中文版 | English


Alternative Title
Directed evolution of aminoacyl-tRNA synthetases based on multi-site custom half-saturation mutagenesi
Name pinyin
LI Kaitong
School number
0856 材料与化工
Subject category of dissertation
08 工学
Mentor unit
Publication Years
Submission date
Place of Publication


Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] MERRIFIELD R B. Solid-Phase Peptide Synthesis. 3. An Improved Synthesis of Bradykinin[J]. Biochemistry, 1964, 3: 1385-1390.
[2] YAJIMA H, FUJII N. Totally synthetic crystalline ribonuclease A[J]. Biopolymers, 1981, 20(9): 1859-1867.
[3] KENNER G W, RIMMER J, SMITH K M, et al. Pyrroles and related compounds. Part 38. Porphobilinogen synthesis[J]. J Chem Soc Perkin 1, 1977(3): 332-340.
[4] DAWSON P E, MUIR T W, CLARK-LEWIS I, et al. Synthesis of proteins by native chemical ligation[J]. Science, 1994, 266(5186): 776-779.
[5] ARNOLD F H. Protein engineering for unusual environments[J]. Curr Opin Biotechnol, 1993, 4(4): 450-455.
[6] ARNOLD F H. Engineering proteins for nonnatural environments[J]. FASEB J, 1993, 7(9): 744-749.
[7] ARNOLD F H. DIRECTED EVOLUTION: CREATION BIOCATALYSTS FOR THE FUTURE[J]. Chemical Engineering Science, 1996, 51(23): 5091-5102.
[8] KAN S B, LEWIS R D, CHEN K, et al. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life[J]. Science, 2016, 354(6315): 1048-1051.
[9] KAN S B J, HUANG X, GUMULYA Y, et al. Genetically programmed chiral organoborane synthesis[J]. Nature, 2017, 552(7683): 132-136.
[10] HAMMER S C, KUBIK G, WATKINS E, et al. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis[J]. Science, 2017, 358(6360): 215-218.
[11] PRIER C K, ZHANG R K, BULLER A R, et al. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme[J]. Nat Chem, 2017, 9(7): 629-634.
[12] PODRACKY C J, AN C, DESOUSA A, et al. Laboratory evolution of a sortase enzyme that modifies amyloid-beta protein[J]. Nat Chem Biol, 2021, 17(3): 317-325.
[13] CARLSON J C, BADRAN A H, GUGGIANA-NILO D A, et al. Negative selection and stringency modulation in phage-assisted continuous evolution[J]. Nat Chem Biol, 2014, 10(3): 216-222.
[14] MILLER S M, WANG T, LIU D R. Phage-assisted continuous and non-continuous evolution[J]. Nat Protoc, 2020, 15(12): 4101-4127.
[15] BLUM T R, LIU H, PACKER M S, et al. Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity[J]. Science, 2021, 371(6531): 803-810.
[16] MORRISON M S, WANG T, RAGURAM A, et al. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space[J]. Nat Commun, 2021, 12(1): 5959.
[17] WELLNER A, MCMAHON C, GILMAN M S A, et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast[J]. Nat Chem Biol, 2021, 17(10): 1057-1064.
[18] LU R M, HWANG Y C, LIU I J, et al. Development of therapeutic antibodies for the treatment of diseases[J]. J Biomed Sci, 2020, 27(1): 1.
[19] GRAVBROT N, GILBERT-GARD K, MEHTA P, et al. Therapeutic Monoclonal Antibodies Targeting Immune Checkpoints for the Treatment of Solid Tumors[J]. Antibodies (Basel), 2019, 8(4):51
[20] CZAJKA T F, VANCE D J, MANTIS N J. Slaying SARS-CoV-2 One (Single-domain) Antibody at a Time[J]. Trends Microbiol, 2021, 29(3): 195-203.
[21] BYRNE B, STACK E, GILMARTIN N, et al. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins[J]. Sensors (Basel), 2009, 9(6): 4407-4445.
[22] HANKE L, VIDAKOVICS PEREZ L, SHEWARD D J, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction[J]. Nat Commun, 2020, 11(1): 4420.
[23] SCHOOF M, FAUST B, SAUNDERS R A, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike[J]. Science, 2020, 370(6523): 1473-1479.
[24] COLOMBO C, BENNET A J. The physical organic chemistry of glycopyranosyl transfer reactions in solution and enzyme-catalyzed[J]. Curr Opin Chem Biol, 2019, 53: 145-157.
[25] BERNARDES G J, CHALKER J M, ERREY J C, et al. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins[J]. Journal of the American Chemical Society, 2008, 130(15): 5052-5053.
[26] MERRIFIELD R B. Solid-phase peptide synthesis[J]. Adv Enzymol Relat Areas Mol Biol, 1969, 32: 221-296.
[27] AMBROGELLY A, PALIOURA S, SOLL D. Natural expansion of the genetic code[J]. Nat Chem Biol, 2007, 3(1): 29-35.
[28] BENDER M L, BEGUE-CANTON M L, BLAKELEY R L, et al. The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase[J]. Journal of the American Chemical Society, 1966, 88(24): 5890-5913.
[29] BALDINI G, MARTOGLIO B, SCHACHENMANN A, et al. Mischarging Escherichia coli tRNAPhe with L-4'-
[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analogue of phenylalanine[J]. Biochemistry, 1988, 27(20): 7951-7959.
[30] KRIEG U C, WALTER P, JOHNSON A E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle[J]. Proc Natl Acad Sci U S A, 1986, 83(22): 8604-8608.
[31] WIEDMANN M, KURZCHALIA T V, HARTMANN E, et al. A signal sequence receptor in the endoplasmic reticulum membrane[J]. Nature, 1987, 328(6133): 830-833.
[32] HECKLER T G, ZAMA Y, NAKA T, et al. Dipeptide formation with misacylated tRNAPhes[J]. J Biol Chem, 1983, 258(7): 4492-4495.
[33] NOREN C J, ANTHONY-CAHILL S J, GRIFFITH M C, et al. A general method for site-specific incorporation of unnatural amino acids into proteins[J]. Science, 1989, 244(4901): 182-188.
[34] FOK J A, MAYER C. Genetic-Code-Expansion Strategies for Vaccine Development[J]. Chembiochem, 2020, 21(23): 3291-3300.
[35] THORSON J S, CORNISH V W, BARRETT J E, et al. A biosynthetic approach for the incorporation of unnatural amino acids into proteins[J]. Methods Mol Biol, 1998, 77: 43-73.
[36] LARREGOLA M, MOORE S, BUDISA N. Congeneric bio-adhesive mussel foot proteins designed by modified prolines revealed a chiral bias in unnatural translation[J]. Biochem Biophys Res Commun, 2012, 421(4): 646-650.
[37] GUO J, WANG J, ANDERSON J C, et al. Addition of an alpha-hydroxy acid to the genetic code of bacteria[J]. Angew Chem Int Ed Engl, 2008, 47(4): 722-725.
[38] XIE J, SCHULTZ P G. A chemical toolkit for proteins--an expanded genetic code[J]. Nat Rev Mol Cell Biol, 2006, 7(10): 775-782.
[39] WANG L, XIE J, SCHULTZ P G. Expanding the genetic code[J]. Annu Rev Biophys Biomol Struct, 2006, 35: 225-249.
[40] MENDEL D, CORNISH V W, SCHULTZ P G. Site-directed mutagenesis with an expanded genetic code[J]. Annu Rev Biophys Biomol Struct, 1995, 24: 435-462.
[41] ELLMAN J A, MENDEL D, SCHULTZ P G. Site-specific incorporation of novel backbone structures into proteins[J]. Science, 1992, 255(5041): 197-200.
[42] LU T, TING A Y, MAINLAND J, et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter[J]. Nat Neurosci, 2001, 4(3): 239-246.
[43] STEMMER W P C. DNA Shuffling by Random Fragmentation and Reassembly - in-Vitro Recombination for Molecular Evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10747-10751.
[44] SAKIN V, HANNE J, DUNDER J, et al. A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility[J]. Cell Chem Biol, 2017, 24(5): 635-645 e5.
[45] ZHANG M, LIN S, SONG X, et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance[J]. Nat Chem Biol, 2011, 7(10): 671-677.
[46] LIN S, HE D, LONG T, et al. Genetically encoded cleavable protein photo-cross-linker[J]. Journal of the American Chemical Society, 2014, 136(34): 11860-11863.
[47] YANG Y, SONG H, HE D, et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label[J]. Nat Commun, 2016, 7: 12299.
[48] ZHANG F, ZHOU Q, YANG G, et al. A genetically encoded (19)F NMR probe for lysine acetylation[J]. Chem Commun (Camb), 2018, 54(31): 3879-3882.
[49] JEDLITZKE B, YILMAZ Z, DORNER W, et al. Photobodies: Light-Activatable Single-Domain Antibody Fragments[J]. Angew Chem Int Ed Engl, 2020, 59(4): 1506-1510.
[50] ROS E, BELLIDO M, VERDAGUER X, et al. Synthesis and Application of 3-Bromo-1,2,4,5-Tetrazine for Protein Labeling to Trigger Click-to-Release Biorthogonal Reactions[J]. Bioconjug Chem, 2020, 31(3): 933-938.
[51] BERNARD A M, FRONGIA A, GUILLOT R, et al. l-Proline-catalyzed direct intermolecular asymmetric aldol reactions of 1-phenylthiocycloalkyl carboxaldehydes with ketones. Easy access to spiro- and fused-cyclobutyl tetrahydrofurans and cyclopentanones[J]. Org Lett, 2007, 9(3): 541-544.
[52] KOSHLAND D E. Application of a Theory of Enzyme Specificity to Protein Synthesis[J]. Proc Natl Acad Sci U S A, 1958, 44(2): 98-104.
[53] ZOLLER M J, SMITH M. Oligonucleotide-Directed Mutagenesis Using M13-Derived Vectors - an Efficient and General Procedure for the Production of Point Mutations in Any Fragment of DNA[J]. Nucleic Acids Research, 1982, 10(20): 6487-6500.
[54] MELZER S, SONNENDECKER C, FOLLNER C, et al. Stepwise error-prone PCR and DNA shuffling changed the pH activity range and product specificity of the cyclodextrin glucanotransferase from an alkaliphilic Bacillus sp.[J]. Febs Open Bio, 2015, 5: 528-534.
[55] PARRA L P, AGUDO R, REETZ M T. Directed Evolution by Using Iterative Saturation Mutagenesis Based on Multiresidue Sites[J]. Chembiochem, 2013, 14(17): 2301-2309.
[56] XING L, ZHAO Y, GONG M, et al. Graphene oxide and Lambda exonuclease assisted screening of L-carnitine aptamers and the site-directed mutagenesis design of C-rich structure aptamer[J]. Biochem Biophys Res Commun, 2021, 545: 171-176.
[57] MICHAEL M, GERBER S, FETZER J, et al. Oligonucleotide-directed mutagenesis and subsequent expression of the corresponding recombinant proteins without changing the bacterial vector system[J]. Pharm Acta Helv, 1997, 72(3): 139-143.
[58] CHONG S, GARCIA G A. An oligonucleotide-directed, in vitro mutagenesis method using ssDNA and preferential DNA amplification of the mutated strand[J]. Biotechniques, 1994, 17(4): 719-720, 722, 724-715.
[59] KUMAR A, SINGH S. Directed evolution: tailoring biocatalysts for industrial applications[J]. Crit Rev Biotechnol, 2013, 33(4): 365-378.
[60] GUMULYA Y, SANCHIS J, REETZ M T. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima[J]. Chembiochem, 2012, 13(7): 1060-1066.
[61] KILLE S, ACEVEDO-ROCHA C G, PARRA L P, et al. Reducing Codon Redundancy and Screening Effort of Combinatorial Protein Libraries Created by Saturation Mutagenesis[J]. Acs Synthetic Biology, 2013, 2(2): 83-92.
[62] ACEVEDO-ROCHA C G, REETZ M T, NOV Y. Economical analysis of saturation mutagenesis experiments[J]. Sci Rep, 2015, 5: 10654.
[63] NOZAWA K, ISHITANI R, NUREKI O. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality[J]. Seikagaku The Journal of Japanese Biochemical Society, 2010, 82(7): 617-623.
[64] CHEN P R, GROFF D, GUO J, et al. A facile system for encoding unnatural amino acids in mammalian cells[J]. Angew Chem Int Ed Engl, 2009, 48(22): 4052-4055.
[65] DUMAS A, LERCHER L, SPICER C D, et al. Designing logical codon reassignment - Expanding the chemistry in biology[J]. Chem Sci, 2015, 6(1): 50-69.
[66] DENG Z, MAKSAEV G, SCHLEGEL A M, et al. Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance[J]. Nat Commun, 2020, 11(1): 3690.
[67] LIU C C, SCHULTZ P G. Adding new chemistries to the genetic code[J]. Annu Rev Biochem, 2010, 79: 413-444.
[68] CAMPBELL C, MARONDEL I, MONTGOMERY K, et al. Unequal Homologous Recombination of Human DNA on a Yeast Artificial Chromosome[J]. Nucleic Acids Research, 1995, 23(18): 3691-3695.
[69] FUJITANI Y, YAMAMOTO K, KOBAYASHI I. Dependence of Frequency of Homologous Recombination on the Homology Length (Vol 140, Pg 797, 1995)[J]. Genetics, 1995, 141(2): 797-797.
[70] MUSTAFA A S. Genetic transformation of mycobacteria by homologous recombination[J]. Nutrition, 1995, 11(5): 670-673.
[71] THORNTON P S, MONKS B, HU Y, et al. Generation of a Mouse Line Null for Vitamin-D-Binding Protein by Targeted Homologous Recombination[J]. Journal of Bone and Mineral Research, 1995, 10: S494-S494.
[72] FORSLUND O, HANSSON B G. Human papillomavirus type 70 genome cloned from overlapping PCR products: Complete nucleotide sequence and genomic organization[J]. Journal of Clinical Microbiology, 1996, 34(4): 802-809.
[73] KOZINSKI A, LORKIEWICZ Z K. Early intracellular events in the replication of T4 phage DNA, IV. Host-mediated single-stranded breaks and repair in ultraviolet-damaged T4 DNA[J]. Proc Natl Acad Sci U S A, 1967, 58(5): 2109-2116.
[74] LOHMAN G J S, CHEN L, EVANS T C, JR. Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase[J]. J Biol Chem, 2011, 286(51): 44187-44196.
[75] HONG F, NGUYEN V A, SHEN X N, et al. Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration[J]. Biochemical and Biophysical Research Communications, 2000, 279(3): 974-979.
[76] PARK S W, YU S H, KIM M I, et al. Interaction of PRK1 receptor-like kinase with a putative eIF2B beta-subunit in tobacco[J]. Molecules and Cells, 2000, 10(6): 626-632.
[77] GLASS I A, PASSAGE M, BERNATOWICZ L, et al. Generation of sequence-tagged sites from Xp22.3 by isolating common Alu-PCR products of radiation hybrids retaining overlapping human X chromosome fragments[J]. Human Genetics, 1996, 97(5): 604-610.
[78] SENANAYAKE S D, BRIAN D A. Precise Large Deletions by the Pcr-Based Overlap Extension Method[J]. Molecular Biotechnology, 1995, 4(1): 13-15.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
李开通. 基于自定义多位点半饱和突变技术实现氨酰tRNA合成酶的定向进化[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032112-李开通-化学系.pdf(1968KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李开通]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李开通]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李开通]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.