[1] MERRIFIELD R B. Solid-Phase Peptide Synthesis. 3. An Improved Synthesis of Bradykinin[J]. Biochemistry, 1964, 3: 1385-1390.
[2] YAJIMA H, FUJII N. Totally synthetic crystalline ribonuclease A[J]. Biopolymers, 1981, 20(9): 1859-1867.
[3] KENNER G W, RIMMER J, SMITH K M, et al. Pyrroles and related compounds. Part 38. Porphobilinogen synthesis[J]. J Chem Soc Perkin 1, 1977(3): 332-340.
[4] DAWSON P E, MUIR T W, CLARK-LEWIS I, et al. Synthesis of proteins by native chemical ligation[J]. Science, 1994, 266(5186): 776-779.
[5] ARNOLD F H. Protein engineering for unusual environments[J]. Curr Opin Biotechnol, 1993, 4(4): 450-455.
[6] ARNOLD F H. Engineering proteins for nonnatural environments[J]. FASEB J, 1993, 7(9): 744-749.
[7] ARNOLD F H. DIRECTED EVOLUTION: CREATION BIOCATALYSTS FOR THE FUTURE[J]. Chemical Engineering Science, 1996, 51(23): 5091-5102.
[8] KAN S B, LEWIS R D, CHEN K, et al. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life[J]. Science, 2016, 354(6315): 1048-1051.
[9] KAN S B J, HUANG X, GUMULYA Y, et al. Genetically programmed chiral organoborane synthesis[J]. Nature, 2017, 552(7683): 132-136.
[10] HAMMER S C, KUBIK G, WATKINS E, et al. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis[J]. Science, 2017, 358(6360): 215-218.
[11] PRIER C K, ZHANG R K, BULLER A R, et al. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme[J]. Nat Chem, 2017, 9(7): 629-634.
[12] PODRACKY C J, AN C, DESOUSA A, et al. Laboratory evolution of a sortase enzyme that modifies amyloid-beta protein[J]. Nat Chem Biol, 2021, 17(3): 317-325.
[13] CARLSON J C, BADRAN A H, GUGGIANA-NILO D A, et al. Negative selection and stringency modulation in phage-assisted continuous evolution[J]. Nat Chem Biol, 2014, 10(3): 216-222.
[14] MILLER S M, WANG T, LIU D R. Phage-assisted continuous and non-continuous evolution[J]. Nat Protoc, 2020, 15(12): 4101-4127.
[15] BLUM T R, LIU H, PACKER M S, et al. Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity[J]. Science, 2021, 371(6531): 803-810.
[16] MORRISON M S, WANG T, RAGURAM A, et al. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space[J]. Nat Commun, 2021, 12(1): 5959.
[17] WELLNER A, MCMAHON C, GILMAN M S A, et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast[J]. Nat Chem Biol, 2021, 17(10): 1057-1064.
[18] LU R M, HWANG Y C, LIU I J, et al. Development of therapeutic antibodies for the treatment of diseases[J]. J Biomed Sci, 2020, 27(1): 1.
[19] GRAVBROT N, GILBERT-GARD K, MEHTA P, et al. Therapeutic Monoclonal Antibodies Targeting Immune Checkpoints for the Treatment of Solid Tumors[J]. Antibodies (Basel), 2019, 8(4):51
[20] CZAJKA T F, VANCE D J, MANTIS N J. Slaying SARS-CoV-2 One (Single-domain) Antibody at a Time[J]. Trends Microbiol, 2021, 29(3): 195-203.
[21] BYRNE B, STACK E, GILMARTIN N, et al. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins[J]. Sensors (Basel), 2009, 9(6): 4407-4445.
[22] HANKE L, VIDAKOVICS PEREZ L, SHEWARD D J, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction[J]. Nat Commun, 2020, 11(1): 4420.
[23] SCHOOF M, FAUST B, SAUNDERS R A, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike[J]. Science, 2020, 370(6523): 1473-1479.
[24] COLOMBO C, BENNET A J. The physical organic chemistry of glycopyranosyl transfer reactions in solution and enzyme-catalyzed[J]. Curr Opin Chem Biol, 2019, 53: 145-157.
[25] BERNARDES G J, CHALKER J M, ERREY J C, et al. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins[J]. Journal of the American Chemical Society, 2008, 130(15): 5052-5053.
[26] MERRIFIELD R B. Solid-phase peptide synthesis[J]. Adv Enzymol Relat Areas Mol Biol, 1969, 32: 221-296.
[27] AMBROGELLY A, PALIOURA S, SOLL D. Natural expansion of the genetic code[J]. Nat Chem Biol, 2007, 3(1): 29-35.
[28] BENDER M L, BEGUE-CANTON M L, BLAKELEY R L, et al. The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase[J]. Journal of the American Chemical Society, 1966, 88(24): 5890-5913.
[29] BALDINI G, MARTOGLIO B, SCHACHENMANN A, et al. Mischarging Escherichia coli tRNAPhe with L-4'-
[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analogue of phenylalanine[J]. Biochemistry, 1988, 27(20): 7951-7959.
[30] KRIEG U C, WALTER P, JOHNSON A E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle[J]. Proc Natl Acad Sci U S A, 1986, 83(22): 8604-8608.
[31] WIEDMANN M, KURZCHALIA T V, HARTMANN E, et al. A signal sequence receptor in the endoplasmic reticulum membrane[J]. Nature, 1987, 328(6133): 830-833.
[32] HECKLER T G, ZAMA Y, NAKA T, et al. Dipeptide formation with misacylated tRNAPhes[J]. J Biol Chem, 1983, 258(7): 4492-4495.
[33] NOREN C J, ANTHONY-CAHILL S J, GRIFFITH M C, et al. A general method for site-specific incorporation of unnatural amino acids into proteins[J]. Science, 1989, 244(4901): 182-188.
[34] FOK J A, MAYER C. Genetic-Code-Expansion Strategies for Vaccine Development[J]. Chembiochem, 2020, 21(23): 3291-3300.
[35] THORSON J S, CORNISH V W, BARRETT J E, et al. A biosynthetic approach for the incorporation of unnatural amino acids into proteins[J]. Methods Mol Biol, 1998, 77: 43-73.
[36] LARREGOLA M, MOORE S, BUDISA N. Congeneric bio-adhesive mussel foot proteins designed by modified prolines revealed a chiral bias in unnatural translation[J]. Biochem Biophys Res Commun, 2012, 421(4): 646-650.
[37] GUO J, WANG J, ANDERSON J C, et al. Addition of an alpha-hydroxy acid to the genetic code of bacteria[J]. Angew Chem Int Ed Engl, 2008, 47(4): 722-725.
[38] XIE J, SCHULTZ P G. A chemical toolkit for proteins--an expanded genetic code[J]. Nat Rev Mol Cell Biol, 2006, 7(10): 775-782.
[39] WANG L, XIE J, SCHULTZ P G. Expanding the genetic code[J]. Annu Rev Biophys Biomol Struct, 2006, 35: 225-249.
[40] MENDEL D, CORNISH V W, SCHULTZ P G. Site-directed mutagenesis with an expanded genetic code[J]. Annu Rev Biophys Biomol Struct, 1995, 24: 435-462.
[41] ELLMAN J A, MENDEL D, SCHULTZ P G. Site-specific incorporation of novel backbone structures into proteins[J]. Science, 1992, 255(5041): 197-200.
[42] LU T, TING A Y, MAINLAND J, et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter[J]. Nat Neurosci, 2001, 4(3): 239-246.
[43] STEMMER W P C. DNA Shuffling by Random Fragmentation and Reassembly - in-Vitro Recombination for Molecular Evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10747-10751.
[44] SAKIN V, HANNE J, DUNDER J, et al. A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility[J]. Cell Chem Biol, 2017, 24(5): 635-645 e5.
[45] ZHANG M, LIN S, SONG X, et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance[J]. Nat Chem Biol, 2011, 7(10): 671-677.
[46] LIN S, HE D, LONG T, et al. Genetically encoded cleavable protein photo-cross-linker[J]. Journal of the American Chemical Society, 2014, 136(34): 11860-11863.
[47] YANG Y, SONG H, HE D, et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label[J]. Nat Commun, 2016, 7: 12299.
[48] ZHANG F, ZHOU Q, YANG G, et al. A genetically encoded (19)F NMR probe for lysine acetylation[J]. Chem Commun (Camb), 2018, 54(31): 3879-3882.
[49] JEDLITZKE B, YILMAZ Z, DORNER W, et al. Photobodies: Light-Activatable Single-Domain Antibody Fragments[J]. Angew Chem Int Ed Engl, 2020, 59(4): 1506-1510.
[50] ROS E, BELLIDO M, VERDAGUER X, et al. Synthesis and Application of 3-Bromo-1,2,4,5-Tetrazine for Protein Labeling to Trigger Click-to-Release Biorthogonal Reactions[J]. Bioconjug Chem, 2020, 31(3): 933-938.
[51] BERNARD A M, FRONGIA A, GUILLOT R, et al. l-Proline-catalyzed direct intermolecular asymmetric aldol reactions of 1-phenylthiocycloalkyl carboxaldehydes with ketones. Easy access to spiro- and fused-cyclobutyl tetrahydrofurans and cyclopentanones[J]. Org Lett, 2007, 9(3): 541-544.
[52] KOSHLAND D E. Application of a Theory of Enzyme Specificity to Protein Synthesis[J]. Proc Natl Acad Sci U S A, 1958, 44(2): 98-104.
[53] ZOLLER M J, SMITH M. Oligonucleotide-Directed Mutagenesis Using M13-Derived Vectors - an Efficient and General Procedure for the Production of Point Mutations in Any Fragment of DNA[J]. Nucleic Acids Research, 1982, 10(20): 6487-6500.
[54] MELZER S, SONNENDECKER C, FOLLNER C, et al. Stepwise error-prone PCR and DNA shuffling changed the pH activity range and product specificity of the cyclodextrin glucanotransferase from an alkaliphilic Bacillus sp.[J]. Febs Open Bio, 2015, 5: 528-534.
[55] PARRA L P, AGUDO R, REETZ M T. Directed Evolution by Using Iterative Saturation Mutagenesis Based on Multiresidue Sites[J]. Chembiochem, 2013, 14(17): 2301-2309.
[56] XING L, ZHAO Y, GONG M, et al. Graphene oxide and Lambda exonuclease assisted screening of L-carnitine aptamers and the site-directed mutagenesis design of C-rich structure aptamer[J]. Biochem Biophys Res Commun, 2021, 545: 171-176.
[57] MICHAEL M, GERBER S, FETZER J, et al. Oligonucleotide-directed mutagenesis and subsequent expression of the corresponding recombinant proteins without changing the bacterial vector system[J]. Pharm Acta Helv, 1997, 72(3): 139-143.
[58] CHONG S, GARCIA G A. An oligonucleotide-directed, in vitro mutagenesis method using ssDNA and preferential DNA amplification of the mutated strand[J]. Biotechniques, 1994, 17(4): 719-720, 722, 724-715.
[59] KUMAR A, SINGH S. Directed evolution: tailoring biocatalysts for industrial applications[J]. Crit Rev Biotechnol, 2013, 33(4): 365-378.
[60] GUMULYA Y, SANCHIS J, REETZ M T. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima[J]. Chembiochem, 2012, 13(7): 1060-1066.
[61] KILLE S, ACEVEDO-ROCHA C G, PARRA L P, et al. Reducing Codon Redundancy and Screening Effort of Combinatorial Protein Libraries Created by Saturation Mutagenesis[J]. Acs Synthetic Biology, 2013, 2(2): 83-92.
[62] ACEVEDO-ROCHA C G, REETZ M T, NOV Y. Economical analysis of saturation mutagenesis experiments[J]. Sci Rep, 2015, 5: 10654.
[63] NOZAWA K, ISHITANI R, NUREKI O. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality[J]. Seikagaku The Journal of Japanese Biochemical Society, 2010, 82(7): 617-623.
[64] CHEN P R, GROFF D, GUO J, et al. A facile system for encoding unnatural amino acids in mammalian cells[J]. Angew Chem Int Ed Engl, 2009, 48(22): 4052-4055.
[65] DUMAS A, LERCHER L, SPICER C D, et al. Designing logical codon reassignment - Expanding the chemistry in biology[J]. Chem Sci, 2015, 6(1): 50-69.
[66] DENG Z, MAKSAEV G, SCHLEGEL A M, et al. Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance[J]. Nat Commun, 2020, 11(1): 3690.
[67] LIU C C, SCHULTZ P G. Adding new chemistries to the genetic code[J]. Annu Rev Biochem, 2010, 79: 413-444.
[68] CAMPBELL C, MARONDEL I, MONTGOMERY K, et al. Unequal Homologous Recombination of Human DNA on a Yeast Artificial Chromosome[J]. Nucleic Acids Research, 1995, 23(18): 3691-3695.
[69] FUJITANI Y, YAMAMOTO K, KOBAYASHI I. Dependence of Frequency of Homologous Recombination on the Homology Length (Vol 140, Pg 797, 1995)[J]. Genetics, 1995, 141(2): 797-797.
[70] MUSTAFA A S. Genetic transformation of mycobacteria by homologous recombination[J]. Nutrition, 1995, 11(5): 670-673.
[71] THORNTON P S, MONKS B, HU Y, et al. Generation of a Mouse Line Null for Vitamin-D-Binding Protein by Targeted Homologous Recombination[J]. Journal of Bone and Mineral Research, 1995, 10: S494-S494.
[72] FORSLUND O, HANSSON B G. Human papillomavirus type 70 genome cloned from overlapping PCR products: Complete nucleotide sequence and genomic organization[J]. Journal of Clinical Microbiology, 1996, 34(4): 802-809.
[73] KOZINSKI A, LORKIEWICZ Z K. Early intracellular events in the replication of T4 phage DNA, IV. Host-mediated single-stranded breaks and repair in ultraviolet-damaged T4 DNA[J]. Proc Natl Acad Sci U S A, 1967, 58(5): 2109-2116.
[74] LOHMAN G J S, CHEN L, EVANS T C, JR. Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase[J]. J Biol Chem, 2011, 286(51): 44187-44196.
[75] HONG F, NGUYEN V A, SHEN X N, et al. Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration[J]. Biochemical and Biophysical Research Communications, 2000, 279(3): 974-979.
[76] PARK S W, YU S H, KIM M I, et al. Interaction of PRK1 receptor-like kinase with a putative eIF2B beta-subunit in tobacco[J]. Molecules and Cells, 2000, 10(6): 626-632.
[77] GLASS I A, PASSAGE M, BERNATOWICZ L, et al. Generation of sequence-tagged sites from Xp22.3 by isolating common Alu-PCR products of radiation hybrids retaining overlapping human X chromosome fragments[J]. Human Genetics, 1996, 97(5): 604-610.
[78] SENANAYAKE S D, BRIAN D A. Precise Large Deletions by the Pcr-Based Overlap Extension Method[J]. Molecular Biotechnology, 1995, 4(1): 13-15.
Edit Comment