中文版 | English
Title

Rheb 在小胶质细胞对脑损伤应答反应的 调节作用

Alternative Title
RHEB REGULATES THE RESPONSE OF MICROGLIA TO BRAIN INJURY
Author
Name pinyin
CHEN Shengming
School number
11930168
Degree
硕士
Discipline
0710 生物学
Subject category of dissertation
07 理学
Supervisor
肖波
Mentor unit
生物系
Tutor units of foreign institutions
南方科技大学
Publication Years
2022-05-06
Submission date
2022-06-27
University
南方科技大学
Place of Publication
深圳
Abstract

小胶质细胞是大脑主要的免疫细胞,在大脑正常发育和维持及神经退 行性疾病的发病机理中发挥关键作用。小胶质细胞的形态具有多变性,功 能具有多样性。当脑内出现如损伤、病原体侵染等异常时,小胶质细胞能 及时响应,形态上由静息状态向激活状态转变,伴随增殖、迁移、吞噬、 促炎/抑炎等生理功能层面相应的改变。目前认为,小胶质细胞形态转变和 功能改变具备偶联性,且对小胶质细胞生理功能的正常执行至关重要。然 而,目前对调控小胶质细胞形态和功能转换的分子机制知之甚少。细胞形 态的转变和功能的正常进行离不开大量蛋白质的合成和能量的正常供应, 所以我们推测调节蛋白质合成及能量代谢的信号通路很可能参与小胶质细 胞功能及组织损伤的应答的调节。Rheb 是这些信号通路的关键因子,Rheb 是否参与小胶质细胞形态与功能的调节呢?是否通过 mTORC1 通路调控小 胶质细胞形态及功能改变介导其对脑损伤的应答? 为了探究 Rheb 对小胶质细胞的调节,在小胶质细胞(Cx3CR1-Cre) 特异性敲除 Rheb,构建 Cuprizone 脑损伤、LPC 脑损伤、LPC 脊髓损伤多 种损伤模型,利用免疫荧光染色、BlackGold、LFB 等技术手段,检测在小 胶质细胞敲除 Rheb 对小胶质细胞脑损伤应答反应(如形态改变、增殖能力、 吞噬功能、髓鞘再生)的调节。之后我们还构建了 mTOCR1 重要成分 Raptor 敲除小鼠,探讨 Rheb 对小胶质细胞脑损伤应答反应的调节是否是 mTOR 依赖路径调控。 我们的研究发现特异性敲除 Rheb,并不影响小胶质细胞形态,也不影 响静息状态下小胶质细胞的增殖和吞噬功能;但在小胶质细胞敲除 Rheb 会 抑制小胶质细胞对损伤应答反应的增殖能力和吞噬功能,也会因此影响小 胶质细胞在髓鞘再生中的作用,抑制髓鞘再生。说明 Rheb 参与小胶质细胞 的功能和脑损伤应答的调节。研究 Rheb 对小胶质细胞的调节,有助于我们 加深理解小胶质细胞形态和功能的调节机制,对阐明退行性疾病的致病机 理以及治疗具有潜在价值。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] HUGHES V. Microglia: The constant gardeners [J]. Nature, 2012, 485(7400): 570-572.
[2] SQUARZONI P, OLLER G, HOEFFEL G, et al. Microglia modulate wiring of the embryonic forebrain [J]. Cell Rep, 2014, 8(5): 1271-1279.
[3] SCHAFER D P, LEHRMAN E K, KAUTZMAN A G, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner [J]. Neuron, 2012, 74(4): 691-705.
[4] AARUM J, SANDBERG K, HAEBERLEIN S L B, et al. Migration and differentiation of neural precursor cells can be directed by microglia [J]. P Natl Acad Sci USA, 2003, 100(26): 15983-15988.
[5] BIALAS A R, STEVENS B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement [J]. Nat Neurosci, 2013, 16(12): 1773-1782.
[6] SWITON K, KOTULSKA K, JANUSZ-KAMINSKA A, et al. Molecular neurobiology of mTOR [J]. Neuroscience, 2017, 341(112-153.
[7] HAMMOND T R, DUFORT C, DISSING-OLESEN L, et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes [J]. Immunity, 2019, 50(1): 253-271 e256.
[8] STENCE N, WAITE M, DAILEY M E. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices [J]. Glia, 2001, 33(3): 256-266.
[9] LAWSON L J, PERRY V H, DRI P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain [J]. Neuroscience, 1990, 39(1): 151-170.
[10] POTHERAVEEDU V N, SCHOPEL M, STOLL R, et al. Rheb in neuronal degeneration, regeneration, and connectivity [J]. Biol Chem, 2017, 398(5-6): 589-606.
[11] REEMST K, NOCTOR S C, LUCASSEN P J, et al. The Indispensable Roles of Microglia and Astrocytes during Brain Development [J]. Front Hum Neurosci, 2016, 10(566.
[12] PELVIG D P, PAKKENBERG H, STARK A K, et al. Neocortical glial cell numbers in human brains [J]. Neurobiol Aging, 2008, 29(11): 1754-1762.
[13] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol, 2009, 513(5): 532-541.参考文献62
[14] ZUCHERO J B, BARRES B A. Glia in mammalian development and disease [J]. Development, 2015, 142(22): 3805-3809.
[15] LU P P, RAMANAN N. A critical cell-intrinsic role for serum response factor in glial specification in the CNS [J]. J Neurosci, 2012, 32(23): 8012-8023.
[16] ROWITCH D H, KRIEGSTEIN A R. Developmental genetics of vertebrate glial-cell specification [J]. Nature, 2010, 468(7321): 214-222.
[17] ZUCHERO J B, BARRES B A. Intrinsic and extrinsic control of oligodendrocyte development [J]. Curr Opin Neurobiol, 2013, 23(6): 914-920.
[18] LYCK L, SANTAMARIA I D, PAKKENBERG B, et al. An empirical analysis of the precision of estimating the numbers of neurons and glia in human neocortex using a fractionator-design with sub-sampling [J]. J Neurosci Methods, 2009, 182(2): 143-156.
[19] NAYAK D, ROTH T L, MCGAVERN D B. Microglia development and function [J]. Annu Rev Immunol, 2014, 32(367-402.
[20] GARASCHUK O, VERKHRATSKY A. Physiology of Microglia [J]. Methods Mol Biol, 2019, 2034(27-40.
[21] PRINZ M, JUNG S, PRILLER J. Microglia Biology: One Century of Evolving Concepts [J]. Cell, 2019, 179(2): 292-311.
[22] MARIN-TEVA J L, DUSART I, COLIN C, et al. Microglia promote the death of developing Purkinje cells [J]. Neuron, 2004, 41(4): 535-547.
[23] SCHULZ C, GOMEZ PERDIGUERO E, CHORRO L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells [J]. Science, 2012, 336(6077): 86-90.
[24] GINHOUX F, GRETER M, LEBOEUF M, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages [J]. Science, 2010, 330(6005): 841-845.
[25] DECZKOWSKA A, MATCOVITCH-NATAN O, TSITSOU-KAMPELI A, et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner [J]. Nat Commun, 2017, 8(1): 717.
[26] NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science, 2005, 308(5726): 1314-1318.
[27] DAVALOS D, GRUTZENDLER J, YANG G, et al. ATP mediates rapid microglial response to local brain injury in vivo [J]. Nat Neurosci, 2005, 8(6): 752-758.
[28] UENO M, FUJITA Y, TANAKA T, et al. Layer V cortical neurons require microglial support for survival during postnatal development [J]. Nat Neurosci, 2013, 16(5): 543-551.参考文献63
[29] NESS J K, WOOD T L. Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis [J]. Mol Cell Neurosci, 2002, 20(3): 476-488.
[30] WAKSELMAN S, BECHADE C, ROUMIER A, et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor [J]. J Neurosci, 2008, 28(32): 8138-8143.
[31] TAKAHASHI K, ROCHFORD C D, NEUMANN H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2 [J]. J Exp Med, 2005, 201(4): 647-657.
[32] HRISTOVA M, CUTHILL D, ZBARSKY V, et al. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development [J]. Glia, 2010, 58(1): 11-28.
[33] KNOX S, GE H, DIMITROFF B D, et al. Mechanisms of TSC-mediated control of synapse assembly and axon guidance [J]. PLoS One, 2007, 2(4): e375.
[34] PRINZ M, PRILLER J, SISODIA S S, et al. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration [J]. Nat Neurosci, 2011, 14(10): 1227-1235.
[35] CUNNINGHAM C. Microglia and neurodegeneration: the role of systemic inflammation [J]. Glia, 2013, 61(1): 71-90.
[36] YAMAGATA K, SANDERS L K, KAUFMANN W E, et al. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein [J]. J Biol Chem, 1994, 269(23): 16333-16339.
[37] MAZHAB-JAFARI M T, MARSHALL C B, ISHIYAMA N, et al. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis [J]. Structure, 2012, 20(9): 1528-1539.
[38] SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease [J]. Cell, 2017, 168(6): 960-976.
[39] MELSER S, CHATELAIN E H, LAVIE J, et al. Rheb regulates mitophagy induced by mitochondrial energetic status [J]. Cell Metab, 2013, 17(5): 719-730.
[40] JIA L, LIAO M, MOU A, et al. Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability [J]. Dev Cell, 2021, 56(21): 2980-2994 e2986.
[41] KARBOWNICZEK M, ZITSERMAN D, KHABIBULLIN D, et al. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development [J]. J Clin Invest, 2010, 120(1): 93-102.
[42] LAFOURCADE C A, LIN T V, FELICIANO D M, et al. Rheb activation in subventricular zone progenitors leads to heterotopia, ectopic neuronal 参考文献64differentiation, and rapamycin-sensitive olfactory micronodules and dendrite hypertrophy of newborn neurons [J]. J Neurosci, 2013, 33(6): 2419-2431.
[43] GRACIAS N G, SHIRKEY-SON N J, HENGST U. Local translation of TC10 is required for membrane expansion during axon outgrowth [J]. Nat Commun, 2014, 5(3506.
[44] LI Y H, WERNER H, PUSCHEL A W. Rheb and mTOR regulate neuronal polarity through Rap1B [J]. J Biol Chem, 2008, 283(48): 33784-33792.
[45] ZOU J, ZHOU L, DU X X, et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development [J]. Dev Cell, 2011, 20(1): 97-108.
[46] ZOU Y, JIANG W, WANG J, et al. Oligodendrocyte precursor cellintrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain [J]. J Neurosci, 2014, 34(47): 15764-15778.
[47] LIPTON J O, SAHIN M. The neurology of mTOR [J]. Neuron, 2014, 84(2): 275-291.
[48] HOLZ M K, BALLIF B A, GYGI S P, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events [J]. Cell, 2005, 123(4): 569-580.
[49] BEN-SAHRA I, HOWELL J J, ASARA J M, et al. Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1 [J]. Science, 2013, 339(6125): 1323-1328.
[50] PETERSON TIMOTHY R, SENGUPTA SHOMIT S, HARRIS THURL E, et al. mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway [J]. Cell, 2011, 146(3): 408-420.
[51] DUVEL K, YECIES J L, MENON S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1 [J]. Mol Cell, 2010, 39(2): 171-183.
[52] ZHAO X, LIAO Y, MORGAN S, et al. Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy [J]. Cell Rep, 2018, 22(8): 2080-2093.
[53] BUTT A M, RANSOM B R. Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase [J]. Glia, 1989, 2(6): 470-475.
[54] BRADL M, LASSMANN H. Oligodendrocytes: biology and pathology [J]. Acta Neuropathol, 2010, 119(1): 37-53.
[55] GRIFFITHS I, KLUGMANN M, ANDERSON T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin [J]. 参考文献65Science, 1998, 280(5369): 1610-1613.
[56] SIMONS M, NAVE K A. Oligodendrocytes: Myelination and Axonal Support [J]. Cold Spring Harb Perspect Biol, 2015, 8(1): a020479.
[57] MICHALSKI J P, KOTHARY R. Oligodendrocytes in a Nutshell [J]. Front Cell Neurosci, 2015, 9(340.
[58] RICHARDSON W D, KESSARIS N, PRINGLE N. Oligodendrocyte wars [J]. Nat Rev Neurosci, 2006, 7(1): 11-18.
[59] EMERY B. Regulation of oligodendrocyte differentiation and myelination [J]. Science, 2010, 330(6005): 779-782.
[60] LLOYD A F, MIRON V E. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination [J]. Front Cell Dev Biol, 2016, 4(60.
[61] LLOYD A F, DAVIES C L, HOLLOWAY R K, et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation [J]. Nat Neurosci, 2019, 22(7): 1046-1052.
[62] DILLENBURG A, IRELAND G, HOLLOWAY R K, et al. Activin receptors regulate the oligodendrocyte lineage in health and disease [J]. Acta Neuropathol, 2018, 135(6): 887-906.
[63] WLODARCZYK A, HOLTMAN I R, KRUEGER M, et al. A novel microglial subset plays a key role in myelinogenesis in developing brain [J]. EMBO J, 2017, 36(22): 3292-3308.
[64] ZHANG S. Microglial activation after ischaemic stroke [J]. Stroke Vasc Neurol, 2019, 4(2): 71-74.
[65] PARKHURST C N, YANG G, NINAN I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor [J]. Cell, 2013, 155(7): 1596-1609.
[66] CENGIZ P, ZAFER D, CHANDRASHEKHAR J H, et al. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia [J]. Neurochem Int, 2019, 127(137-147.
[67] BEYNON S B, WALKER F R. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology [J]. Neuroscience, 2012, 225(162-171.
[68] HUANG Y, XU Z, XIONG S, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion [J]. Nat Neurosci, 2018, 21(4): 530-540.
[69] HIRATSUKA D, KURGANOV E, FURUBE E, et al. VEGF- and PDGFdependent proliferation of oligodendrocyte progenitor cells in the medulla oblongata after LPC-induced focal demyelination [J]. J Neuroimmunol, 2019, 332(176-186.参考文献66
[70] NUGENT A A, LIN K, VAN LENGERICH B, et al. TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge [J]. Neuron, 2020, 105(5): 837-854 e839.
[71] LAMPRON A, LAROCHELLE A, LAFLAMME N, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes [J]. J Exp Med, 2015, 212(4): 481-495.
[72] POLIANI P L, WANG Y, FONTANA E, et al. TREM2 sustains microglial expansion during aging and response to demyelination [J]. J Clin Invest, 2015, 125(5): 2161-2170.
[73] SAFAIYAN S, KANNAIYAN N, SNAIDERO N, et al. Age-related myelin degradation burdens the clearance function of microglia during aging [J]. Nat Neurosci, 2016, 19(8): 995-998.
[74] NEUMANN H, KOTTER M R, FRANKLIN R J. Debris clearance by microglia: an essential link between degeneration and regeneration [J]. Brain, 2009, 132(Pt 2): 288-295.
[75] FU R, SHEN Q, XU P, et al. Phagocytosis of microglia in the central nervous system diseases [J]. Mol Neurobiol, 2014, 49(3): 1422-1434.
[76] WANG Y, ULLAND T K, ULRICH J D, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques [J]. J Exp Med, 2016, 213(5): 667-675.
[77] ASKEW K, LI K, OLMOS-ALONSO A, et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain [J]. Cell Rep, 2017, 18(2): 391-405.
[78] MIRON V E, KUHLMANN T, ANTEL J P. Cells of the oligodendroglial lineage, myelination, and remyelination [J]. Biochim Biophys Acta, 2011, 1812(2): 184-193.
[79] RAWJI K S, YONG V W. The benefits and detriments of macrophages/microglia in models of multiple sclerosis [J]. Clin Dev Immunol, 2013, 2013(948976.
[80] FRANKLIN R J M, FFRENCH-CONSTANT C. Regenerating CNS myelin - from mechanisms to experimental medicines [J]. Nat Rev Neurosci, 2017, 18(12): 753-769.
[81] PLEMEL J R, MICHAELS N J, WEISHAUPT N, et al. Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy [J]. Glia, 2018, 66(2): 327-347.
[82] SUN X, KAUFMAN P D. Ki-67: more than a proliferation marker [J]. Chromosoma, 2018, 127(2): 175-186.
[83] CHU T, ZHANG Y P, TIAN Z, et al. Dynamic response of microglia/macrophage polarization following demyelination in mice [J]. J Neuroinflammation, 2019, 16(1): 188.

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
R338
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343012
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
陈盛明. Rheb 在小胶质细胞对脑损伤应答反应的 调节作用[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930168-陈盛明-生物系.pdf(6128KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[陈盛明]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[陈盛明]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈盛明]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.