[1] HUGHES V. Microglia: The constant gardeners [J]. Nature, 2012, 485(7400): 570-572.
[2] SQUARZONI P, OLLER G, HOEFFEL G, et al. Microglia modulate wiring of the embryonic forebrain [J]. Cell Rep, 2014, 8(5): 1271-1279.
[3] SCHAFER D P, LEHRMAN E K, KAUTZMAN A G, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner [J]. Neuron, 2012, 74(4): 691-705.
[4] AARUM J, SANDBERG K, HAEBERLEIN S L B, et al. Migration and differentiation of neural precursor cells can be directed by microglia [J]. P Natl Acad Sci USA, 2003, 100(26): 15983-15988.
[5] BIALAS A R, STEVENS B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement [J]. Nat Neurosci, 2013, 16(12): 1773-1782.
[6] SWITON K, KOTULSKA K, JANUSZ-KAMINSKA A, et al. Molecular neurobiology of mTOR [J]. Neuroscience, 2017, 341(112-153.
[7] HAMMOND T R, DUFORT C, DISSING-OLESEN L, et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes [J]. Immunity, 2019, 50(1): 253-271 e256.
[8] STENCE N, WAITE M, DAILEY M E. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices [J]. Glia, 2001, 33(3): 256-266.
[9] LAWSON L J, PERRY V H, DRI P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain [J]. Neuroscience, 1990, 39(1): 151-170.
[10] POTHERAVEEDU V N, SCHOPEL M, STOLL R, et al. Rheb in neuronal degeneration, regeneration, and connectivity [J]. Biol Chem, 2017, 398(5-6): 589-606.
[11] REEMST K, NOCTOR S C, LUCASSEN P J, et al. The Indispensable Roles of Microglia and Astrocytes during Brain Development [J]. Front Hum Neurosci, 2016, 10(566.
[12] PELVIG D P, PAKKENBERG H, STARK A K, et al. Neocortical glial cell numbers in human brains [J]. Neurobiol Aging, 2008, 29(11): 1754-1762.
[13] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol, 2009, 513(5): 532-541.参考文献62
[14] ZUCHERO J B, BARRES B A. Glia in mammalian development and disease [J]. Development, 2015, 142(22): 3805-3809.
[15] LU P P, RAMANAN N. A critical cell-intrinsic role for serum response factor in glial specification in the CNS [J]. J Neurosci, 2012, 32(23): 8012-8023.
[16] ROWITCH D H, KRIEGSTEIN A R. Developmental genetics of vertebrate glial-cell specification [J]. Nature, 2010, 468(7321): 214-222.
[17] ZUCHERO J B, BARRES B A. Intrinsic and extrinsic control of oligodendrocyte development [J]. Curr Opin Neurobiol, 2013, 23(6): 914-920.
[18] LYCK L, SANTAMARIA I D, PAKKENBERG B, et al. An empirical analysis of the precision of estimating the numbers of neurons and glia in human neocortex using a fractionator-design with sub-sampling [J]. J Neurosci Methods, 2009, 182(2): 143-156.
[19] NAYAK D, ROTH T L, MCGAVERN D B. Microglia development and function [J]. Annu Rev Immunol, 2014, 32(367-402.
[20] GARASCHUK O, VERKHRATSKY A. Physiology of Microglia [J]. Methods Mol Biol, 2019, 2034(27-40.
[21] PRINZ M, JUNG S, PRILLER J. Microglia Biology: One Century of Evolving Concepts [J]. Cell, 2019, 179(2): 292-311.
[22] MARIN-TEVA J L, DUSART I, COLIN C, et al. Microglia promote the death of developing Purkinje cells [J]. Neuron, 2004, 41(4): 535-547.
[23] SCHULZ C, GOMEZ PERDIGUERO E, CHORRO L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells [J]. Science, 2012, 336(6077): 86-90.
[24] GINHOUX F, GRETER M, LEBOEUF M, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages [J]. Science, 2010, 330(6005): 841-845.
[25] DECZKOWSKA A, MATCOVITCH-NATAN O, TSITSOU-KAMPELI A, et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner [J]. Nat Commun, 2017, 8(1): 717.
[26] NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science, 2005, 308(5726): 1314-1318.
[27] DAVALOS D, GRUTZENDLER J, YANG G, et al. ATP mediates rapid microglial response to local brain injury in vivo [J]. Nat Neurosci, 2005, 8(6): 752-758.
[28] UENO M, FUJITA Y, TANAKA T, et al. Layer V cortical neurons require microglial support for survival during postnatal development [J]. Nat Neurosci, 2013, 16(5): 543-551.参考文献63
[29] NESS J K, WOOD T L. Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis [J]. Mol Cell Neurosci, 2002, 20(3): 476-488.
[30] WAKSELMAN S, BECHADE C, ROUMIER A, et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor [J]. J Neurosci, 2008, 28(32): 8138-8143.
[31] TAKAHASHI K, ROCHFORD C D, NEUMANN H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2 [J]. J Exp Med, 2005, 201(4): 647-657.
[32] HRISTOVA M, CUTHILL D, ZBARSKY V, et al. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development [J]. Glia, 2010, 58(1): 11-28.
[33] KNOX S, GE H, DIMITROFF B D, et al. Mechanisms of TSC-mediated control of synapse assembly and axon guidance [J]. PLoS One, 2007, 2(4): e375.
[34] PRINZ M, PRILLER J, SISODIA S S, et al. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration [J]. Nat Neurosci, 2011, 14(10): 1227-1235.
[35] CUNNINGHAM C. Microglia and neurodegeneration: the role of systemic inflammation [J]. Glia, 2013, 61(1): 71-90.
[36] YAMAGATA K, SANDERS L K, KAUFMANN W E, et al. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein [J]. J Biol Chem, 1994, 269(23): 16333-16339.
[37] MAZHAB-JAFARI M T, MARSHALL C B, ISHIYAMA N, et al. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis [J]. Structure, 2012, 20(9): 1528-1539.
[38] SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease [J]. Cell, 2017, 168(6): 960-976.
[39] MELSER S, CHATELAIN E H, LAVIE J, et al. Rheb regulates mitophagy induced by mitochondrial energetic status [J]. Cell Metab, 2013, 17(5): 719-730.
[40] JIA L, LIAO M, MOU A, et al. Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability [J]. Dev Cell, 2021, 56(21): 2980-2994 e2986.
[41] KARBOWNICZEK M, ZITSERMAN D, KHABIBULLIN D, et al. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development [J]. J Clin Invest, 2010, 120(1): 93-102.
[42] LAFOURCADE C A, LIN T V, FELICIANO D M, et al. Rheb activation in subventricular zone progenitors leads to heterotopia, ectopic neuronal 参考文献64differentiation, and rapamycin-sensitive olfactory micronodules and dendrite hypertrophy of newborn neurons [J]. J Neurosci, 2013, 33(6): 2419-2431.
[43] GRACIAS N G, SHIRKEY-SON N J, HENGST U. Local translation of TC10 is required for membrane expansion during axon outgrowth [J]. Nat Commun, 2014, 5(3506.
[44] LI Y H, WERNER H, PUSCHEL A W. Rheb and mTOR regulate neuronal polarity through Rap1B [J]. J Biol Chem, 2008, 283(48): 33784-33792.
[45] ZOU J, ZHOU L, DU X X, et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development [J]. Dev Cell, 2011, 20(1): 97-108.
[46] ZOU Y, JIANG W, WANG J, et al. Oligodendrocyte precursor cellintrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain [J]. J Neurosci, 2014, 34(47): 15764-15778.
[47] LIPTON J O, SAHIN M. The neurology of mTOR [J]. Neuron, 2014, 84(2): 275-291.
[48] HOLZ M K, BALLIF B A, GYGI S P, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events [J]. Cell, 2005, 123(4): 569-580.
[49] BEN-SAHRA I, HOWELL J J, ASARA J M, et al. Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1 [J]. Science, 2013, 339(6125): 1323-1328.
[50] PETERSON TIMOTHY R, SENGUPTA SHOMIT S, HARRIS THURL E, et al. mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway [J]. Cell, 2011, 146(3): 408-420.
[51] DUVEL K, YECIES J L, MENON S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1 [J]. Mol Cell, 2010, 39(2): 171-183.
[52] ZHAO X, LIAO Y, MORGAN S, et al. Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy [J]. Cell Rep, 2018, 22(8): 2080-2093.
[53] BUTT A M, RANSOM B R. Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase [J]. Glia, 1989, 2(6): 470-475.
[54] BRADL M, LASSMANN H. Oligodendrocytes: biology and pathology [J]. Acta Neuropathol, 2010, 119(1): 37-53.
[55] GRIFFITHS I, KLUGMANN M, ANDERSON T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin [J]. 参考文献65Science, 1998, 280(5369): 1610-1613.
[56] SIMONS M, NAVE K A. Oligodendrocytes: Myelination and Axonal Support [J]. Cold Spring Harb Perspect Biol, 2015, 8(1): a020479.
[57] MICHALSKI J P, KOTHARY R. Oligodendrocytes in a Nutshell [J]. Front Cell Neurosci, 2015, 9(340.
[58] RICHARDSON W D, KESSARIS N, PRINGLE N. Oligodendrocyte wars [J]. Nat Rev Neurosci, 2006, 7(1): 11-18.
[59] EMERY B. Regulation of oligodendrocyte differentiation and myelination [J]. Science, 2010, 330(6005): 779-782.
[60] LLOYD A F, MIRON V E. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination [J]. Front Cell Dev Biol, 2016, 4(60.
[61] LLOYD A F, DAVIES C L, HOLLOWAY R K, et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation [J]. Nat Neurosci, 2019, 22(7): 1046-1052.
[62] DILLENBURG A, IRELAND G, HOLLOWAY R K, et al. Activin receptors regulate the oligodendrocyte lineage in health and disease [J]. Acta Neuropathol, 2018, 135(6): 887-906.
[63] WLODARCZYK A, HOLTMAN I R, KRUEGER M, et al. A novel microglial subset plays a key role in myelinogenesis in developing brain [J]. EMBO J, 2017, 36(22): 3292-3308.
[64] ZHANG S. Microglial activation after ischaemic stroke [J]. Stroke Vasc Neurol, 2019, 4(2): 71-74.
[65] PARKHURST C N, YANG G, NINAN I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor [J]. Cell, 2013, 155(7): 1596-1609.
[66] CENGIZ P, ZAFER D, CHANDRASHEKHAR J H, et al. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia [J]. Neurochem Int, 2019, 127(137-147.
[67] BEYNON S B, WALKER F R. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology [J]. Neuroscience, 2012, 225(162-171.
[68] HUANG Y, XU Z, XIONG S, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion [J]. Nat Neurosci, 2018, 21(4): 530-540.
[69] HIRATSUKA D, KURGANOV E, FURUBE E, et al. VEGF- and PDGFdependent proliferation of oligodendrocyte progenitor cells in the medulla oblongata after LPC-induced focal demyelination [J]. J Neuroimmunol, 2019, 332(176-186.参考文献66
[70] NUGENT A A, LIN K, VAN LENGERICH B, et al. TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge [J]. Neuron, 2020, 105(5): 837-854 e839.
[71] LAMPRON A, LAROCHELLE A, LAFLAMME N, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes [J]. J Exp Med, 2015, 212(4): 481-495.
[72] POLIANI P L, WANG Y, FONTANA E, et al. TREM2 sustains microglial expansion during aging and response to demyelination [J]. J Clin Invest, 2015, 125(5): 2161-2170.
[73] SAFAIYAN S, KANNAIYAN N, SNAIDERO N, et al. Age-related myelin degradation burdens the clearance function of microglia during aging [J]. Nat Neurosci, 2016, 19(8): 995-998.
[74] NEUMANN H, KOTTER M R, FRANKLIN R J. Debris clearance by microglia: an essential link between degeneration and regeneration [J]. Brain, 2009, 132(Pt 2): 288-295.
[75] FU R, SHEN Q, XU P, et al. Phagocytosis of microglia in the central nervous system diseases [J]. Mol Neurobiol, 2014, 49(3): 1422-1434.
[76] WANG Y, ULLAND T K, ULRICH J D, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques [J]. J Exp Med, 2016, 213(5): 667-675.
[77] ASKEW K, LI K, OLMOS-ALONSO A, et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain [J]. Cell Rep, 2017, 18(2): 391-405.
[78] MIRON V E, KUHLMANN T, ANTEL J P. Cells of the oligodendroglial lineage, myelination, and remyelination [J]. Biochim Biophys Acta, 2011, 1812(2): 184-193.
[79] RAWJI K S, YONG V W. The benefits and detriments of macrophages/microglia in models of multiple sclerosis [J]. Clin Dev Immunol, 2013, 2013(948976.
[80] FRANKLIN R J M, FFRENCH-CONSTANT C. Regenerating CNS myelin - from mechanisms to experimental medicines [J]. Nat Rev Neurosci, 2017, 18(12): 753-769.
[81] PLEMEL J R, MICHAELS N J, WEISHAUPT N, et al. Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy [J]. Glia, 2018, 66(2): 327-347.
[82] SUN X, KAUFMAN P D. Ki-67: more than a proliferation marker [J]. Chromosoma, 2018, 127(2): 175-186.
[83] CHU T, ZHANG Y P, TIAN Z, et al. Dynamic response of microglia/macrophage polarization following demyelination in mice [J]. J Neuroinflammation, 2019, 16(1): 188.
Edit Comment