中文版 | English
Title

2-甲氧基丙烯酸乙酯-丙烯酸共聚物的合成及其在锂离子电池中的应用

Alternative Title
RESEARCH ON SIOXANODE CONNECTED BY LIQUID METAL THREE-DIMENSIONAL CONDUCTIVE NETWORK
Author
Name pinyin
LI Zenan
School number
12032566
Degree
硕士
Discipline
0805 材料科学与工程
Subject category of dissertation
08 工学
Supervisor
邓永红
Mentor unit
材料科学与工程系
Tutor of External Organizations
宫清
Tutor units of foreign institutions
比亚迪股份有限公司中央研究院
Publication Years
2022-05-13
Submission date
2022-06-25
University
南方科技大学
Place of Publication
深圳
Abstract

随着锂离子电池的不断发展,电池中正负极材料也不断进行着迭代更新。在负极材料中,硅(Si)理论比容量高达4200 mAh/g,在地壳中含量丰富,被看作最具商业化潜力的石墨负极替代品。但是Si在脱嵌锂过程中会产生超过300%的体积变化,导致Si粒子的粉化和电极结构的破坏。目前商用粘结剂丁苯乳胶(SBR)对Si粘结强度低,力学强度低,难以有效缓解Si负极的膨胀效应。在正极材料中,磷酸铁锂(LFP)价格低廉,安全性好,循环稳定性高,被广泛应用于动力电池等领域。然而LFP正极选用聚偏氟乙烯(PVDF)作为粘结剂,需使N-甲基吡咯烷酮(NMP)作为溶剂,在涂布完成后还需对NMP进行回收。近年来NMPPVDF的价格水涨船高,使用油溶性的PVDF不仅会造成环境污染,且也增加了电池制造成本。因此,传统的粘结剂亟待更新,以满足当前正负极材料的要求。

本文以聚丙烯酸(PAA)和2-甲氧基丙烯酸乙酯(MEA)为反应单体合成一种新型粘结剂PAA-MEA,以改善锂离子电池SiO负极以及LFP正极的电化学性能。在SiO负极中,PAA-MEA聚合物玻璃化温度更低,更加柔韧,有助于缓解SiO负极循环过程中的膨胀。在LFP正极中,PAA-MEA作为水溶性粘结剂,具有环保和节约成本的优势。主要研究成果如下:

PAA-MEA粘结剂提高了正负极极片的柔韧性,平均剥离力超过5 N,具有比PAAPVDF更加优异的力学性能。负极测试中,相比于PAAPAA-MEA为粘结剂制备的SiO负极半电池的可逆比容量和容量保持率显著提升,0.1 C电流密度循环120圈后可逆比容量为1811 mAh/g,容量保持率为66%。进一步控制PAA-MEA合成的引发剂用量,结果表明引发剂用量为0.1%PAA-MEA-0.1%分子量更高,电化学性能进一步提升,120圈后循环容量保持率为69.4%LFP正极测试中,以PAA-MEA为粘结剂,循环140圈后放电比容量为143 mAh/g容量保持率为92.8%,在引入水体系的同时保持了优异的电化学性能。

本文通过对PAA聚合物的改性,增强了聚合物粘结剂的柔韧性和结构稳定性,采用水溶剂体系降低了电极制备成本,对开发高性能的锂离子电池粘结剂开辟了新的途径。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07-03
References List

[1] GAO Y, XIE X, XIE J, et al. Recent development of electrolytes in lithium-ion rechargeable batteries [J]. Chinese Journal of Power Sources, 2003, 27(5): 479-483.

[2] SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shell nanostructures [J]. Nanoscale, 2011, 3(10): 3967-3983.

[3] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.

[4] MA H, LI W, MA R, et al. Research on hydrolytic stability of synthetic ester base oils [J]. Lubrication Engineering, 2016, 41(5): 53-58.

[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.

[6] LEE Y J, YI H, KIM W J, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes [J]. Science, 2009, 324(5930): 1051-1055.

[7] 杨绍斌,胡浩权. 锂离子电池 [J]. 辽宁工程技术大学学报(自然科学版), 2000, 06: 659-663.

[8] KIEBELE A, GRUNER G. Carbon nanotube based battery architecture [J]. Applied Physics Letters, 2007, 91(14):144104.

[9] CHIANG Y M. Building a Better Battery [J]. Science, 2010, 330(6010): 1485-1486.

[10] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303-4317.

[11] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.

[12] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603.

[13] ZHAO X S, FAN Z H, MA Y J, et al. Research Review on Electrical Energy Storage Technology [C]; Proceedings of the 36th Chinese Control Conference (CCC), Dalian, CHINA, 2017: 26-28.

[14] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.

[15] LEE B S. A review of recent advancements in electrospun anode materials to improve rechargeable lithium battery performance [J]. Polymers, 2020, 12(9): 2035-2076.

[16] LUO P, ZHENG C, HE J W, et al. Structural engineering in graphite-Based metal-ion batteries [J]. Advanced Functional Materials, 2022, 32(9): 2107277.

[17] YOSHIO M, WANG H Y, FUKUDA K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. Journal of Materials Chemistry, 2004, 14(11): 1754-1758.

[18] SUN H, HE X M, REN J G, et al. Hard carbon/lithium composite anode materials for Li-ion batteries [J]. Electrochimica Acta, 2007, 52(13): 4312-4316.

[19] MIAO Y L, ZONG J, LIU X J. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries [J]. Materials Letters, 2017, 188: 355-358.

[20] CHI Y, SUN Y. Research progress in Aanode materials for power Li-ion batteries [J]. Materials Review, 2012, 26(11A): 274-275.

[21] SUN W, CAI Z, ZHOU R, et al. Research progress of lithium zinc titanate as anode material for lithium ion batteries [J]. Applied Chemical Industry, 2020, 49(5): 1446-1456.

[22] KNAUTH P. Inorganic solid Li ion conductors: An overview [J]. Solid State Ionics, 2009, 180(14-16): 911-916.

[23] INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic-conductivity in lithium lanthanum titanate [J]. Solid State Communications, 1993, 86(10): 689-693.

[24] YANG Y, MCDOWELL M T, JACKSON A, et al. New Nanostructured Li2S/Silicon rechargeable battery with high specific energy [J]. Nano Letters, 2010, 10(4): 1486-1491.

[25] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future [J]. Journal of Power Sources, 2010, 195(9): 2419-2430.

[26] SCROSATI B, HASSOUN J, SUN Y K. Lithium-ion batteries. A look into the future [J]. Energy & Environmental Science, 2011, 4(9): 3287-3295.

[27] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries [J]. Nano Today, 2012, 7(5): 414-429.

[28] MAVER U, ZNIDARSIC A, GABERSCEK M. An attempt to use atomic force microscopy for determination of bond type in lithium battery electrodes [J]. Journal of Materials Chemistry, 2011, 21(12): 4071-4075.

[29] SIMON G K, GOSWAMI T. Improving anodes for lithium ion batteries [J]. Metall Mater Transactions A, 2011, 42A(1): 231-238.

[30] CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode [J]. Advanced Science, 2016, 3(3): 1500213.

[31] SONI S K, SHELDON B W, XIAO X C, et al. Stress mitigation during the lithiation of patterned amorphous Si islands [J]. Journal of the Electrochemical Society, 2012, 159(1): A38-A43.

[32] KASAVAJJULA U, WANG C, APPLEBY A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. Journal of Power Sources, 2007, 163(2): 1003-1039.

[33] YANG J, WINTER M, BESENHARD J O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries [J]. Solid State Ionics, 1996, 90(1-4): 281-287.

[34] LI H. A high capacity nano-Si composite anode material for lithium rechargeable batteries [J]. Electrochemical and Solid-State Letters, 1999, 2(11): 547-551.

[35] MAZOUZI D, LESTRIEZ B, ROUÉ L, et al. Silicon composite electrode with high capacity and long cycle life [J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215-A218.

[36] WU S J, YANG J Y, YU B, et al. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2-3): 272-285.

[37] WANG W, KUMTA P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes [J]. ACS Nano, 2010, 4(4): 2233-2241.

[38] XU Q, LI J Y, SUN J K, et al. Watermelon-Inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes [J]. Advanced Energy Materials, 2017, 7(3): 1601481.

[39] DAI C L, SUN G Q, HU L Y, et al. Recent progress in graphene-based electrodes for flexible batteries [J]. Infomat, 2020, 2(3): 509-526.

[40] LUO J Y, ZHAO X, WU J S, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes [J]. Journal of Physical Chemistry Letters, 2012, 3(13): 1824-1829.

[41] WEI D, ASTLEY M R, HARRIS N, et al. Graphene nanoarchitecture in batteries [J]. Nanoscale, 2014, 6(16): 9536-9540.

[42] TOçOĞLU U, ALAF M, AKBULUT H. Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes [J]. Materials Chemistry and Physics, 2020, 240: 122160.

[43] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.

[44] PROSINI P P, LISI M, ZANE D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1): 45-51.

[45] WANG J J, SUN X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries [J].Energy & Environmental Science, 2012, 5(1): 5163-5185.

[46] TIAN L, YU H, ZHANG W, et al. The star material of lithium ion batteries,LiFePO4: basic properties, optimized modification and future prospects [J]. Materials Review, 2019, 33(11A): 3561-3579.

[47] RUI X H, JIN Y, FENG X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2011, 196(4): 2109-2114.

[48] JOHNSON I D, LUBKE M, WU O Y, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2016, 302: 410-418.

[49] 冯晓晗,孙杰. 磷酸铁锂正极材料改性研究进展 [J]. 储能科学与技术, 2022, 11(2): 467-486.

[50] YANG C, LI Y, LIU S, et al. Review of modification research of carbon coating on LiFePO4/C cathode material [J]. Chinese Journal of Power Sources, 2014, 38(6): 1170-1171.

[51] LI Y, WANG L, ZHANG K Y, et al. Optimized synthesis of LiFePO4 cathode material and its reaction mechanism during solvothermal [J]. Advanced Powder Technology, 2021, 32(6): 2097-2105.

[52] ZHANG H W, LI J Y, LUO L Q, et al. Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries [J]. Journal of Alloys and Compounds, 2021, 876:160210.

[53] TIAN M, ZHAN Y, YAN Y, et al. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812.

[54] SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation [J]. Energy Storage Materials, 2017, 6: 119-124.

[55] ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries [J]. Electrochimica Acta, 2017, 255: 212-219.

[56] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices [J]. Chemical Reviews, 2018, 118(18): 8936-8982.

[57] PARK Y, LEE S, KIM S-H, et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries [J]. RSC Advances, 2013, 3(31): 12625-12630.

[58] ARNOLD J, VOELKER G, SHARIATY A, et al. UV Coating Processes to Enhance Li Ion Battery Performance and Reduce Costs; proceedings of the 232nd Fall Meeting of the-Electrochemical-Society (ECS), National Harbor, MD, F Oct 01-05, 2017 [C]. Electrochemical Soc Inc: PENNINGTON, 2017.

[59] LIU Z, HAN S J, XU C, et al. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries [J]. RSC Advances, 2016, 6(72): 68371-68378.

[60] WANG Y X, XU Y F, MENG Q S, et al. Chemically bonded Sn nanoparticles using the crosslinked epoxy binder for high energy-density Li ion battery [J]. Advanced Materials Interfaces, 2016, 3(23):1600662.

[61] LIU G, ZHENG H, SONG X, et al. Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance [J]. Journal of the Electrochemical Society, 2012, 159(3): A214-A21.

[62] PENG L, YE C, TONG Q, et al. Research progress of replacing traditional PVDF binder with functional binder for lithium batteries [J]. Materials Review, 2021, 35(3A): 5174-5180.

[63] WANG Y, ZHANG L, QU Q T, et al. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries [J]. Electrochimica Acta , 2016, 191: 70-80.

[64] LI J, LEWIS R B, DAHN J R. Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries [J]. Electrochemical and Solid State Letters, 2007, 10(2): A17-A20.

[65] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder [J]. Electrochemical and Solid State Letters, 2005, 8(2): A100-A103.

[66] WEI L M, CHEN C X, HOU Z Y, et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries [J]. Scientific Reports, 2016, 6:19583.

[67] KOMABA S, SHIMOMURA K, YABUUCHI N, et al. Study on Polymer binders for high-capacity SiO negative electrode of Li-ion batteries [J]. Journal of Physical Chemistry C, 2011, 115(27): 13487-13495.

[68] MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic Acid [J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010.

[69] CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-3478.

[70] ZHAO X Y, YIM C H, DU N Y, et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries [J]. Journal of the Electrochemical Society, 2018, 165(5): A1110-A1121.

[71] RYOU M H, KIM J, LEE I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries [J]. Advanced Materials, 2013, 25(11): 1571-1576.

[72] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J]. Science, 2017, 357(6348): 279-283.

[73] HE J R, ZHONG H X, ZHANG L Z. Water-soluble binder PAALi with terpene resin emulsion as tackifier for LiFePO4 cathode [J]. Journal of Applied Polymer Science, 2018, 135(14):46132.

[74] ZHANG Q, SHA Z F, CUI X, et al. Incorporation of redox-active polyimide binder into LiFePO4 cathode for high-rate electrochemical energy storage [J]. Nanotechnology Reviews, 2020, 9(1): 1350-1358.

[75] HE J R, ZHONG H X, WANG J L, et al. Investigation on xanthan gum as novel water soluble binder for LiFePO4 cathode in lithium-ion batteries [J]. Journal of Alloys and Compounds, 2017, 714: 409-418.

[76] WANG Y-J, LI J, XU Z, et al. A tough and self-fusing elastomer tape [J]. Chemical Engineering Journal, 2021, 417: 127967.

[77] YAO D, XU H, WANG C, et al. Interpretation of the electrode binder standard for lithium ion battery [J]. Energy Storage Science and Technology, 2019, 8(2): 419-427.

[78] YAO D H, FENG J W, WANG J, et al. Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance [J]. Journal of Power Sources, 2020, 463:228188.

[79] LIU Y J, TAO X Y, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries [J]. Science, 2022, 375(6582): 739-745.

[80] QIAO L X, OTEO U, MARTINEZ-IBANEZ M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries [J]. Nature Materials.2022,21(4):455-462.

Academic Degree Assessment Sub committee
创新创业学院
Domestic book classification number
TM911.3
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343005
DepartmentSchool of Innovation and Entrepreneurship
Recommended Citation
GB/T 7714
李泽南. 2-甲氧基丙烯酸乙酯-丙烯酸共聚物的合成及其在锂离子电池中的应用[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032566-李泽南-创新创业学院.(3659KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李泽南]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李泽南]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李泽南]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.