[1] HOLEVO A S. Bounds for the quantity of information transmitted by a quantum communication channel[J]. Problemy Peredachi Informatsii, 1973, 9(3): 3-11.
[2] INGARDEN R S. Quantum information theory[J]. Reports on Mathematical Physics, 1976, 10 (1): 43-72.
[3] MANIN Y. Computable and uncomputable[J]. Sovetskoye Radio, Moscow, 1980, 128.
[4] POPLAVSKI R. Thermodynamic models of information processes[J]. Soviet Physics Uspekhi,1975, 18(3): 222.
[5] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1985, 400(1818): 97-117.
[6] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM review, 1999, 41(2): 303-332.
[7] MCARDLE S, ENDO S, ASPURU-GUZIK A, et al. Quantum computational chemistry[J]. Reviews of Modern Physics, 2020, 92(1): 015003.
[8] CAO Y, ROMERO J, OLSON J P, et al. Quantum chemistry in the age of quantum computing [J]. Chemical reviews, 2019, 119(19): 10856-10915.
[9] IZMAYLOV A F, YEN T C, LANG R A, et al. Unitary partitioning approach to the measurement problem in the variational quantum eigensolver method[J]. Journal of chemical theory and computation, 2019, 16(1): 190-195.
[10] BAUER B, BRAVYI S, MOTTA M, et al. Quantum algorithms for quantum chemistry and quantum materials science[J]. Chemical Reviews, 2020, 120(22): 12685-12717.
[11] PARRISH R M, HOHENSTEIN E G, MCMAHON P L, et al. Quantum computation of electronic transitions using a variational quantum eigensolver[J]. Physical review letters, 2019, 122 (23): 230401.
[12] SCHULD M, SINAYSKIY I, PETRUCCIONE F. An introduction to quantum machine learning [J]. Contemporary Physics, 2015, 56(2): 172-185.
[13] SCHULD M, KILLORAN N. Quantum machine learning in feature hilbert spaces[J]. Physical review letters, 2019, 122(4): 040504.
[14] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.
[15] XIA R, KAIS S. Quantum machine learning for electronic structure calculations[J]. Nature communications, 2018, 9(1): 1-6.
[16] DEBENEDICTIS E P. A future with quantum machine learning[J]. Computer, 2018, 51(2): 68-71.
[17] ORUS R, MUGEL S, LIZASO E. Quantum computing for finance: Overview and prospects[J].Reviews in Physics, 2019, 4: 100028.
[18] HU F, WANG B N, WANG N, et al. Quantum machine learning with D-wave quantum computer [J]. Quantum Engineering, 2019, 1(2): e12.
[19] JIANG W, XIONG J, SHI Y. When machine learning meets quantum computers: A case study [C]//2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021: 593-598.
[20] RAMAKRISHNAN R, VON LILIENFELD O A. Machine learning, quantum chemistry, and chemical space[J]. Reviews in computational chemistry, 2017, 30: 225-256.
[21] CHEN S Y C, YANG C H H, QI J, et al. Variational quantum circuits for deep reinforcement learning[J]. IEEE Access, 2020, 8: 141007-141024.
[22] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[23] CAMPBELL E T, TERHAL B M, VUILLOT C. Roads towards fault-tolerant universal quantum computation[J]. Nature, 2017, 549(7671): 172-179.
[24] BOURASSA J E, ALEXANDER R N, VASMER M, et al. Blueprint for a scalable photonic fault-tolerant quantum computer[J]. Quantum, 2021, 5: 392.
[25] OUTEIRAL C, STRAHM M, SHI J, et al. The prospects of quantum computing in computational molecular biology[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11(1): e1481.
[26] ORUS R, MUGEL S, LIZASO E. Quantum computing for finance: Overview and prospects[J].Reviews in Physics, 2019, 4: 100028.
[27] BISWAS R, JIANG Z, KECHEZHI K, et al. A NASA perspective on quantum computing:Opportunities and challenges[J]. Parallel Computing, 2017, 64: 81-98.
[28] BOULAND A, VAN DAM W, JOORATI H, et al. Prospects and challenges of quantum finance[J]. arXiv preprint arXiv:2011.06492, 2020.
[29] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[30] MUNDADA P, ZHANG G, HAZARD T, et al. Suppression of qubit crosstalk in a tunable coupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023.
[31] BARENDS R, QUINTANA C, PETUKHOV A, et al. Diabatic gates for frequency-tunable superconducting qubits[J]. Physical Review Letters, 2019, 123(21): 210501.
[32] KWON S, TOMONAGA A, LAKSHMI BHAI G, et al. Gate-based superconducting quantum computing[J]. Journal of Applied Physics, 2021, 129(4): 041102.
[33] CAMPBELL D L, SHIM Y P, KANNAN B, et al. Universal nonadiabatic control of small-gap superconducting qubits[J]. Physical Review X, 2020, 10(4): 041051.
[34] GANZHORN M, SALIS G, EGGER D, et al. Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform[J]. Physical Review Research, 2020, 2(3): 033447.
[35] HUANG H L, WU D, FAN D, et al. Superconducting quantum computing: a review[J]. Science China Information Sciences, 2020, 63(8): 1-32.
[36] GUO Q, ZHENG S B, WANG J, et al. Dephasing-insensitive quantum information storage and processing with superconducting qubits[J]. Physical review letters, 2018, 121(13): 130501.
[37] MIRHOSSEINI M, SIPAHIGIL A, KALAEE M, et al. Superconducting qubit to optical photon transduction[J]. Nature, 2020, 588(7839): 599-603.
[38] QUANTUM G A, COLLABORATORS*†, ARUTE F, et al. Hartree-Fock on a superconducting qubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[39] CHU J, LI D, YANG X, et al. Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits[J]. Physical Review Applied, 2020, 13(6): 064012.
[40] WU X, TOMARKEN S L, PETERSSON N A, et al. High-fidelity software-defined quantum logic on a superconducting qudit[J]. Physical Review Letters, 2020, 125(17): 170502.
[41] ZHAO P, XU P, LAN D, et al. High-Contrast Z Z Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity[J]. Physical Review Letters, 2020, 125(20): 200503.
[42] ZHAO P, XU P, LAN D, et al. High-Contrast Z Z Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity[J]. Physical Review Letters, 2020, 125(20): 200503.
[43] LI S, CASTELLANO A D, WANG S, et al. Realisation of high-fidelity nonadiabatic CZ gates with superconducting qubits[J]. npj Quantum Information, 2019, 5(1): 1-7.
[44] ROL M, BATTISTEL F, MALINOWSKI F, et al. A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer[J]. arXiv preprintarXiv:1903.02492, 2019.
[45] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for super conducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[46] ROL M, BATTISTEL F, MALINOWSKI F, et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits[J]. Physical review letters, 2019, 123(12): 120502.
[47] KONO S, KOSHINO K, LACHANCE-QUIRION D, et al. Breaking the trade-off between fast control and long lifetime of a superconducting qubit[J]. Nature communications, 2020, 11(1):1-6.
[48] WERNINGHAUS M, EGGER D J, ROY F, et al. Leakage reduction in fast superconducting qubit gates via optimal control[J]. npj Quantum Information, 2021, 7(1): 1-6.
[49] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubit superconducting processor[J]. Science, 2019, 364(6442): 753-756.
[50] SONG C, XU K, LIU W, et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit[J]. Physical review letters, 2017, 119(18): 180511.
[51] CHU Y, KHAREL P, YOON T, et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator[J]. Nature, 2018, 563(7733): 666-670.
[52] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[53] MA W L, PURI S, SCHOELKOPF R J, et al. Quantum control of bosonic modes with super-conducting circuits[J]. Science Bulletin, 2021, 66(17): 1789-1805.
[54] PEDNAULT E, GUNNELS J A, NANNICINI G, et al. Leveraging secondary storage to simulatedeep 54-qubit sycamore circuits[J]. arXiv preprint arXiv:1910.09534, 2019.
[55] BLAIS A, GIRVIN S M, OLIVER W D. Quantum information processing and quantum opticswith circuit quantum electrodynamics[J]. Nature Physics, 2020, 16(3): 247-256.
[56] BLAIS A, GRIMSMO A L, GIRVIN S, et al. Circuit quantum electrodynamics[J]. Reviews ofModern Physics, 2021, 93(2): 025005.
[57] JOSHI A, NOH K, GAO Y Y. Quantum information processing with bosonic qubits in circuitQED[J]. Quantum Science and Technology, 2021, 6(3): 033001.
[58] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[59] WENDIN G. Quantum information processing with superconducting circuits: a review[J]. Re-ports on Progress in Physics, 2017, 80(10): 106001.
[60] ROY T, HAZRA S, KUNDU S, et al. Programmable superconducting processor with nativethree-qubit gates[J]. Physical Review Applied, 2020, 14(1): 014072.
[61] EMERSON J. Designer pulses for better qubit gate operations[J]. Nature Electronics, 2019, 2(4): 140-141.
[62] HENDRICKX N, FRANKE D, SAMMAK A, et al. Fast two-qubit logic with holes in germa-nium[J]. Nature, 2020, 577(7791): 487-491.
[63] BORJANS F, CROOT X, MI X, et al. Resonant microwave-mediated interactions betweendistant electron spins[J]. Nature, 2020, 577(7789): 195-198.
[64] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Physical ReviewA, 1998, 57(1): 120.
[65] CULCER D, SARAIVA A, KOILLER B, et al. Valley-based noise-resistant quantum computa-tion using Si quantum dots[J]. Physical review letters, 2012, 108(12): 126804.
[66] HUANG W, YANG C, CHAN K, et al. Fidelity benchmarks for two-qubit gates in silicon[J].Nature, 2019, 569(7757): 532-536.
[67] LI Q, CYWIŃSKI Ł, CULCER D, et al. Exchange coupling in silicon quantum dots: Theoreticalconsiderations for quantum computation[J]. Physical Review B, 2010, 81(8): 085313.
[68] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven CNOT gate for electron spins[J]. Science, 2018, 359(6374): 439-442.
[69] HE Y, GORMAN S, KEITH D, et al. A two-qubit gate between phosphorus donor electrons insilicon[J]. Nature, 2019, 571(7765): 371-375.
[70] MI X, BENITO M, PUTZ S, et al. A coherent spin–photon interface in silicon[J]. Nature, 2018,555(7698): 599-603.
[71] PETIT L, EENINK H, RUSS M, et al. Universal quantum logic in hot silicon qubits[J]. Nature,2020, 580(7803): 355-359.
[72] SCARLINO P, VAN WOERKOM D J, MENDES U C, et al. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit[J]. Nature communi-cations, 2019, 10(1): 1-6.
[73] HU X, SARMA S D. Spin-based quantum computation in multielectron quantum dots[J]. Phys-ical Review A, 2001, 64(4): 042312.
[74] KANDEL Y P, QIAO H, FALLAHI S, et al. Coherent spin-state transfer via Heisenberg ex-change[J]. Nature, 2019, 573(7775): 553-557.
[75] TAKEDA K, NOIRI A, YONEDA J, et al. Resonantly driven singlet-triplet spin qubit in silicon[J]. Physical Review Letters, 2020, 124(11): 117701.
[76] DUMKE R, VOLK M, MÜTHER T, et al. Micro-optical realization of arrays of selectivelyaddressable dipole traps: a scalable configuration for quantum computation with atomic qubits[J]. Physical review letters, 2002, 89(9): 097903.
[77] MONZ T, KIM K, HÄNSEL W, et al. Realization of the quantum Toffoli gate with trapped ions[J]. Physical review letters, 2009, 102(4): 040501.
[78] NAM Y, CHEN J S, PISENTI N C, et al. Ground-state energy estimation of the water moleculeon a trapped-ion quantum computer[J]. npj Quantum Information, 2020, 6(1): 1-6.
[79] AMINI J M, UYS H, WESENBERG J H, et al. Toward scalable ion traps for quantum informa-tion processing[J]. New journal of Physics, 2010, 12(3): 033031.
[80] WU Y K, DUAN L M. A two-dimensional architecture for fast large-scale trapped-ion quantumcomputing[J]. Chinese Physics Letters, 2020, 37(7): 070302.
[81] STUTE A, CASABONE B, SCHINDLER P, et al. Tunable ion–photon entanglement in anoptical cavity[J]. Nature, 2012, 485(7399): 482-485.
[82] LIDAR D A, WU L A. Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation[J]. Physical Review A, 2003, 67(3): 032313.
[83] AN S, LV D, DEL CAMPO A, et al. Shortcuts to adiabaticity by counterdiabatic driving fortrapped-ion displacement in phase space[J]. Nature communications, 2016, 7(1): 1-5.
[84] CAI M L, LIU Z D, ZHAO W D, et al. Observation of a quantum phase transition in the quantumRabi model with a single trapped ion[J]. Nature communications, 2021, 12(1): 1-8.
[85] MEHTA K K, ZHANG C, MALINOWSKI M, et al. Integrated optical multi-ion quantum logic[J]. Nature, 2020, 586(7830): 533-537.
[86] ZHANG C, POKORNY F, LI W, et al. Submicrosecond entangling gate between trapped ionsvia Rydberg interaction[J]. Nature, 2020, 580(7803): 345-349.
[87] STUART J, PANOCK R, BRUZEWICZ C, et al. Chip-integrated voltage sources for control oftrapped ions[J]. Physical Review Applied, 2019, 11(2): 024010.
[88] GEORGESCU I. Trapped ion quantum computing turns 25[J]. Nature Reviews Physics, 2020,2(6): 278-278.
[89] GRZESIAK N, BLÜMEL R, WRIGHT K, et al. Efficient arbitrary simultaneously entanglinggates on a trapped-ion quantum computer[J]. Nature communications, 2020, 11(1): 1-6.
[90] LIENHARD V, SCHOLL P, WEBER S, et al. Realization of a density-dependent Peierls phasein a synthetic, spin-orbit coupled Rydberg system[J]. Physical Review X, 2020, 10(2): 021031.
[91] SCHÄFER V, BALLANCE C, THIRUMALAI K, et al. Fast quantum logic gates with trapped-ion qubits[J]. Nature, 2018, 555(7694): 75-78.
[92] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trapped-ion quantum computing:Progress and challenges[J]. Applied Physics Reviews, 2019, 6(2): 021314.
[93] LEKITSCH B, WEIDT S, FOWLER A G, et al. Blueprint for a microwave trapped ion quantumcomputer[J]. Science Advances, 2017, 3(2): e1601540.
[94] LIAO Q, FU Y, HU J. High-fidelity quantum state transfer and strong coupling in a hybrid NVcenter coupled to CPW cavity system[J]. Chinese Journal of Physics, 2020, 66: 9-14.
[95] XU K, XIE T, LI Z, et al. Experimental adiabatic quantum factorization under ambient con-ditions based on a solid-state single spin system[J]. Physical review letters, 2017, 118(13):130504.
[96] DOLDE F, BERGHOLM V, WANG Y, et al. High-fidelity spin entanglement using optimalcontrol[J]. Nature communications, 2014, 5(1): 1-9.
[97] ABOBEIH M H, CRAMER J, BAKKER M A, et al. One-second coherence for a single electronspin coupled to a multi-qubit nuclear-spin environment[J]. Nature communications, 2018, 9(1):1-8.
[98] YAO N Y, JIANG L, GORSHKOV A V, et al. Scalable architecture for a room temperaturesolid-state quantum information processor[J]. Nature communications, 2012, 3(1): 1-8.
[99] RONG X, GENG J, SHI F, et al. Experimental fault-tolerant universal quantum gates withsolid-state spins under ambient conditions[J]. Nature communications, 2015, 6(1): 1-7.
[100] DONG L, RONG X, GENG J, et al. Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits[J]. Physical Review B, 2017, 96(20): 205149.
[101] BRADLEY C E, RANDALL J, ABOBEIH M H, et al. A ten-qubit solid-state spin register withquantum memory up to one minute[J]. Physical Review X, 2019, 9(3): 031045.
[102] MAURER P C, KUCSKO G, LATTA C, et al. Room-temperature quantum bit memory exceed-ing one second[J]. Science, 2012, 336(6086): 1283-1286.
[103] DOLDE F, JAKOBI I, NAYDENOV B, et al. Room-temperature entanglement between singledefect spins in diamond[J]. Nature Physics, 2013, 9(3): 139-143.
[104] HUANG Y Y, WU Y K, WANG F, et al. Experimental realization of robust geometric quantumgates with solid-state spins[J]. Physical Review Letters, 2019, 122(1): 010503.
[105] VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation[J]. Reviews of modern physics, 2005, 76(4): 1037.
[106] WEN J, KONG X, WEI S, et al. Experimental realization of quantum algorithms for a linearsystem inspired by adiabatic quantum computing[J]. Physical Review A, 2019, 99(1): 012320.
[107] SANTOS A C, NICOTINA A, SOUZA A M, et al. Optimizing NMR quantum informationprocessing via generalized transitionless quantum driving[J]. EPL (Europhysics Letters), 2020,129(3): 30008.
[108] LI J, FAN R, WANG H, et al. Measuring out-of-time-order correlators on a nuclear magneticresonance quantum simulator[J]. Physical Review X, 2017, 7(3): 031011.
[109] YANG X, LI J, PENG X. An improved differential evolution algorithm for learning high-fidelityquantum controls[J]. Science Bulletin, 2019, 64(19): 1402-1408.
[110] DU J, XU N, PENG X, et al. NMR implementation of a molecular hydrogen quantum simulationwith adiabatic state preparation[J]. Physical review letters, 2010, 104(3): 030502.
[111] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of12 qubits[J]. npj Quantum Information, 2017, 3(1): 1-7.
[112] LU D, LI H, TROTTIER D A, et al. Experimental estimation of average fidelity of a cliffordgate on a 7-qubit quantum processor[J]. Physical review letters, 2015, 114(14): 140505.
[113] CRIPPA A, EZZOUCH R, APRÁ A, et al. Gate-reflectometry dispersive readout and coherentcontrol of a spin qubit in silicon[J]. Nature communications, 2019, 10(1): 1-6.
[114] KHAZALI M, MØLMER K. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits[J]. Physical Review X, 2020,10(2): 021054.
[115] MADJAROV I S, COVEY J P, SHAW A L, et al. High-fidelity entanglement and detection ofalkaline-earth Rydberg atoms[J]. Nature Physics, 2020, 16(8): 857-861.
[116] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms[J]. Nature Physics, 2020, 16(2): 132-142.
[117] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Jour-nal of Physics B: Atomic, Molecular and Optical Physics, 2019, 53(1): 012002.
[118] EWALD N, FELDKER T, HIRZLER H, et al. Observation of interactions between trapped ionsand ultracold Rydberg atoms[J]. Physical Review Letters, 2019, 122(25): 253401.
[119] GLAETZLE A W, VAN BIJNEN R M, ZOLLER P, et al. A coherent quantum annealer withRydberg atoms[J]. Nature communications, 2017, 8(1): 1-6.
[120] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J].Reviews of modern physics, 2010, 82(3): 2313.
[121] BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atomquantum simulator[J]. Nature, 2017, 551(7682): 579-584.
[122] PEYRONEL T, FIRSTENBERG O, LIANG Q Y, et al. Quantum nonlinear optics with singlephotons enabled by strongly interacting atoms[J]. Nature, 2012, 488(7409): 57-60.
[123] CONG I, CHOI S, LUKIN M D. Quantum convolutional neural networks[J]. Nature Physics,2019, 15(12): 1273-1278.
[124] GRAHAM T, KWON M, GRINKEMEYER B, et al. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array[J]. Physical review letters, 2019, 123(23): 230501.
[125] BEKENSTEIN R, PIKOVSKI I, PICHLER H, et al. Quantum metasurfaces with atom arrays[J]. Nature Physics, 2020, 16(6): 676-681.
[126] LEVINE H, KEESLING A, SEMEGHINI G, et al. Parallel implementation of high-fidelitymultiqubit gates with neutral atoms[J]. Physical review letters, 2019, 123(17): 170503.
[127] KOCH C P, LEMESHKO M, SUGNY D. Quantum control of molecular rotation[J]. Reviewsof Modern Physics, 2019, 91(3): 035005.
[128] NORCIA M, YOUNG A, KAUFMAN A. Microscopic control and detection of ultracold stron-tium in optical-tweezer arrays[J]. Physical Review X, 2018, 8(4): 041054.
[129] DING D S, BUSCHE H, SHI B S, et al. Phase diagram and self-organizing dynamics in athermal ensemble of strongly interacting Rydberg atoms[J]. Physical Review X, 2020, 10(2):021023.
[130] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[131] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[132] DEVITT S J. Performing quantum computing experiments in the cloud[J]. Physical Review A,2016, 94(3): 032329.
[133] CHONG F T, FRANKLIN D, MARTONOSI M. Programming languages and compiler designfor realistic quantum hardware[J]. Nature, 2017, 549(7671): 180-187.
[134] FU X, RIESEBOS L, LAO L, et al. A heterogeneous quantum computer architecture[C]//Proceedings of the ACM International Conference on Computing Frontiers. 2016: 323-330.
[135] FARHI E, GOLDSTONE J, GUTMANN S. A quantum approximate optimization algorithm[J]. arXiv preprint arXiv:1411.4028, 2014.
[136] ZHOU L, WANG S T, CHOI S, et al. Quantum approximate optimization algorithm: Perfor-mance, mechanism, and implementation on near-term devices[J]. Physical Review X, 2020, 10(2): 021067.
[137] GUERRESCHI G G, MATSUURA A Y. QAOA for Max-Cut requires hundreds of qubits forquantum speed-up[J]. Scientific reports, 2019, 9(1): 1-7.
[138] STREIF M, LEIB M. Comparison of QAOA with quantum and simulated annealing[J]. arXivpreprint arXiv:1901.01903, 2019.
[139] XUE C, CHEN Z Y, WU Y C, et al. Effects of quantum noise on quantum approximate opti-mization algorithm[J]. Chinese Physics Letters, 2021, 38(3): 030302.
[140] FARHI E, HARROW A W. Quantum supremacy through the quantum approximate optimizationalgorithm[J]. arXiv preprint arXiv:1602.07674, 2016.
[141] TATE R, FARHADI M, HEROLD C, et al. Bridging classical and quantum with SDP initializedwarm-starts for QAOA[J]. arXiv preprint arXiv:2010.14021, 2020.
[142] HASTINGS M B. Classical and quantum bounded depth approximation algorithms[J]. arXivpreprint arXiv:1905.07047, 2019.
[143] CHANCELLOR N. Domain wall encoding of discrete variables for quantum annealing andQAOA[J]. Quantum Science and Technology, 2019, 4(4): 045004.
[144] LECHNER W. Quantum approximate optimization with parallelizable gates[J]. IEEE Trans-actions on Quantum Engineering, 2020, 1: 1-6.
[145] FUCHS F G, KOLDEN H Ø, AASE N H, et al. Efficient Encoding of the Weighted MAX 𝑘k-CUT on a Quantum Computer Using QAOA[J]. SN Computer Science, 2021, 2(2): 1-14.
[146] SHAYDULIN R, SAFRO I, LARSON J. Multistart methods for quantum approximate op-timization[C]//2019 IEEE high performance extreme computing conference (HPEC). IEEE,2019: 1-8.
[147] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonicquantum processor[J]. Nature communications, 2014, 5(1): 1-7.
[148] 丛爽, 匡森. 量子系统控制理论与方法[M]. 量子系统控制理论与方法, 2013.
[149] KHANEJA N, BROCKETT R, GLASER S J. Time optimal control in spin systems[J]. PhysicalReview A, 2001, 63(3): 032308.
[150] D’ALESSANDRO D. The optimal control problem on SO (4) and its applications to quantumcontrol[J]. IEEE Transactions on automatic control, 2002, 47(1): 87-92.
[151] BOSCAIN U, CHARLOT G, GAUTHIER J P, et al. Optimal control in laser-induced populationtransfer for two-and three-level quantum systems[J]. Journal of Mathematical Physics, 2002, 43(5): 2107-2132.
[152] SHEN L, SHI S, RABITZ H. Control of coherent wave functions: A linearized moleculardynamics view[J]. The Journal of Physical Chemistry, 1993, 97(35): 8874-8880.
[153] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design ofNMR pulse sequences by gradient ascent algorithms[J]. Journal of magnetic resonance, 2005,172(2): 296-305.
[154] D’ALESSANDRO D, DOBROVITSKI V. Control of a two level open quantum system[C]//Proceedings of the 41st IEEE Conference on Decision and Control, 2002.: volume 1. IEEE,2002: 40-45.
[155] PALAO J P, KOSLOFF R. Optimal control theory for unitary transformations[J]. PhysicalReview A, 2003, 68(6): 062308.
[156] PALAO J P, KOSLOFF R. Quantum computing by an optimal control algorithm for unitarytransformations[J]. Physical review letters, 2002, 89(18): 188301.
[157] DORIA P, CALARCO T, MONTANGERO S. Optimal control technique for many-body quan-tum dynamics[J]. Physical review letters, 2011, 106(19): 190501.
[158] LAROCCA M, WISNIACKI D. Krylov-subspace approach for the efficient control of quantummany-body dynamics[J]. Physical Review A, 2021, 103(2): 023107.
[159] RACH N, MÜLLER M M, CALARCO T, et al. Dressing the chopped-random-basis optimiza-tion: A bandwidth-limited access to the trap-free landscape[J]. Physical Review A, 2015, 92(6): 062343.
[160] EGGER D J, WILHELM F K. Adaptive hybrid optimal quantum control for imprecisely char-acterized systems[J]. Physical review letters, 2014, 112(24): 240503.
[161] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitaryoperators[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347.
[162] FERRIE C, MOUSSA O. Robust and efficient in situ quantum control[J]. Physical Review A,2015, 91(5): 052306.
[163] GAMBETTA J M, MOTZOI F, MERKEL S, et al. Analytic control methods for high-fidelityunitary operations in a weakly nonlinear oscillator[J]. Physical Review A, 2011, 83(1): 012308.
[164] AN Z, ZHOU D. Deep reinforcement learning for quantum gate control[J]. EPL (EurophysicsLetters), 2019, 126(6): 60002.
[165] BUKOV M, DAY A G, SELS D, et al. Reinforcement learning in different phases of quantumcontrol[J]. Physical Review X, 2018, 8(3): 031086.
[166] NIU M Y, BOIXO S, SMELYANSKIY V N, et al. Universal quantum control through deepreinforcement learning[J]. npj Quantum Information, 2019, 5(1): 1-8.
[167] ZHANG X M, WEI Z, ASAD R, et al. When does reinforcement learning stand out in quantumcontrol? A comparative study on state preparation[J]. npj Quantum Information, 2019, 5(1):1-7.
[168] JOHANSSON J R, NATION P D, NORI F. QuTiP: An open-source Python framework forthe dynamics of open quantum systems[J]. Computer Physics Communications, 2012, 183(8):1760-1772.
[169] WU R B, CHU B, OWENS D H, et al. Data-driven gradient algorithm for high-precision quan-tum control[J]. Physical Review A, 2018, 97(4): 042122.
[170] WU R B, DING H, DONG D, et al. Learning robust and high-precision quantum controls[J].Physical Review A, 2019, 99(4): 042327.
[171] GE X, DING H, RABITZ H, et al. Robust quantum control in games: An adversarial learningapproach[J]. Physical Review A, 2020, 101(5): 052317.
[172] GE X, WU R B. Risk-sensitive optimization for robust quantum controls[J]. Physical ReviewA, 2021, 104(1): 012422.
[173] DING H J, WU R B. Robust quantum control against clock noises in multiqubit systems[J].Physical Review A, 2019, 100(2): 022302.
[174] LEUNG N, ABDELHAFEZ M, KOCH J, et al. Speedup for quantum optimal control fromautomatic differentiation based on graphics processing units[J]. Physical Review A, 2017, 95(4): 042318.
[175] 邢继祥, 张春蕊, 徐洪泽. 最优控制应用基础[M]. 科学出版社, 2003.
[176] KOSLOFF R, RICE S A, GASPARD P, et al. Wavepacket dancing: Achieving chemical selec-tivity by shaping light pulses[J]. Chemical Physics, 1989, 139(1): 201-220.
[177] KROTOV V, FELDMAN I. An iterative method for solving optimal-control problems[J]. En-gineering cybernetics, 1983, 21(2): 123-130.
[178] PEIRCE A P, DAHLEH M A, RABITZ H. Optimal control of quantum-mechanical systems:Existence, numerical approximation, and applications[J]. Physical Review A, 1988, 37(12):4950.
[179] REICH D M, NDONG M, KOCH C P. Monotonically convergent optimization in quantumcontrol using Krotov’s method[J]. The Journal of chemical physics, 2012, 136(10): 104103.
[180] GOERZ M, BASILEWITSCH D, GAGO-ENCINAS F, et al. Krotov: A Python implementationof Krotov’s method for quantum optimal control[J]. SciPost physics, 2019, 7(6): 080.
[181] MACHNES S, SANDER U, GLASER S J, et al. Comparing, optimizing, and benchmark-ing quantum-control algorithms in a unifying programming framework[J]. Physical Review A,2011, 84(2): 022305.
[182] BINDER J M, STARK A, TOMEK N, et al. Qudi: A modular python suite for experimentcontrol and data processing[J]. SoftwareX, 2017, 6: 85-90.
[183] ANGARONI F, GRAUDENZI A, ROSSIGNOLO M, et al. Personalized therapy design forliquid tumors via optimal control theory[J]. bioRxiv, 2019: 662858.
[184] MACHNES S, ASSÉMAT E, TANNOR D, et al. Tunable, flexible, and efficient optimizationof control pulses for practical qubits[J]. Physical review letters, 2018, 120(15): 150401.
[185] HANSEN N, MÜLLER S D, KOUMOUTSAKOS P. Reducing the time complexity of thederandomized evolution strategy with covariance matrix adaptation (CMA-ES)[J]. Evolutionarycomputation, 2003, 11(1): 1-18.
[186] SPALL J C, et al. Multivariate stochastic approximation using a simultaneous perturbationgradient approximation[J]. IEEE transactions on automatic control, 1992, 37(3): 332-341.45
Edit Comment