中文版 | English
Title

量子芯片的软件调控技术

Alternative Title
SOFTWARE CONTROL TECHNOLOGY OFQUANTUM CHIPS
Author
Name pinyin
HAO Yajie
School number
11930022
Degree
硕士
Discipline
070201 理论物理
Subject category of dissertation
07 理学
Supervisor
陈远珍
Mentor unit
物理系
Publication Years
2022-05-12
Submission date
2022-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

近年来,随着量子计算的发展,科研人员对量子优化控制算法的效率有了强烈的需求,为此,我们提出了iGRAPE(iterative Gradient Ascent Pulse Engineering  algorithm)与pGRAPE(partial fidelity Gradient Ascent Pulse Engineering  algorithm )算法,它们都是基于梯度优化的方法。通过在优化过程中加入对量子态迭代解纠缠的技术,它们可以在优化过程中对量子态逐步降维,从而有效的加快算法运行的效率,减少算法在经典计算机上所需的运行时间。在系统哈密顿量中比特之间耦合可调时,我们引入量子态的"纯净度(Purity)"作为损失函数,即可在优化过程中实现量子态解纠缠,达到降维的效果,从而提出了iGRAPE算法。同时对类似于核磁共振系统这样只由泡利$Z$组成的哈密顿量,且比特之间耦合不可调的系统,我们对iGRAPE算法进行改进适配,通过将损失函数定义为子系统量子态的保真度,实现了优化过程中对量子态的降维,即为pGRAPE算法。最后我们分别将iGRAPE算法与pGRAPE算法用于具有代表性的超导量子计算系统和核磁共振系统,解决全0态到GHZ态的优化控制问题,用以验证算法的可行性,并与GRAPE(Gradient Ascent Pulse Engineering  algorithm)算法进行对比,结果表明它们相比GRAPE算法有着更高的运行效率,且随着比特数增加,优势愈发明显。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-07
References List

[1] HOLEVO A S. Bounds for the quantity of information transmitted by a quantum communication channel[J]. Problemy Peredachi Informatsii, 1973, 9(3): 3-11.
[2] INGARDEN R S. Quantum information theory[J]. Reports on Mathematical Physics, 1976, 10 (1): 43-72.
[3] MANIN Y. Computable and uncomputable[J]. Sovetskoye Radio, Moscow, 1980, 128.
[4] POPLAVSKI R. Thermodynamic models of information processes[J]. Soviet Physics Uspekhi,1975, 18(3): 222.
[5] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1985, 400(1818): 97-117.
[6] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM review, 1999, 41(2): 303-332.
[7] MCARDLE S, ENDO S, ASPURU-GUZIK A, et al. Quantum computational chemistry[J]. Reviews of Modern Physics, 2020, 92(1): 015003.
[8] CAO Y, ROMERO J, OLSON J P, et al. Quantum chemistry in the age of quantum computing [J]. Chemical reviews, 2019, 119(19): 10856-10915.
[9] IZMAYLOV A F, YEN T C, LANG R A, et al. Unitary partitioning approach to the measurement problem in the variational quantum eigensolver method[J]. Journal of chemical theory and computation, 2019, 16(1): 190-195.
[10] BAUER B, BRAVYI S, MOTTA M, et al. Quantum algorithms for quantum chemistry and quantum materials science[J]. Chemical Reviews, 2020, 120(22): 12685-12717.
[11] PARRISH R M, HOHENSTEIN E G, MCMAHON P L, et al. Quantum computation of electronic transitions using a variational quantum eigensolver[J]. Physical review letters, 2019, 122 (23): 230401.
[12] SCHULD M, SINAYSKIY I, PETRUCCIONE F. An introduction to quantum machine learning [J]. Contemporary Physics, 2015, 56(2): 172-185.
[13] SCHULD M, KILLORAN N. Quantum machine learning in feature hilbert spaces[J]. Physical review letters, 2019, 122(4): 040504.
[14] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.
[15] XIA R, KAIS S. Quantum machine learning for electronic structure calculations[J]. Nature communications, 2018, 9(1): 1-6.
[16] DEBENEDICTIS E P. A future with quantum machine learning[J]. Computer, 2018, 51(2): 68-71.
[17] ORUS R, MUGEL S, LIZASO E. Quantum computing for finance: Overview and prospects[J].Reviews in Physics, 2019, 4: 100028.
[18] HU F, WANG B N, WANG N, et al. Quantum machine learning with D-wave quantum computer [J]. Quantum Engineering, 2019, 1(2): e12.
[19] JIANG W, XIONG J, SHI Y. When machine learning meets quantum computers: A case study [C]//2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021: 593-598.
[20] RAMAKRISHNAN R, VON LILIENFELD O A. Machine learning, quantum chemistry, and chemical space[J]. Reviews in computational chemistry, 2017, 30: 225-256.
[21] CHEN S Y C, YANG C H H, QI J, et al. Variational quantum circuits for deep reinforcement learning[J]. IEEE Access, 2020, 8: 141007-141024.
[22] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[23] CAMPBELL E T, TERHAL B M, VUILLOT C. Roads towards fault-tolerant universal quantum computation[J]. Nature, 2017, 549(7671): 172-179.
[24] BOURASSA J E, ALEXANDER R N, VASMER M, et al. Blueprint for a scalable photonic fault-tolerant quantum computer[J]. Quantum, 2021, 5: 392.
[25] OUTEIRAL C, STRAHM M, SHI J, et al. The prospects of quantum computing in computational molecular biology[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11(1): e1481.
[26] ORUS R, MUGEL S, LIZASO E. Quantum computing for finance: Overview and prospects[J].Reviews in Physics, 2019, 4: 100028.
[27] BISWAS R, JIANG Z, KECHEZHI K, et al. A NASA perspective on quantum computing:Opportunities and challenges[J]. Parallel Computing, 2017, 64: 81-98.
[28] BOULAND A, VAN DAM W, JOORATI H, et al. Prospects and challenges of quantum finance[J]. arXiv preprint arXiv:2011.06492, 2020.
[29] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[30] MUNDADA P, ZHANG G, HAZARD T, et al. Suppression of qubit crosstalk in a tunable coupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023.
[31] BARENDS R, QUINTANA C, PETUKHOV A, et al. Diabatic gates for frequency-tunable superconducting qubits[J]. Physical Review Letters, 2019, 123(21): 210501.
[32] KWON S, TOMONAGA A, LAKSHMI BHAI G, et al. Gate-based superconducting quantum computing[J]. Journal of Applied Physics, 2021, 129(4): 041102.
[33] CAMPBELL D L, SHIM Y P, KANNAN B, et al. Universal nonadiabatic control of small-gap superconducting qubits[J]. Physical Review X, 2020, 10(4): 041051.
[34] GANZHORN M, SALIS G, EGGER D, et al. Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform[J]. Physical Review Research, 2020, 2(3): 033447.
[35] HUANG H L, WU D, FAN D, et al. Superconducting quantum computing: a review[J]. Science China Information Sciences, 2020, 63(8): 1-32.
[36] GUO Q, ZHENG S B, WANG J, et al. Dephasing-insensitive quantum information storage and processing with superconducting qubits[J]. Physical review letters, 2018, 121(13): 130501.
[37] MIRHOSSEINI M, SIPAHIGIL A, KALAEE M, et al. Superconducting qubit to optical photon transduction[J]. Nature, 2020, 588(7839): 599-603.
[38] QUANTUM G A, COLLABORATORS*†, ARUTE F, et al. Hartree-Fock on a superconducting qubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[39] CHU J, LI D, YANG X, et al. Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits[J]. Physical Review Applied, 2020, 13(6): 064012.
[40] WU X, TOMARKEN S L, PETERSSON N A, et al. High-fidelity software-defined quantum logic on a superconducting qudit[J]. Physical Review Letters, 2020, 125(17): 170502.
[41] ZHAO P, XU P, LAN D, et al. High-Contrast Z Z Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity[J]. Physical Review Letters, 2020, 125(20): 200503.
[42] ZHAO P, XU P, LAN D, et al. High-Contrast Z Z Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity[J]. Physical Review Letters, 2020, 125(20): 200503.
[43] LI S, CASTELLANO A D, WANG S, et al. Realisation of high-fidelity nonadiabatic CZ gates with superconducting qubits[J]. npj Quantum Information, 2019, 5(1): 1-7.
[44] ROL M, BATTISTEL F, MALINOWSKI F, et al. A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer[J]. arXiv preprintarXiv:1903.02492, 2019.
[45] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for super conducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[46] ROL M, BATTISTEL F, MALINOWSKI F, et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits[J]. Physical review letters, 2019, 123(12): 120502.
[47] KONO S, KOSHINO K, LACHANCE-QUIRION D, et al. Breaking the trade-off between fast control and long lifetime of a superconducting qubit[J]. Nature communications, 2020, 11(1):1-6.
[48] WERNINGHAUS M, EGGER D J, ROY F, et al. Leakage reduction in fast superconducting qubit gates via optimal control[J]. npj Quantum Information, 2021, 7(1): 1-6.
[49] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubit superconducting processor[J]. Science, 2019, 364(6442): 753-756.
[50] SONG C, XU K, LIU W, et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit[J]. Physical review letters, 2017, 119(18): 180511.
[51] CHU Y, KHAREL P, YOON T, et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator[J]. Nature, 2018, 563(7733): 666-670.
[52] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[53] MA W L, PURI S, SCHOELKOPF R J, et al. Quantum control of bosonic modes with super-conducting circuits[J]. Science Bulletin, 2021, 66(17): 1789-1805.
[54] PEDNAULT E, GUNNELS J A, NANNICINI G, et al. Leveraging secondary storage to simulatedeep 54-qubit sycamore circuits[J]. arXiv preprint arXiv:1910.09534, 2019.
[55] BLAIS A, GIRVIN S M, OLIVER W D. Quantum information processing and quantum opticswith circuit quantum electrodynamics[J]. Nature Physics, 2020, 16(3): 247-256.
[56] BLAIS A, GRIMSMO A L, GIRVIN S, et al. Circuit quantum electrodynamics[J]. Reviews ofModern Physics, 2021, 93(2): 025005.
[57] JOSHI A, NOH K, GAO Y Y. Quantum information processing with bosonic qubits in circuitQED[J]. Quantum Science and Technology, 2021, 6(3): 033001.
[58] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[59] WENDIN G. Quantum information processing with superconducting circuits: a review[J]. Re-ports on Progress in Physics, 2017, 80(10): 106001.
[60] ROY T, HAZRA S, KUNDU S, et al. Programmable superconducting processor with nativethree-qubit gates[J]. Physical Review Applied, 2020, 14(1): 014072.
[61] EMERSON J. Designer pulses for better qubit gate operations[J]. Nature Electronics, 2019, 2(4): 140-141.
[62] HENDRICKX N, FRANKE D, SAMMAK A, et al. Fast two-qubit logic with holes in germa-nium[J]. Nature, 2020, 577(7791): 487-491.
[63] BORJANS F, CROOT X, MI X, et al. Resonant microwave-mediated interactions betweendistant electron spins[J]. Nature, 2020, 577(7789): 195-198.
[64] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Physical ReviewA, 1998, 57(1): 120.
[65] CULCER D, SARAIVA A, KOILLER B, et al. Valley-based noise-resistant quantum computa-tion using Si quantum dots[J]. Physical review letters, 2012, 108(12): 126804.
[66] HUANG W, YANG C, CHAN K, et al. Fidelity benchmarks for two-qubit gates in silicon[J].Nature, 2019, 569(7757): 532-536.
[67] LI Q, CYWIŃSKI Ł, CULCER D, et al. Exchange coupling in silicon quantum dots: Theoreticalconsiderations for quantum computation[J]. Physical Review B, 2010, 81(8): 085313.
[68] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven CNOT gate for electron spins[J]. Science, 2018, 359(6374): 439-442.
[69] HE Y, GORMAN S, KEITH D, et al. A two-qubit gate between phosphorus donor electrons insilicon[J]. Nature, 2019, 571(7765): 371-375.
[70] MI X, BENITO M, PUTZ S, et al. A coherent spin–photon interface in silicon[J]. Nature, 2018,555(7698): 599-603.
[71] PETIT L, EENINK H, RUSS M, et al. Universal quantum logic in hot silicon qubits[J]. Nature,2020, 580(7803): 355-359.
[72] SCARLINO P, VAN WOERKOM D J, MENDES U C, et al. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit[J]. Nature communi-cations, 2019, 10(1): 1-6.
[73] HU X, SARMA S D. Spin-based quantum computation in multielectron quantum dots[J]. Phys-ical Review A, 2001, 64(4): 042312.
[74] KANDEL Y P, QIAO H, FALLAHI S, et al. Coherent spin-state transfer via Heisenberg ex-change[J]. Nature, 2019, 573(7775): 553-557.
[75] TAKEDA K, NOIRI A, YONEDA J, et al. Resonantly driven singlet-triplet spin qubit in silicon[J]. Physical Review Letters, 2020, 124(11): 117701.
[76] DUMKE R, VOLK M, MÜTHER T, et al. Micro-optical realization of arrays of selectivelyaddressable dipole traps: a scalable configuration for quantum computation with atomic qubits[J]. Physical review letters, 2002, 89(9): 097903.
[77] MONZ T, KIM K, HÄNSEL W, et al. Realization of the quantum Toffoli gate with trapped ions[J]. Physical review letters, 2009, 102(4): 040501.
[78] NAM Y, CHEN J S, PISENTI N C, et al. Ground-state energy estimation of the water moleculeon a trapped-ion quantum computer[J]. npj Quantum Information, 2020, 6(1): 1-6.
[79] AMINI J M, UYS H, WESENBERG J H, et al. Toward scalable ion traps for quantum informa-tion processing[J]. New journal of Physics, 2010, 12(3): 033031.
[80] WU Y K, DUAN L M. A two-dimensional architecture for fast large-scale trapped-ion quantumcomputing[J]. Chinese Physics Letters, 2020, 37(7): 070302.
[81] STUTE A, CASABONE B, SCHINDLER P, et al. Tunable ion–photon entanglement in anoptical cavity[J]. Nature, 2012, 485(7399): 482-485.
[82] LIDAR D A, WU L A. Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation[J]. Physical Review A, 2003, 67(3): 032313.
[83] AN S, LV D, DEL CAMPO A, et al. Shortcuts to adiabaticity by counterdiabatic driving fortrapped-ion displacement in phase space[J]. Nature communications, 2016, 7(1): 1-5.
[84] CAI M L, LIU Z D, ZHAO W D, et al. Observation of a quantum phase transition in the quantumRabi model with a single trapped ion[J]. Nature communications, 2021, 12(1): 1-8.
[85] MEHTA K K, ZHANG C, MALINOWSKI M, et al. Integrated optical multi-ion quantum logic[J]. Nature, 2020, 586(7830): 533-537.
[86] ZHANG C, POKORNY F, LI W, et al. Submicrosecond entangling gate between trapped ionsvia Rydberg interaction[J]. Nature, 2020, 580(7803): 345-349.
[87] STUART J, PANOCK R, BRUZEWICZ C, et al. Chip-integrated voltage sources for control oftrapped ions[J]. Physical Review Applied, 2019, 11(2): 024010.
[88] GEORGESCU I. Trapped ion quantum computing turns 25[J]. Nature Reviews Physics, 2020,2(6): 278-278.
[89] GRZESIAK N, BLÜMEL R, WRIGHT K, et al. Efficient arbitrary simultaneously entanglinggates on a trapped-ion quantum computer[J]. Nature communications, 2020, 11(1): 1-6.
[90] LIENHARD V, SCHOLL P, WEBER S, et al. Realization of a density-dependent Peierls phasein a synthetic, spin-orbit coupled Rydberg system[J]. Physical Review X, 2020, 10(2): 021031.
[91] SCHÄFER V, BALLANCE C, THIRUMALAI K, et al. Fast quantum logic gates with trapped-ion qubits[J]. Nature, 2018, 555(7694): 75-78.
[92] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trapped-ion quantum computing:Progress and challenges[J]. Applied Physics Reviews, 2019, 6(2): 021314.
[93] LEKITSCH B, WEIDT S, FOWLER A G, et al. Blueprint for a microwave trapped ion quantumcomputer[J]. Science Advances, 2017, 3(2): e1601540.
[94] LIAO Q, FU Y, HU J. High-fidelity quantum state transfer and strong coupling in a hybrid NVcenter coupled to CPW cavity system[J]. Chinese Journal of Physics, 2020, 66: 9-14.
[95] XU K, XIE T, LI Z, et al. Experimental adiabatic quantum factorization under ambient con-ditions based on a solid-state single spin system[J]. Physical review letters, 2017, 118(13):130504.
[96] DOLDE F, BERGHOLM V, WANG Y, et al. High-fidelity spin entanglement using optimalcontrol[J]. Nature communications, 2014, 5(1): 1-9.
[97] ABOBEIH M H, CRAMER J, BAKKER M A, et al. One-second coherence for a single electronspin coupled to a multi-qubit nuclear-spin environment[J]. Nature communications, 2018, 9(1):1-8.
[98] YAO N Y, JIANG L, GORSHKOV A V, et al. Scalable architecture for a room temperaturesolid-state quantum information processor[J]. Nature communications, 2012, 3(1): 1-8.
[99] RONG X, GENG J, SHI F, et al. Experimental fault-tolerant universal quantum gates withsolid-state spins under ambient conditions[J]. Nature communications, 2015, 6(1): 1-7.
[100] DONG L, RONG X, GENG J, et al. Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits[J]. Physical Review B, 2017, 96(20): 205149.
[101] BRADLEY C E, RANDALL J, ABOBEIH M H, et al. A ten-qubit solid-state spin register withquantum memory up to one minute[J]. Physical Review X, 2019, 9(3): 031045.
[102] MAURER P C, KUCSKO G, LATTA C, et al. Room-temperature quantum bit memory exceed-ing one second[J]. Science, 2012, 336(6086): 1283-1286.
[103] DOLDE F, JAKOBI I, NAYDENOV B, et al. Room-temperature entanglement between singledefect spins in diamond[J]. Nature Physics, 2013, 9(3): 139-143.
[104] HUANG Y Y, WU Y K, WANG F, et al. Experimental realization of robust geometric quantumgates with solid-state spins[J]. Physical Review Letters, 2019, 122(1): 010503.
[105] VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation[J]. Reviews of modern physics, 2005, 76(4): 1037.
[106] WEN J, KONG X, WEI S, et al. Experimental realization of quantum algorithms for a linearsystem inspired by adiabatic quantum computing[J]. Physical Review A, 2019, 99(1): 012320.
[107] SANTOS A C, NICOTINA A, SOUZA A M, et al. Optimizing NMR quantum informationprocessing via generalized transitionless quantum driving[J]. EPL (Europhysics Letters), 2020,129(3): 30008.
[108] LI J, FAN R, WANG H, et al. Measuring out-of-time-order correlators on a nuclear magneticresonance quantum simulator[J]. Physical Review X, 2017, 7(3): 031011.
[109] YANG X, LI J, PENG X. An improved differential evolution algorithm for learning high-fidelityquantum controls[J]. Science Bulletin, 2019, 64(19): 1402-1408.
[110] DU J, XU N, PENG X, et al. NMR implementation of a molecular hydrogen quantum simulationwith adiabatic state preparation[J]. Physical review letters, 2010, 104(3): 030502.
[111] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of12 qubits[J]. npj Quantum Information, 2017, 3(1): 1-7.
[112] LU D, LI H, TROTTIER D A, et al. Experimental estimation of average fidelity of a cliffordgate on a 7-qubit quantum processor[J]. Physical review letters, 2015, 114(14): 140505.
[113] CRIPPA A, EZZOUCH R, APRÁ A, et al. Gate-reflectometry dispersive readout and coherentcontrol of a spin qubit in silicon[J]. Nature communications, 2019, 10(1): 1-6.
[114] KHAZALI M, MØLMER K. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits[J]. Physical Review X, 2020,10(2): 021054.
[115] MADJAROV I S, COVEY J P, SHAW A L, et al. High-fidelity entanglement and detection ofalkaline-earth Rydberg atoms[J]. Nature Physics, 2020, 16(8): 857-861.
[116] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms[J]. Nature Physics, 2020, 16(2): 132-142.
[117] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Jour-nal of Physics B: Atomic, Molecular and Optical Physics, 2019, 53(1): 012002.
[118] EWALD N, FELDKER T, HIRZLER H, et al. Observation of interactions between trapped ionsand ultracold Rydberg atoms[J]. Physical Review Letters, 2019, 122(25): 253401.
[119] GLAETZLE A W, VAN BIJNEN R M, ZOLLER P, et al. A coherent quantum annealer withRydberg atoms[J]. Nature communications, 2017, 8(1): 1-6.
[120] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J].Reviews of modern physics, 2010, 82(3): 2313.
[121] BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atomquantum simulator[J]. Nature, 2017, 551(7682): 579-584.
[122] PEYRONEL T, FIRSTENBERG O, LIANG Q Y, et al. Quantum nonlinear optics with singlephotons enabled by strongly interacting atoms[J]. Nature, 2012, 488(7409): 57-60.
[123] CONG I, CHOI S, LUKIN M D. Quantum convolutional neural networks[J]. Nature Physics,2019, 15(12): 1273-1278.
[124] GRAHAM T, KWON M, GRINKEMEYER B, et al. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array[J]. Physical review letters, 2019, 123(23): 230501.
[125] BEKENSTEIN R, PIKOVSKI I, PICHLER H, et al. Quantum metasurfaces with atom arrays[J]. Nature Physics, 2020, 16(6): 676-681.
[126] LEVINE H, KEESLING A, SEMEGHINI G, et al. Parallel implementation of high-fidelitymultiqubit gates with neutral atoms[J]. Physical review letters, 2019, 123(17): 170503.
[127] KOCH C P, LEMESHKO M, SUGNY D. Quantum control of molecular rotation[J]. Reviewsof Modern Physics, 2019, 91(3): 035005.
[128] NORCIA M, YOUNG A, KAUFMAN A. Microscopic control and detection of ultracold stron-tium in optical-tweezer arrays[J]. Physical Review X, 2018, 8(4): 041054.
[129] DING D S, BUSCHE H, SHI B S, et al. Phase diagram and self-organizing dynamics in athermal ensemble of strongly interacting Rydberg atoms[J]. Physical Review X, 2020, 10(2):021023.
[130] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[131] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[132] DEVITT S J. Performing quantum computing experiments in the cloud[J]. Physical Review A,2016, 94(3): 032329.
[133] CHONG F T, FRANKLIN D, MARTONOSI M. Programming languages and compiler designfor realistic quantum hardware[J]. Nature, 2017, 549(7671): 180-187.
[134] FU X, RIESEBOS L, LAO L, et al. A heterogeneous quantum computer architecture[C]//Proceedings of the ACM International Conference on Computing Frontiers. 2016: 323-330.
[135] FARHI E, GOLDSTONE J, GUTMANN S. A quantum approximate optimization algorithm[J]. arXiv preprint arXiv:1411.4028, 2014.
[136] ZHOU L, WANG S T, CHOI S, et al. Quantum approximate optimization algorithm: Perfor-mance, mechanism, and implementation on near-term devices[J]. Physical Review X, 2020, 10(2): 021067.
[137] GUERRESCHI G G, MATSUURA A Y. QAOA for Max-Cut requires hundreds of qubits forquantum speed-up[J]. Scientific reports, 2019, 9(1): 1-7.
[138] STREIF M, LEIB M. Comparison of QAOA with quantum and simulated annealing[J]. arXivpreprint arXiv:1901.01903, 2019.
[139] XUE C, CHEN Z Y, WU Y C, et al. Effects of quantum noise on quantum approximate opti-mization algorithm[J]. Chinese Physics Letters, 2021, 38(3): 030302.
[140] FARHI E, HARROW A W. Quantum supremacy through the quantum approximate optimizationalgorithm[J]. arXiv preprint arXiv:1602.07674, 2016.
[141] TATE R, FARHADI M, HEROLD C, et al. Bridging classical and quantum with SDP initializedwarm-starts for QAOA[J]. arXiv preprint arXiv:2010.14021, 2020.
[142] HASTINGS M B. Classical and quantum bounded depth approximation algorithms[J]. arXivpreprint arXiv:1905.07047, 2019.
[143] CHANCELLOR N. Domain wall encoding of discrete variables for quantum annealing andQAOA[J]. Quantum Science and Technology, 2019, 4(4): 045004.
[144] LECHNER W. Quantum approximate optimization with parallelizable gates[J]. IEEE Trans-actions on Quantum Engineering, 2020, 1: 1-6.
[145] FUCHS F G, KOLDEN H Ø, AASE N H, et al. Efficient Encoding of the Weighted MAX 𝑘k-CUT on a Quantum Computer Using QAOA[J]. SN Computer Science, 2021, 2(2): 1-14.
[146] SHAYDULIN R, SAFRO I, LARSON J. Multistart methods for quantum approximate op-timization[C]//2019 IEEE high performance extreme computing conference (HPEC). IEEE,2019: 1-8.
[147] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonicquantum processor[J]. Nature communications, 2014, 5(1): 1-7.
[148] 丛爽, 匡森. 量子系统控制理论与方法[M]. 量子系统控制理论与方法, 2013.
[149] KHANEJA N, BROCKETT R, GLASER S J. Time optimal control in spin systems[J]. PhysicalReview A, 2001, 63(3): 032308.
[150] D’ALESSANDRO D. The optimal control problem on SO (4) and its applications to quantumcontrol[J]. IEEE Transactions on automatic control, 2002, 47(1): 87-92.
[151] BOSCAIN U, CHARLOT G, GAUTHIER J P, et al. Optimal control in laser-induced populationtransfer for two-and three-level quantum systems[J]. Journal of Mathematical Physics, 2002, 43(5): 2107-2132.
[152] SHEN L, SHI S, RABITZ H. Control of coherent wave functions: A linearized moleculardynamics view[J]. The Journal of Physical Chemistry, 1993, 97(35): 8874-8880.
[153] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design ofNMR pulse sequences by gradient ascent algorithms[J]. Journal of magnetic resonance, 2005,172(2): 296-305.
[154] D’ALESSANDRO D, DOBROVITSKI V. Control of a two level open quantum system[C]//Proceedings of the 41st IEEE Conference on Decision and Control, 2002.: volume 1. IEEE,2002: 40-45.
[155] PALAO J P, KOSLOFF R. Optimal control theory for unitary transformations[J]. PhysicalReview A, 2003, 68(6): 062308.
[156] PALAO J P, KOSLOFF R. Quantum computing by an optimal control algorithm for unitarytransformations[J]. Physical review letters, 2002, 89(18): 188301.
[157] DORIA P, CALARCO T, MONTANGERO S. Optimal control technique for many-body quan-tum dynamics[J]. Physical review letters, 2011, 106(19): 190501.
[158] LAROCCA M, WISNIACKI D. Krylov-subspace approach for the efficient control of quantummany-body dynamics[J]. Physical Review A, 2021, 103(2): 023107.
[159] RACH N, MÜLLER M M, CALARCO T, et al. Dressing the chopped-random-basis optimiza-tion: A bandwidth-limited access to the trap-free landscape[J]. Physical Review A, 2015, 92(6): 062343.
[160] EGGER D J, WILHELM F K. Adaptive hybrid optimal quantum control for imprecisely char-acterized systems[J]. Physical review letters, 2014, 112(24): 240503.
[161] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitaryoperators[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347.
[162] FERRIE C, MOUSSA O. Robust and efficient in situ quantum control[J]. Physical Review A,2015, 91(5): 052306.
[163] GAMBETTA J M, MOTZOI F, MERKEL S, et al. Analytic control methods for high-fidelityunitary operations in a weakly nonlinear oscillator[J]. Physical Review A, 2011, 83(1): 012308.
[164] AN Z, ZHOU D. Deep reinforcement learning for quantum gate control[J]. EPL (EurophysicsLetters), 2019, 126(6): 60002.
[165] BUKOV M, DAY A G, SELS D, et al. Reinforcement learning in different phases of quantumcontrol[J]. Physical Review X, 2018, 8(3): 031086.
[166] NIU M Y, BOIXO S, SMELYANSKIY V N, et al. Universal quantum control through deepreinforcement learning[J]. npj Quantum Information, 2019, 5(1): 1-8.
[167] ZHANG X M, WEI Z, ASAD R, et al. When does reinforcement learning stand out in quantumcontrol? A comparative study on state preparation[J]. npj Quantum Information, 2019, 5(1):1-7.
[168] JOHANSSON J R, NATION P D, NORI F. QuTiP: An open-source Python framework forthe dynamics of open quantum systems[J]. Computer Physics Communications, 2012, 183(8):1760-1772.
[169] WU R B, CHU B, OWENS D H, et al. Data-driven gradient algorithm for high-precision quan-tum control[J]. Physical Review A, 2018, 97(4): 042122.
[170] WU R B, DING H, DONG D, et al. Learning robust and high-precision quantum controls[J].Physical Review A, 2019, 99(4): 042327.
[171] GE X, DING H, RABITZ H, et al. Robust quantum control in games: An adversarial learningapproach[J]. Physical Review A, 2020, 101(5): 052317.
[172] GE X, WU R B. Risk-sensitive optimization for robust quantum controls[J]. Physical ReviewA, 2021, 104(1): 012422.
[173] DING H J, WU R B. Robust quantum control against clock noises in multiqubit systems[J].Physical Review A, 2019, 100(2): 022302.
[174] LEUNG N, ABDELHAFEZ M, KOCH J, et al. Speedup for quantum optimal control fromautomatic differentiation based on graphics processing units[J]. Physical Review A, 2017, 95(4): 042318.
[175] 邢继祥, 张春蕊, 徐洪泽. 最优控制应用基础[M]. 科学出版社, 2003.
[176] KOSLOFF R, RICE S A, GASPARD P, et al. Wavepacket dancing: Achieving chemical selec-tivity by shaping light pulses[J]. Chemical Physics, 1989, 139(1): 201-220.
[177] KROTOV V, FELDMAN I. An iterative method for solving optimal-control problems[J]. En-gineering cybernetics, 1983, 21(2): 123-130.
[178] PEIRCE A P, DAHLEH M A, RABITZ H. Optimal control of quantum-mechanical systems:Existence, numerical approximation, and applications[J]. Physical Review A, 1988, 37(12):4950.
[179] REICH D M, NDONG M, KOCH C P. Monotonically convergent optimization in quantumcontrol using Krotov’s method[J]. The Journal of chemical physics, 2012, 136(10): 104103.
[180] GOERZ M, BASILEWITSCH D, GAGO-ENCINAS F, et al. Krotov: A Python implementationof Krotov’s method for quantum optimal control[J]. SciPost physics, 2019, 7(6): 080.
[181] MACHNES S, SANDER U, GLASER S J, et al. Comparing, optimizing, and benchmark-ing quantum-control algorithms in a unifying programming framework[J]. Physical Review A,2011, 84(2): 022305.
[182] BINDER J M, STARK A, TOMEK N, et al. Qudi: A modular python suite for experimentcontrol and data processing[J]. SoftwareX, 2017, 6: 85-90.
[183] ANGARONI F, GRAUDENZI A, ROSSIGNOLO M, et al. Personalized therapy design forliquid tumors via optimal control theory[J]. bioRxiv, 2019: 662858.
[184] MACHNES S, ASSÉMAT E, TANNOR D, et al. Tunable, flexible, and efficient optimizationof control pulses for practical qubits[J]. Physical review letters, 2018, 120(15): 150401.
[185] HANSEN N, MÜLLER S D, KOUMOUTSAKOS P. Reducing the time complexity of thederandomized evolution strategy with covariance matrix adaptation (CMA-ES)[J]. Evolutionarycomputation, 2003, 11(1): 1-18.
[186] SPALL J C, et al. Multivariate stochastic approximation using a simultaneous perturbationgradient approximation[J]. IEEE transactions on automatic control, 1992, 37(3): 332-341.45

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O413
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343006
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
郝亚杰. 量子芯片的软件调控技术[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930022-郝亚杰-物理系.pdf(2564KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[郝亚杰]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[郝亚杰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郝亚杰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.