F. The 𝜆-phenomenon of liquid helium and the bose-einstein degeneracy[J]. Nature,1938, 141(3571): 643-644.
[55] Kapitza and P. Viscosity of liquid helium below the 𝜆-point[J]. Nature, 1938, 141(3558): 74.
[56] Fisher, Matthew P. A. and Weichman, Peter B. and Grinstein, G. and Fisher, Daniel S. Bosonlocalization and the superfluid-insulator transition[J]. Phys. Rev. B, 1989, 40: 546-570.
[57] Penrose, Oliver and Onsager, Lars. Bose-einstein condensation and liquid helium[J]. Phys.Rev., 1956, 104: 576-584.
[58] Asbóth, János K. and Oroszlány, László and Pályi, András. A short course on topologicalinsulators: Band-structure topology and edge states in one and two dimensions[A]. 2015: 1-22.arXiv: 1509.02295.
[59] Gurarie, V. and Pollet, L. and Prokof’ev, N. V. and Svistunov, B. V. and Troyer, M. Phasediagram of the disordered bose-hubbard model[J]. Phys. Rev. B, 2009, 80: 214519.
[60] ZHANG C, RIEGER H. Phase diagrams of the disordered bose-hubbard model with cavitymediated long-range and nearest-neighbor interactions[J]. The European Physical Journal B,2020, 93(2).
Edit Comment