[1]Stewart C, Ralyea C, Lockwood S. Ovarian Cancer: An Integrated Review[J]. Seminars in Oncology Nursing, 2019, 35(2): 151-156.
[2] Loibl S, Poortmans P, Morrow M, et al. Breast cancer[J]. Lancet, 2021, 397(10286): 1750-1769.
[3] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2022[J]. Ca-a Cancer Journal for Clinicians, 2022, 72(1): 7-33.
[4] Chen V W, Ruiz B, Killeen J L, et al. Pathology and classification of ovarian tumors[J]. Cancer, 2003, 97(10): 2631-+.
[5] Jo V Y, Fletcher C D M. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition[J]. Pathology, 2014, 46(2): 95-104.
[6] Vang R, Shih I M, Kurman R J. Ovarian Low-grade and High-grade Serous Carcinoma Pathogenesis, Clinicopathologic and Molecular Biologic Features, and Diagnostic Problems[J]. Advances in Anatomic Pathology, 2009, 16(5): 267-282.
[7] Villert A B, Kolomiets L A, Yunusova N V, et al. Ascites as a subject of studies in ovarian cancer[J]. Sibirskii onkologicheskii zhurnal, 2019, 18(1): 116-123.
[8] Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer[J]. Lancet, 2019, 393(10177): 1240-1253.
[9] Sun L-X, Wu Y, Han H-Q, et al. Serum level and expression of vascular epithelial growth factor in ovarian epithelial carcinoma[J]. Ai zheng = Aizheng = Chinese journal of cancer, 2003, 22(1): 58-61.
[10]Lahlou N, Brun J L. Ovarian tumor markers of presumed benign ovarian tumors[J]. Journal De Gynecologie Obstetrique Et Biologie De La Reproduction, 2013, 42(8): 752-759.
[11]Bhardwaj B K, Thankachan S, Venkatesh T, et al. Liquid biopsy in ovarian cancer[J]. Clinica Chimica Acta, 2020, 510: 28-34.
[12]Dumontet C, Sikic B J J O C O O J O T a S O C O. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death[J]. 1999, 17(3): 1061-1070.
[13]Mosca L, Ilari A, Fazi F, et al. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming[J]. Drug Resistance Updates, 2021, 54.
[14]Haldar S, Basu A, Croce C J C R. Bcl2 is the guardian of microtubule integrity[J]. 1997, 57(2): 229-233.
[15]Aabo K, Adams M, Adnitt P, et al. Chemotherapy in advanced ovarian cancer: four systematic meta-analyses of individual patient data from 37 randomized trials. Advanced Ovarian Cancer Trialists' Group[J]. 1998, 78(11): 1479-1487.
[16]Dijt F, Fichtinger-Schepman A, Berends F, et al. Formation and repair of cisplatin-induced adducts to DNA in cultured normal and repair-deficient human fibroblasts[J]. 1988, 48(21): 6058-6062.
[17]Perez R J E J O C. Cellular and molecular determinants of cisplatin resistance[J]. 1998, 34(10): 1535-1542.
[18]Cortez A J, Tudrej P, Kujawa K A, et al. Advances in ovarian cancer therapy[J]. Cancer Chemotherapy and Pharmacology, 2018, 81(1): 17-38.
[19]Chester C, Dorigo O, Berek J S, et al. Immunotherapeutic approaches to ovarian cancer treatment[J]. Journal for ImmunoTherapy of Cancer, 2015, 3(1): 7.
[20]Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications[J]. Journal of Controlled Release, 2015, 200: 138-157.
[21]Sharma S, Walsh D. Management of symptomatic malignant ascites with diuretics: Two case reports and a review of the literature[J]. Journal of Pain and Symptom Management, 1995, 10(3): 237-242.
[22]Adam R A, Adam Y G. Malignant ascites: past, present, and future[J]. Journal of the American College of Surgeons, 2004, 198(6): 999-1011.
[23]Bellati F, Napoletano C, Ruscito I, et al. Complete remission of ovarian cancer induced intractable malignant ascites with intraperitoneal bevacizumab. Immunological observations and a literature review[J]. Investigational New Drugs, 2010, 28(6): 887-894.
[24]Ba M, Long H, Zhang X, et al. Different sequential approaches of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in treating ovarian cancer with malignant ascites[J]. Journal of Cancer Research and Clinical Oncology, 2014, 140(9): 1497-1506.
[25]Giuntoli R L, Ii, Webb T J, Zoso A, et al. Ovarian Cancer-associated Ascites Demonstrates Altered Immune Environment: Implications for Antitumor Immunity[J]. Anticancer Research, 2009, 29(8): 2875-2884.
[26]Bamias A, Tsiatas M L, Kafantari E, et al. Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3(+)CD56(+) cells with platinum resistance[J]. Gynecologic Oncology, 2007, 106(1): 75-81.
[27]Shi Y, Hao M, Ding Z. Study on ascite of ovarian cancer[J]. Zhonghua fu chan ke za zhi, 2000, 35(9): 551-553.
[28]Connor J P, Felder M. Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance[J]. Gynecologic Oncology, 2008, 111(2): 330-335.
[29]Cohen M, Pierredon S, Wuillemin C, et al. Acellular fraction of ovarian cancer ascites induce apoptosis by activating JNK and inducing BRCA1, Fas and FasL expression in ovarian cancer cells[J]. Oncoscience, 2014, 1(4): 262-271.
[30] Desantis C, Ma J M, Bryan L, et al. Breast Cancer Statistics, 2013[J]. Ca-a Cancer Journal for Clinicians, 2014, 64(1): 52-62.
[31] Cao W, Chen H-D, Yu Y-W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chinese Medical Journal, 2021, 134(7): 783-791.
[32] Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chinese Medical Journal, 2022.
[33] Wang Y-J, Wang F, Yu L-X, et al. Worldwide review with meta-analysis of women's awareness about breast cancer[J]. Patient education and counseling, 2021.
[34] Kuchenbaecker K B, Hopper J L, Barnes D R, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers[J]. JAMA - Journal of the American Medical Association, 2017, 317(23): 2402-2416.
[35] Dorling L, Carvalho S, Allen J, et al. Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women[J]. New England Journal of Medicine, 2021, 384(5): 428-439.
[36] Nur U, El Reda D, Hashim D, et al. A prospective investigation of oral contraceptive use and breast cancer mortality: Findings from the Swedish women's lifestyle and health cohort[J]. BMC Cancer, 2019, 19(1).
[37] O'sullivan C C, Loprinzi C L, Haddad T C. Updates in the Evaluation and Management of Breast Cancer[J]. Mayo Clinic Proceedings, 2018, 93(6): 794-807.
[38] Wagner J, Rapsomaniki M A, Chevrier S, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer[J]. Cell, 2019, 177(5): 1330-1345 e1318.
[39] 涂强. lncRNAs在三阴性乳腺癌发生发展中的作用[J]. 医学信息, 2020, 33(10):3.
[40] 甘凤娇. 长链非编码RNA在乳腺癌中的研究进展[J]. 现代肿瘤医学, , 2020, 28(23):4.
[41] 郝杰. 长链非编码RNA与乳腺癌关系的研究进展[J]. 现代肿瘤医学, 2020, 28(6):4.
[42] Von Minckwitz G, Huang C S, Mano M S, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer[J]. New England Journal of Medicine, 2019, 380(7): 617-628.
[43] Gao J J, Cheng J, Bloomquist E, et al. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis[J]. The Lancet Oncology, 2020, 21(2): 250-260.
[44] Ponting C P, Oliver P L, Reik W. Evolution and Functions of Long Noncoding RNAs[J]. Cell, 2009, 136(4): 629-641.
[45] Rinn J L, Chang H Y. Genome Regulation by Long Noncoding RNAs[M]. // KORNBERG R D. Annual Review of Biochemistry, Vol 81. City, 2012: 145-166. ://WOS:000305765500008.
[46] Salmena L, Poliseno L, Tay Y, et al. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?[J]. Cell, 2011, 146(3): 353-358.
[47] Huang J Z, Chen M, Chen D, et al. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth[J]. Molecular Cell, 2017, 68(1): 171-+.
[48] 汪显坤. 长链非编码RNA及其与人类疾病之间关系的研究概述[J]. 生物学教学, 2019.
[49] Wang J C, Su Z L, Lu S N, et al. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer[J]. Clinica Chimica Acta, 2018, 485: 229-233.
[50] Gupta R A, Shah N, Wang K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-U1148.
[51] Gutschner T, Haemmerle M, Diederichs S. MALAT1- a paradigm for long noncoding RNA function in cancer[J]. Journal of Molecular Medicine-Jmm, 2013, 91(7): 791-801.
[52] Huang J, Zhou N, Watabe K, et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1)[J]. Cell Death & Disease, 2014, 5.
[53] Liu S S, Du Q Y, Rao Y, et al. Long non-coding RNA NPBWR1-2 affects the development of ovarian cancer via multiple microRNAs[J]. Oncology Letters, 2020, 20(1): 685-692.
[54] Yuan D L, Zhang X F, Zhao Y L, et al. Role of lncRNA-ATB in ovarian cancer and its mechanisms of action[J]. Experimental and Therapeutic Medicine, 2020, 19(2): 965-971.
[55] Mao T L, Fan M H, Dlamini N, et al. LncRNA MALAT1 Facilitates Ovarian Cancer Progression through Promoting Chemoresistance and Invasiveness in the Tumor Microenvironment[J]. International Journal of Molecular Sciences, 2021, 22(19).
[56] Tao F, Tian X, Lu M, et al. A novel lncRNA, Lnc-OC1, promotes ovarian cancer cell proliferation and migration by sponging miR-34a and miR-34c[J]. Journal of Genetics and Genomics, 2018, 45(3): 137-145.
[57] Wu G, Yang Z, Chen Y, et al. Downregulation of Lnc-OC1 attenuates the pathogenesis of polycystic ovary syndrome[J]. Molecular and Cellular Endocrinology, 2020, 506.
[58] Liu Y, Chang Y, Cai Y-X. Inhibition of Lnc-OC1 Induced Cell Apoptosis and Decreased Cell Viability by Releasing miR-34a and Inhibiting PD-L1 in Endometrial Carcinoma[J]. Reproductive Sciences, 2020, 27(10): 1848-1856.
[59] Mohammadzadeh A, Baradaran B, Dastmalchi N, et al. The Correlation Between Helicobacter pylori Infection and Lnc-OC1 Expression in Gastric Cancer Tissues in an Iranian Population[J]. Journal of gastrointestinal cancer, 2021, 52(2): 600-605.
[60] Morlando M, Ballarino M, Fatica A. Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia[J]. Frontiers in medicine, 2015, 2: 23.
[61] 关玉盘. 恶性腹水的诊断与鉴别诊断[J]. 中国消化内镜, 2007(10):6.
[62] Woopen H, Sehouli J. Current and Future Options in the Treatment of Malignant Ascites in Ovarian Cancer[J]. Anticancer Research, 2009, 29(8): 3353-3359.
[63] Scarberry K E, Dickerson E B, Zhang Z J, et al. Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2010, 6(3): 399-408.
[64] 邢宝玲, 郭存存, 唐正华,等. 分选卵巢癌腹水中癌细胞的实验研究[J]. 中国现代医学杂志, 2018, 28(17):7.
[65] Patriarca C, Macchi R M, Marschner A K, et al. Epithelial cell adhesion molecule expression (CD326) in cancer: A short review[J]. Cancer Treatment Reviews, 2012, 38(1): 68-75.
[66] Janku F, Tsimberidou A M, Garrido-Laguna I, et al. PIK3CA Mutations in Patients with Advanced Cancers Treated with PI3K/AKT/mTOR Axis Inhibitors[J]. Molecular Cancer Therapeutics, 2011, 10(3): 558-565.
[67] Ma N N, Li S R, Zhang Q H, et al. Long non-coding RNA GAS5 inhibits ovarian cancer cell proliferation via the control of microRNA-21 and SPRY2 expression[J]. Experimental and Therapeutic Medicine, 2018, 16(1): 73-82.
[68] Yu Y, Zhang X H, Tian H S, et al. Knockdown of long non-coding RNA HOTAIR increases cisplatin sensitivity in ovarian cancer by inhibiting cisplatin-induced autophagy[J]. Journal of Buon, 2018, 23(5): 1396-1401.
[69] Wen A P, Luo L, Du C C, et al. Long non-coding RNA miR155HG silencing restrains ovarian cancer progression by targeting the microRNA-155-5p/tyrosinase-related protein 1 axis[J]. Experimental and Therapeutic Medicine, 2021, 22(5).
[70] Puiffe M-L, Le Page C, Filali-Mouhim A, et al. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer[J]. Neoplasia, 2007, 9(10): 820-U834.
[71] Meunier L, Puiffe M-L, Le Page C, et al. Effect of Ovarian Cancer Ascites on Cell Migration and Gene Expression in an Epithelial Ovarian Cancer In Vitro Model[J]. Translational Oncology, 2010, 3(4): 230-238.
[72] Matei D, Fang F, Shen C Y, et al. Epigenetic Resensitization to Platinum in Ovarian Cancer[J]. Cancer Research, 2012, 72(9): 2197-2205.
[73] Mcauliffe S M, Morgan S L, Wyant G A, et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): E2939-E2948.
[74] Dong Y J, Feng W, Li Y. HOTTIP-miR-205-ZEB2 Axis Confers Cisplatin Resistance to Ovarian Cancer Cells[J]. Frontiers in Cell and Developmental Biology, 2021, 9.
[75] Tian X Y, Zuo X H, Hou M, et al. LncRNA-H19 regulates chemoresistance to carboplatin in epithelial ovarian cancer through microRNA-29b-3p and STAT3[J]. Journal of Cancer, 2021, 12(19): 5712-5722.
[76] Huang B, Wei M, Hong L. Long noncoding RNA HULC contributes to paclitaxel resistance in ovarian cancer via miR-137/ITGB8 axis[J]. Open Life Sciences, 2021, 16(1): 667-681.
[77] Liu S W, Zou B Y, Tian T, et al. Overexpression of the lncRNA FER1L4 inhibits paclitaxel tolerance of ovarian cancer cells via the regulation of the MAPK signaling pathway[J]. Journal of Cellular Biochemistry, 2019, 120(5): 7581-7589.
[78]Zhao Y Z, Hong L. lncRNA-PRLB Confers Paclitaxel Resistance of Ovarian Cancer Cells by Regulating RSF1/NF-kappa B Signaling Pathway[J]. Cancer Biotherapy and Radiopharmaceuticals, 2021, 36(2): 202-210.
[79] Kim J, Piao H L, Kim B J, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis[J]. Nature Genetics, 2018, 50(12): 1705-+.
[80] Liang Y R, Song X J, Li Y M, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis[J]. Molecular Cancer, 2020, 19(1).
[81] Zhao W Y, Geng D H, Li S Q, et al. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer[J]. Cancer Medicine, 2018, 7(3): 842-855.
[82] Zhu P P, He F, Hou Y X, et al. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability[J]. Oncogene, 2021, 40(9): 1609-1627.
[83] Liang J, Li Y, Daniels G, et al. LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a[J]. Molecular Cancer Research, 2015, 13(4): 681-688.
[84] Fang L-L, Sun B-F, Huang L-R, et al. Potent Inhibition of miR-34b on Migration and Invasion in Metastatic Prostate Cancer Cells by Regulating the TGF-beta Pathway[J]. International Journal of Molecular Sciences, 2017, 18(12).
[85] Tomasi M L, Cossu C, Spissu Y, et al. S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting microRNA 34a/b-methionine adenosyltransferase 2A/2B axis[J]. Oncotarget, 2017, 8(45): 78851-78869.
[86] Park E Y, Chang E, Lee E J, et al. Targeting of miR34a-NOTCH1 Axis Reduced Breast Cancer Stemness and Chemoresistance[J]. Cancer Research, 2014, 74(24): 7573-7582.
Edit Comment