中文版 | English
Title

新冠病毒特异性TCR 及其表位鉴定

Alternative Title
IDENTIFICATION OF SARS-COV-2-SPECIFIC TCR AND EPITOPE
Author
Name pinyin
LIU Yu
School number
11930146
Degree
硕士
Discipline
0710 生物学
Subject category of dissertation
07 理学
Supervisor
张政
Mentor unit
深圳市第三人民医院
Publication Years
2022-05-09
Submission date
2022-06-27
University
南方科技大学
Place of Publication
深圳
Abstract

新冠肺炎全球爆发,严重危害人类健康。虽然多种药物和疫苗已经投
入使用,但新出现的新冠病毒突变株能够逃逸最初感染或疫苗接种所建立
的中和抗体。研究发现,大部分自然感染或疫苗接种诱导的特异性T 细胞
应答能够维持对突变株的反应性,防止突变株感染造成的重症化或者死亡,
提示了特异性T 细胞反应的免疫保护作用。因此,新冠病毒特异性T 细胞
受体(T cell receptor,TCR)及其抗原表位的鉴定,将有助于更加深入地
理解新冠病毒特异性的T 细胞反应,为未来新冠疫苗设计提供更多参考依
据。
本课题通过分析六例新冠病人的支气管肺泡灌洗液的单细胞TCR 组库
测序数据,选取了每个病例中克隆数最多的一个TCR,将其体外表达在已敲
除内源性TCR 的J76 细胞表面,最后使用多肽库鉴定了TCR 的抗原特异性
及其表位。前期,我们利用两个已知表位的特异性TCR 成功构建了一个TCR
体外表达平台。我们通过在J76 细胞中过表达CD8 分子以及NFAT 启动子
控制下的Luciferase 元件优化该平台。我们应用此平台鉴定出了一个新冠病
人支气管肺泡灌洗液来源的新冠特异性TCR C152-1,并筛选到其表位为新
冠病毒N 蛋白的N81 和N82。
特异性TCR 的鉴定将为新冠病毒的TCR-T 免疫细胞治疗提供重要依据,
而抗原表位的鉴定可以为疫苗的设计提供重要参考,提高疫苗对人群的广谱
保护效力。

Other Abstract

The emerging severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) threatens public health. Although a variety of drugs and vaccines
have been approved, the SARS-CoV-2 variants have been shown to escape from
neutralizing antibody responses elicited by current vaccines or infection. Recent
studies have shown that the SARS-CoV-2-specific T cell responses induced by
the initial infection or vaccination could maintain responsiveness to variants and
provide protection against severe SARS-CoV-2 infection, indicating an
immunoprotective effect of SARS-CoV-2-specific T cells. The identification of
SARS-CoV-2-specific TCRs and their epitopes will contribute to a deeper
understanding of the SARS-CoV-2-specific T cell response, which will guide the
vaccine design in the future.
Here we analyzed the single-cell TCR repertoire sequencing data of
bronchoalveolar lavage fluid (BALF) from six COVID-19 patients. We first
selected the TCRs with the largest clone. Then, the TCRs were expressed on the
surface of J76 cells with knockout of TCR. Finally, we explored TCR specificity,
followed by screening for the epitope using peptide pool. Previoudly, we
constructed an in vitro TCR expression platform through utilizing two
SARS-CoV-2-specific TCRs with known epitopes. We optimized this TCR
expression platform by over-expressing CD8 molecules and a NFAT
promoter-Luciferase element in J76 cell line. Eventually, we identified a
SARS-CoV-2-specific TCR C152-1 from BALF of a COVID-19 patient and
screened out N81 and N82 as the epitopes of this TCR.
The discovery of elite SARS-CoV-2-specific TCRs can facilitate the
development of TCR-T immunotherapy for COVID-19. The identification of
conserved epitopes present in variants can provide more information for
broad-spectrum vaccine design, improving vaccination effectsin the population.
 

Keywords
Other Keyword
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-07
References List

[1] VAN DEN BERG HA, WOOLDRIDGE L, LAUGEL B, et al. Coreceptor CD8-drivenmodulation of T cell antigen receptor specificity[J] . Journal of TheoreticalBiology,2007,249(2):395-408.
[2] ESENSTEN JONATHAN H, HELOU YNES A, CHOPRA G, et al. CD28costimulation: from mechanism to therapy[J]. Immunity,2016,44(5):973-988.
[3] HUPPA JB, DAVIS MM. T-cell-antigen recognition and the immunological synapse[J].Nature Reviews Immunology,2003,3(12):973-983.
[4] TOOR SM, SALEH R, SASIDHARAN NAIR V, et al. T-cell responses and therapiesagainst SARS-CoV-2 infection[J]. Immunology,2021,162(1):30-43.
[5] MAZZONI A, SALVATI L, MAGGI L, et al. Impaired immune cell cytotoxicity insevere COVID-19 is IL-6 dependent[J]. The Journal of ClinicalInvestigation,2020,130(9):4694-4703.
[6] DE BIASI S, MESCHIARI M, GIBELLINI L, et al. Marked T cell activation,senescence, exhaustion and skewing towards TH17 in patients with COVID-19pneumonia[J]. Nature Communications,2020,11(1):3434.
[7] TAN M, LIU Y, ZHOU R, et al. Immunopathological characteristics of coronavirusdisease 2019 cases in Guangzhou, China[J]. Immunology,2020,160(3):261 -268.
[8] MATHEW D, GILES JR, BAXTER AE, et al. Deep immune profiling of COVID-19patients reveals distinct immunotypes with therapeutic implications[J].Science,2020,369(6508):eabc8511.
[9] LIAO M, LIU Y, YUAN J, et al. Single-cell landscape of bronchoalveolar immunecells in patients with COVID-19[J]. Nature Medicine,2020,26(6):842-844.
[10] WEN W, SU W, TANG H, et al. Immune cell profiling of COVID-19 patients in therecovery stage by single-cell sequencing[J]. Cell Discovery,2020,6:31.
[11] CHANNAPPANAVAR R, FETT C, ZHAO J, et al. Virus-specific memory CD8 T cellsprovide substantial protection from lethal severe acute respiratory syndromecoronavirus infection[J]. Journal of Virology,2014,88(19):11034-11044.
[12] PENALOZA-MACMASTER P, BARBER DL, WHERRY EJ, et al. Vaccine-elicitedCD4 T cells induce immunopathology after chronic LCMV infection[J].Science,2015,347(6219):278-282.
[13] SCHULIEN I, KEMMING J, OBERHARDT V, et al. Characterization of pre -existingand induced SARS-CoV-2-specific CD8+ T cells[J]. NatureMedicine,2020,27(1):78-85.参考文献62
[14] BRAUN J, LOYAL L, FRENTSCH M, et al. SARS-CoV-2-reactive T cells in healthydonors and patients with COVID-19[J]. Nature,2020,587(7833):270–274.
[15] WEISKOPF D, SCHMITZ KS, RAADSEN MP, et al. Phenotype and kinetics ofSARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distresssyndrome[J]. Science Immunology,2020,5(48):eabd2071.
[16] RYDYZNSKI MODERBACHER C, RAMIREZ SI, DAN JM, et al. Antigen-specificadaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age anddisease severity[J]. Cell,2020,183(4):996-1012.e19.
[17] GRIFONI A, WEISKOPF D, RAMIREZ SI, et al. Targets of T cell responses toSARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposedindividuals[J]. Cell,2020,181(7):1489-1501.e15.
[18] LE BERT N, TAN AT, KUNASEGARAN K, et al. SARS-CoV-2-specific T cellimmunity in cases of COVID-19 and SARS, and uninfected controls[J].Nature,2020,584(7821):457-462.
[19] PENG Y, MENTZER AJ, LIU G, et al. Broad and strong memory CD4+ and CD8+ Tcells induced by SARS-CoV-2 in UK convalescent individuals followingCOVID-19[J]. Nature Immunology,2020,21(11):1336-1345.
[20] GUTIERREZ L, BECKFORD J, ALACHKAR H. Deciphering the TCR repertoire tosolve the COVID-19 mystery[J]. Trends in PharmacologicalSciences,2020,41(8):518-530.
[21] BASSING CH, SWAT WS, ALT FW. The mechanism and regulation of chromosomalV(D)J recombination[J]. Cell,2002,109(Suppl):S45-55.
[22] CHEN G, YANG X, KO A, et al. Sequence and structural analyses reveal distinct andhighly diverse human CD8+ TCR repertoires to immunodominant viral antigens[J].Cell Reports,2017,19(3):569-583.
[23] SHARON E, SIBENER LV, BATTLE A, et al. Genetic variation in MHC proteins isassociated with T cell receptor expression biases[J ]. NatureGenetics,2016,48(9):995-1002.
[24] FALFAN-VALENCIA R, NARAYANANKUTTY A, RESENDIZ-HERNáNDEZ JM, etal. An increased frequency in HLA class I alleles and haplotypes suggests geneticsusceptibility to influenza A (H1N1) 2009 pandemic: a case-control study[J]. Journalof Immunology Research,2018,2018:3174868.
[25] NGUYEN A, DAVID JK, MADEN SK, et al. Human leukocyte antigen susceptibilitymap for severe acute respiratory syndrome coronavirus 2[J]. Journal ofVirology,2020,94(13):e00510-00520.
[26] LIN M, TSENG HK, TREJAUT JA, et al. Association of HLA class I with severeacute respiratory syndrome coronavirus infection[J]. BMC MedicalGenetics,2003,4(9):1471-2350.参考文献63
[27] GIL A, YASSAI MB, NAUMOV YN, et al. Narrowing of human influenza Avirus-specific T cell receptor α and β repertoires with increasing age[J]. Journal ofVirology,2015,89(8):4102-4016.
[28] RUAN Q, YANG K, WANG W, et al. Clinical predictors of mortality due toCOVID-19 based on an analysis of data of 150 patients from Wuhan, China[J].Intensive Care Medicine,2020,46(5):846-848.
[29] HU Z, ANANDAPPA AJ, SUN J, et al. A cloning and expression system to probeT-cell receptor specificity and assess functional avidity to neoantigens[J].Blood,2018,132(18):1911-1921.
[30] BRUNK F, MORITZ A, NELDE A, et al. SARS-CoV-2-reactive T-cell receptorsisolated from convalescent COVID-19 patients confer potent T-cell effectorfunction[J]. European Journal of Immunology,2021,51(11):2651 -2664.
[31] KIYOTANI K, TOYOSHIMA Y, NEMOTO K, et al. Bioinformatic prediction ofpotential T cell epitopes for SARS-Cov-2[J]. Journal of HumanGenetics,2020,65(7):569-575.
[32] RANGA V, NIEMELA E, TAMIRAT MZ, et al. Immunogenic SARS-CoV-2 epitopes:in silico study towards better understanding of COVID-19 disease-paving the way forvaccine development[J]. Vaccines,2020,8(3):408.
[33] ALTMAN JD, MOSS PAH, GOULDER PJR, et al. Phenotypic analysis ofantigen-specific T lymphocytes[J]. Science,1996,274(5284):94-96.
[34] SHOMURADOVA AS, VAGIDA MS, SHEETIKOV SA, et al. SARS-CoV-2 epitopesare recognized by a public and diverse repertoire of human T cell receptors[J].Immunity,2020,53(6):1245-1257.e5.
[35] FERRETTI AP, KULA T, WANG Y, et al. Unbiased screens show CD8+ T cells ofCOVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely resideoutside the spike protein[J]. Immunity, 2020,53(5):1095-1107.e3.
[36] BARUAH V, BOSE S. Immunoinformatics-aided identification of T cell and B cellepitopes in the surface glycoprotein of 2019-nCoV[J]. Journal of MedicalVirology,2020,92(5):495-500.
[37] ZHANG J, LIN H, YE B, et al. One-year sustained cellular and humoral immunitiesof COVID-19 convalescents[J]. Clinical infectious diseases,2021,in press.
[38] ZHAO J, WANG L, SCHANK M, et al. SARS-CoV-2 specific memory T cell epitopesidentified in COVID-19-recovered subjects[J]. Virus Research,2021,304:198508.
[39] SEKINE T, PEREZ-POTTI A, RIVERA-BALLESTEROS O, et al. Robust T cellimmunity in convalescent individuals with asymptomatic or mild COVID-19[J].Cell,2020,183(1):158-168.e14.
[40] KULA T, DEZFULIAN MH, WANG CI, et al. T-Scan: a genome-wide method for thesystematic discovery of T cell epitopes[J]. Cell,2019,178(4):1016-1028.e13.参考文献64
[41] ZHANG H, DENG S, REN L, et al. Profiling CD8+ T cell epitopes of COVID-19convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants[J].Cell Reports,2021,36(11):109708.
[42] J ALSAADI EA, JONES IM. Membrane binding proteins of coronaviruses[J]. FutureVirology,2019,14(4):275-286.
[43] SCHOEMAN D, FIELDING BC. Coronavirus envelope protein: current knowledge[J].Virology Journal,2019,16(1):69.
[44] HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entrydepends on ACE2 and TMPRSS2 and is blocked by a clinically proven proteaseinhibitor[J]. Cell,2020,181(2):271-280.e8.
[45] HUANG IC, BOSCH BJ, LI F, et al. SARS coronavirus, but not human coronavirusNL63, utilizes cathepsin L to infect ACE2-expressing cells[J]. The Journal ofBiological Chemistry,2006,281(6):3198-3203.
[46] JACKSON CB, FARZAN M, CHEN B, et al. Mechanisms of SARS-CoV-2 entry intocells[J]. Nature Reviews Molecular Cell Biology,2021,23(1):3 -20.
[47] CUI J, LI F, SHI ZL. Origin and evolution of pathogenic coronaviruses[J]. NatureReviews Microbiology,2019,17(3):181-192.
[48] LU R, ZHAO X, LI J, et al. Genomic characterisation and epidemiology of 2019novel coronavirus: implications for virus origins and receptor binding[J].Lancet,2020,395(10224):565-574.
[49] LIU Y, YAN LM, WAN L, et al. Viral dynamics in mild and severe cases ofCOVID-19[J]. The Lancet Infectious Diseases,2020,20(6):656-657.
[50] EDENFIELD RC, EASLEY CA. Implications of testicular ACE2 and therenin-angiotensin system for SARS-CoV-2 on testis function[J]. Nature ReviewsUrology,2021,19(2):116-127.
[51] TISONCIK JR, KORTH MJ, SIMMONS CP, et al. Into the eye of the cytokinestorm[J]. Microbiology and Molecular Biology Reviews,2012,76(1):16 -32.
[52] KARKI R, SHARMA BR, TULADHAR S, et al. Synergism of TNF-α and IFN-γtriggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2infection and cytokine shock syndromes[J]. Cell,2021,184(1):149-168.e17.
[53] MEHTA P, MCAULEY DF, BROWN M, et al. COVID-19: consider cytokine stormsyndromes and immunosuppression[J]. Lancet,2020,395(10229):1033-1034.
[54] GIAMARELLOS-BOURBOULIS EJ, NETEA MG, ROVINA N, et al. Compleximmune dysregulation in COVID-19 patients with severe respiratory failure[J]. CellHost & Microbe,2020,27(6):992-1000.e3.
[55] KURI-CERVANTES L, PAMPENA MB, MENG WZ, et al. Comprehensive mappingof immune perturbations associated with severe COVID-19[J]. ScienceImmunology,2020,5(49):eabd7114.参考文献65
[56] SCHAEFER IM, PADERA RF, SOLOMON IH, et al. In situ detection of SARS-CoV-2in lungs and airways of patients with COVID-19[J]. ModernPathology,2020,33(11):2104-2114.
[57] GARCIA LF. Immune response, inflammation, and the clinical spectrum ofCOVID-19[J]. Frontiers in Immunology,2020,11:1441.
[58] SAHIN U, MUIK A, VOGLER I, et al. BNT162b2 vaccine induces neutralizingantibodies and poly-specific T cells in humans[J]. Nature,2021,595(7868):572-577.
[59] OBERHARDT V, LUXENBURGER H, KEMMING J, et al. Rapid and stablemobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine[J].Nature,2021,597(7875):268-273.
[60] PLANTE JA, MITCHELL BM, PLANTE KS, et al. The variant gambit: COVID-19’snext move[J]. Cell Host & Microbe,2021,29(4):508-515.
[61] KARIM SSA, KARIM QA. Omicron SARS-CoV-2 variant: a new chapter in theCOVID-19 pandemic[J]. Lancet,2021,398(10317):2126-2128.
[62] THOMSON EC, ROSEN LE, SHEPHERD JG, et al. Circulating SARS-CoV-2 spikeN439K variants maintain fitness while evading antibody-mediated immunity[J].Cell,2021,184(5):1171-1187.e20.
[63] WANG P, NAIR MS, LIU L, et al. Antibody resistance of SARS-CoV-2 variantsB.1.351 and B.1.1.7[J]. Nature,2021,593(7857):130-135.
[64] RIOU C, KEETON R, MOYO-GWETE T, et al. Escape from recognition ofSARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity[J].Science Translational Medicine,2022,14(631):eabj6824.
[65] GRIFONI A, SIDNEY J, VITA R, et al. SARS-CoV-2 human T cell epitopes: adaptiveimmune response against COVID-19[J]. Cell Host & Microbe,2021,29(7):1076-1092.
[66] VIANA R, MOYO S, AMOAKO DG, et al. Rapid epidemic expansion of theSARS-CoV-2 Omicron variant in southern Africa[J]. Nature,2022,603(7902):679-686.
[67] GARCIA-BELTRAN WF, ST DENIS KJ, HOELZEMER A, et al. mRNA-basedCOVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2Omicron variant[J]. Cell,2022,185(3):457-466.e4.
[68] VANBLARGAN LA, ERRICO JM, HALFMANN PJ, et al. An infectiousSARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeuticmonoclonal antibodies[J]. Nature Medicine,2022,28(3):490-495.
[69] NARANBHAI V, NATHAN A, KASEKE C, et al. T cell reactivity to the SARS-CoV-2Omicron variant is preserved in most but not all individuals[J].Cell,2022,185(6):1041-1051.e6.参考文献66
[70] CLEMENT M, KNEZEVIC L, DOCKREE T, et al. CD8 coreceptor-mediated focusingcan reorder the agonist hierarchy of peptide ligands recognized vi a the T cellreceptor[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2021,118(29):e2019639118.
[71] PARK J, TAKEUCHI A, SHARMA S. Characterization of a new isoform of the NFAT(nuclear factor of activated T cells) gene family member NFATc[J]. Journal ofBiological Chemistry,1996,271(34):20914-20921.
[72] SHAH K, AL-HAIDARI A, SUN J, et al. T cell receptor (TCR) signaling in healthand disease[J]. Signal Transduction and Targeted Therapy,2021,6(1) :412.
[73] GLANVILLE J, HUANG H, NAU A, et al. Identifying specificity groups in the T cellreceptor repertoire[J]. Nature,2017,547(7661):94-98.
[74] HUANG H, WANG C, RUBELT F, et al. Analyzing the mycobacterium tuberculosisimmune response by T-cell receptor clustering with GLIPH2 and genome-wideantigen screening[J]. Nature Biotechnology,2020,38(10):1194 -1202.
[75] GREGERSEN JW, KRANC KR, KE X, et al. Functional epistasis on a common MHChaplotype associated with multiple sclerosis[J]. Nature,2006,443(7111):574 -577.
[76] WANG J, JELCIC I, MUHLENBRUCH L, et al. HLA-DR15 molecules jointly shapean autoreactive T cell repertoire in multiple sclerosis[J].Cell,2020,183(5):1264-1281.e20.

Academic Degree Assessment Sub committee
医学院
Domestic book classification number
Q939.91
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343009
DepartmentSchool of Medicine
Recommended Citation
GB/T 7714
刘禹. 新冠病毒特异性TCR 及其表位鉴定[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930146-刘禹-南方科技大学医学(5985KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘禹]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘禹]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘禹]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.