中文版 | English
Title

Kindlin-2 在非酒精性脂肪肝发生进程中的作用探究

Alternative Title
The role of Kindlin-2 in the development of non-alcoholic fatty liver disease
Author
Name pinyin
ZHONG Yiming
School number
11930165
Degree
硕士
Discipline
071010 生物化学与分子生物学
Subject category of dissertation
07 理学
Supervisor
肖国芝
Mentor unit
南方科技大学医学院
Publication Years
2022-04-26
Submission date
2022-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

非酒精性脂肪性肝病(Nonalcoholic fatty liver disease,NAFLD)是目前最常见的慢性肝病,全球大约四分之一的人口患有NAFLD。但是目前为止,NAFLD的发病机制尚不完全清楚。在本研究中,我们发现在肥胖小鼠和NAFLD 患者肝脏中,Kindlin-2 表达显著上调。肝细胞Kindlin-2 单倍剂量不足可以在不影响小鼠的能量代谢的情况下,改善由高脂饮食(HFD)诱导的小鼠NAFLD 和葡萄糖不耐受。相反,在肝脏中过表达Kindlin-2 可加重NAFLD,引起肝细胞脂质代谢紊乱和炎症反应。同时体外细胞实验研究发现Kindlin-2 的c 端区域(aa 570-680)可以与FoxO1 结合。肝脏过表达FoxO1 可消除Kindlin-2 单倍剂量不足对小鼠NAFLD 的改善作用。最后,我们发现AAV8 介导的肝脏Kindlin-2 shRNA 敲低可减轻肥胖小鼠NAFLD。总的来说,我们证明Kindlin-2 可通过调节FoxO1 来预防非酒精性脂肪肝。因此本研究证明Kindlin-2 在缓解NAFLD 中发挥重要作用,为NAFLD的治疗提供了靶点。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-07
References List

[1] MACHADO M V, DIEHL A M. Pathogenesis of Nonalcoholic Steatohepatitis [J]. Gastroenterology, 2016, 150(8): 1769-77.
[2] MUNDI M S, VELAPATI S, PATEL J, et al. Evolution of NAFLD and Its Management [J]. Nutr Clin Pract, 2020, 35(1): 72-84.
[3] BYRNE C D, TARGHER G. NAFLD: a multisystem disease [J]. J Hepatol, 2015, 62(1 Suppl): S47-64.
[4] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes [J]. Hepatology, 2016, 64(1): 73-84.
[5] FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies [J]. Nat Med, 2018, 24(7): 908-22.
[6] ZHOU J, ZHOU F, WANG W, et al. Epidemiological Features of NAFLD From 1999 to 2018 in China [J]. Hepatology, 2020, 71(5): 1851-64.
[7] YOUNOSSI Z M. Non-alcoholic fatty liver disease - A global public health perspective [J]. J Hepatol, 2019, 70(3): 531-44.
[8] SINGH S, ALLEN A M, WANG Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies [J]. Clin Gastroenterol Hepatol, 2015, 13(4): 643-54 e1-9; quiz e39-40.
[9] CAUSSY C, SONI M, CUI J, et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis [J]. J Clin Invest, 2017, 127(7): 2697-704.
[10] LOOMBA R, FRIEDMAN S L, SHULMAN G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease [J]. Cell, 2021, 184(10): 2537-64.
[11] KAWANO Y, COHEN D E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease [J]. J Gastroenterol, 2013, 48(4): 434-41.
[12] KITADE H, CHEN G, NI Y, et al. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments [J]. Nutrients, 2017, 9(4).
[13] TANASE D M, GOSAV E M, COSTEA C F, et al. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD) [J]. J Diabetes Res, 2020, 2020: 3920196.
[14] SAMUEL V T, SHULMAN G I. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases [J]. Cell Metab, 2018, 27(1): 22-41.
[15] GAMBINO R, BUGIANESI E, ROSSO C, et al. Different Serum Free Fatty Acid Profiles in NAFLD Subjects and Healthy Controls after Oral Fat Load [J]. Int J Mol Sci, 2016, 17(4): 479.
[16] HONG S H, CHOI K M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences [J]. Int J Mol Sci, 2020, 21(2).
[17] HUANG J F, TSAI P C, YEH M L, et al. Risk stratification of non-alcoholic fatty liver disease across body mass index in a community basis [J]. J Formos Med Assoc, 2020, 119(1 Pt 1): 89-96.
[18] METZNER V, HERZOG G, HECKEL T, et al. Liraglutide + PYY3-36 Combination Therapy Mimics Effects of Roux-en-Y Bypass on Early NAFLD Whilst Lacking-Behind in Metabolic Improvements [J]. J Clin Med, 2022, 11(3).
[19] LI L, LIU D W, YAN H Y, et al. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies [J]. Obes Rev, 2016, 17(6): 510-9.
[20] POLYZOS S A, KOUNTOURAS J, MANTZOROS C S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics [J]. Metabolism, 2019, 92: 82-97.
[21] ZELBER-SAGI S, KESSLER A, BRAZOWSKY E, et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease [J]. Clin Gastroenterol Hepatol, 2006, 4(5): 639-44.
[22] UPADHYAY J, POLYZOS S A, PERAKAKIS N, et al. Pharmacotherapy of type 2 diabetes: An update [J]. Metabolism, 2018, 78: 13-42.
[23] ARMSTRONG M J, HULL D, GUO K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis [J]. J Hepatol, 2016, 64(2): 399-408.
[24] HANNAH W N, JR., HARRISON S A. Effect of Weight Loss, Diet, Exercise, and Bariatric Surgery on Nonalcoholic Fatty Liver Disease [J]. Clin Liver Dis, 2016, 20(2): 339-50.
[25] POLYZOS S A, KOUNTOURAS J, ANASTASIADIS S, et al. Nonalcoholic fatty liver disease: Is it time for combination treatment and a diabetes-like approach? [J]. Hepatology, 2018, 68(1): 389.
[26] FISCHER A W, CANNON B, NEDERGAARD J. Leptin: Is It Thermogenic? [J]. Endocr Rev, 2020, 41(2).
[27] WANG A N, CARLOS J, FRASER G M, et al. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model [J]. Exp Physiol, 2022.
[28] BELL-ANDERSON K S, AOUAD L, WILLIAMS H, et al. Coordinated improvement in glucose tolerance, liver steatosis and obesity-associated inflammation by cannabinoid 1 receptor antagonism in fat Aussie mice [J]. Int J Obes (Lond), 2011, 35(12): 1539-48.
[29] DE FRANCESCHI N, HAMIDI H, ALANKO J, et al. Integrin traffic - the update [J]. J Cell Sci, 2015, 128(5): 839-52.
[30] MORENO-LAYSECA P, ICHA J, HAMIDI H, et al. Integrin trafficking in cells and tissues [J]. Nat Cell Biol, 2019, 21(2): 122-32.
[31] HUMPHRIES J D, BYRON A, HUMPHRIES M J. Integrin ligands at a glance [J]. J Cell Sci, 2006, 119(Pt 19): 3901-3.
[32] ARRUDA MACEDO J K, FOX J W, DE SOUZA CASTRO M. Disintegrins from snake venoms and their applications in cancer research and therapy [J]. Curr Protein Pept Sci, 2015, 16(6): 532-48.
[33] HUSSEIN H A, WALKER L R, ABDEL-RAOUF U M, et al. Beyond RGD: virus interactions with integrins [J]. Arch Virol, 2015, 160(11): 2669-81.
[34] SUN Z, COSTELL M, FASSLER R. Integrin activation by talin, kindlin and mechanical forces [J]. Nat Cell Biol, 2019, 21(1): 25-31.
[35] LI Q, LAN T, XIE J, et al. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications [J]. Front Oncol, 2022, 12: 812480.
[36] WILKINSON A L, BARRETT J W, SLACK R J. Pharmacological characterisation of a tool alphavbeta1 integrin small molecule RGD-mimetic inhibitor [J]. Eur J Pharmacol, 2019, 842: 239-47.
[37] SCOTTON C J, CHAMBERS R C. Bleomycin revisited: towards a more representative model of IPF? [J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299(4): L439-41.
[38] HORAN G S, WOOD S, ONA V, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation [J]. Am J Respir Crit Care Med, 2008, 177(1): 56-65.
[39] WEINREB P H, SIMON K J, RAYHORN P, et al. Function-blocking integrin alphavbeta6 monoclonal antibodies: distinct ligand-mimetic and nonligand-mimetic classes [J]. J Biol Chem, 2004, 279(17): 17875-87.
[40] HENDERSON N C, ARNOLD T D, KATAMURA Y, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs [J]. Nat Med, 2013, 19(12): 1617-24.
[41] WANG B, DOLINSKI B M, KIKUCHI N, et al. Role of alphavbeta6 integrin in acute biliary fibrosis [J]. Hepatology, 2007, 46(5): 1404-12.
[42] HAHM K, LUKASHEV M E, LUO Y, et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse [J]. Am J Pathol, 2007, 170(1): 110-25.
[43] ELEZ E, KOCAKOVA I, HOHLER T, et al. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial [J]. Ann Oncol, 2015, 26(1): 132-40.
[44] READER C S, VALLATH S, STEELE C W, et al. The integrin alphavbeta6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy [J]. J Pathol, 2019, 249(3): 332-42.
[45] MOORE K M, THOMAS G J, DUFFY S W, et al. Therapeutic targeting of integrin alphavbeta6 in breast cancer [J]. J Natl Cancer Inst, 2014, 106(8).
[46] WICK M, B RGER C, BR SSELBACH S, et al. Identification of serum-inducible genes: different patterns of gene regulation during G0-->S and G1-->S progression [J]. J Cell Sci, 1994, 107 ( Pt 1): 227-39.
[47] USSAR S, WANG H V, LINDER S, et al. The Kindlins: subcellular localization and expression during murine development [J]. Exp Cell Res, 2006, 312(16): 3142-51.
[48] LAI-CHEONG J E, PARSONS M, MCGRATH J A. The role of kindlins in cell biology and relevance to human disease [J]. Int J Biochem Cell Biol, 2010, 42(5): 595-603.
[49] ROGNONI E, WIDMAIER M, JAKOBSON M, et al. Kindlin-1 controls Wnt and TGF-beta availability to regulate cutaneous stem cell proliferation [J]. Nat Med, 2014, 20(4): 350-9.
[50] MONTANEZ E, USSAR S, SCHIFFERER M, et al. Kindlin-2 controls bidirectional signaling of integrins [J]. Genes Dev, 2008, 22(10): 1325-30.
[51] DOWLING J J, GIBBS E, RUSSELL M, et al. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function [J]. Circ Res, 2008, 102(4): 423-31.
[52] BIALKOWSKA K, MA Y Q, BLEDZKA K, et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell [J]. J Biol Chem, 2010, 285(24): 18640-9.
[53] MOSER M, NIESWANDT B, USSAR S, et al. Kindlin-3 is essential for integrin activation and platelet aggregation [J]. Nat Med, 2008, 14(3): 325-30.
[54] KUIJPERS T W, VAN DE VIJVER E, WETERMAN M A, et al. LAD-1/variant syndrome is caused by mutations in FERMT3 [J]. Blood, 2009, 113(19): 4740-6.
[55] KARAKOSE E, SCHILLER H B, FASSLER R. The kindlins at a glance [J]. J Cell Sci, 2010, 123(Pt 14): 2353-6.
[56] MA Y Q, QIN J, WU C, et al. Kindlin-2 (Mig-2): a co-activator of beta3 integrins [J]. J Cell Biol, 2008, 181(3): 439-46.
[57] HARBURGER D S, BOUAOUINA M, CALDERWOOD D A. Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activation effects [J]. J Biol Chem, 2009, 284(17): 11485-97.
[58] ZHU L, LIU H, LU F, et al. Structural Basis of Paxillin Recruitment by Kindlin-2 in Regulating Cell Adhesion [J]. Structure, 2019, 27(11): 1686-97 e5.
[59] LIU J, DAS M, YANG J, et al. Structural mechanism of integrin inactivation by filamin [J]. Nat Struct Mol Biol, 2015, 22(5): 383-9.
[60] GUAN S Y, CHNG C P, ONG L T, et al. The binding interface of kindlin-2 and ILK involves Asp344/Asp352/Thr356 in kindlin-2 and Arg243/Arg334 in ILK [J]. FEBS Lett, 2018, 592(1): 112-21.
[61] THEODOSIOU M, WIDMAIER M, BOTTCHER R T, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin [J]. Elife, 2016, 5: e10130.
[62] SUN Y, GUO C, MA P, et al. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor alpha Suppresses Rac1 Activation and Podocyte Injury [J]. J Am Soc Nephrol, 2017, 28(12): 3545-62.
[63] BOTTCHER R T, VEELDERS M, ROMBAUT P, et al. Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading [J]. J Cell Biol, 2017, 216(11): 3785-98.
[64] YU Y, WU J, WANG Y, et al. Kindlin 2 forms a transcriptional complex with beta-catenin and TCF4 to enhance Wnt signalling [J]. EMBO Rep, 2012, 13(8): 750-8.
[65] BRAHME N N, HARBURGER D S, KEMP-O'BRIEN K, et al. Kindlin binds migfilin tandem LIM domains and regulates migfilin focal adhesion localization and recruitment dynamics [J]. J Biol Chem, 2013, 288(49): 35604-16.
[66] MEVES A, STREMMEL C, GOTTSCHALK K, et al. The Kindlin protein family: new members to the club of focal adhesion proteins [J]. Trends Cell Biol, 2009, 19(10): 504-13.
[67] SILVA JUNIOR G B, BENTES A C, DAHER E F, et al. Obesity and kidney disease [J]. J Bras Nefrol, 2017, 39(1): 65-9.
[68] CHYLIKOVA J, DVORACKOVA J, TAUBER Z, et al. M1/M2 macrophage polarization in human obese adipose tissue [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2018, 162(2): 79-82.
[69] QI L, CHI X, ZHANG X, et al. Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy [J]. Cell Death Dis, 2019, 10(12): 890.
[70] HE X, SONG J, CAI Z, et al. Kindlin-2 deficiency induces fatal intestinal obstruction in mice [J]. Theranostics, 2020, 10(14): 6182-200.
[71] ZHU K, LAI Y, CAO H, et al. Kindlin-2 modulates MafA and beta-catenin expression to regulate beta-cell function and mass in mice [J]. Nat Commun, 2020, 11(1): 484.
[72] WU C, JIAO H, LAI Y, et al. Kindlin-2 controls TGF-beta signalling and Sox9 expression to regulate chondrogenesis [J]. Nat Commun, 2015, 6: 7531.
[73] CAO H, YAN Q, WANG D, et al. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice [J]. Bone Res, 2020, 8: 2.
[74] CHEN S, WU X, LAI Y, et al. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc [J]. Bone Res, 2022, 10(1): 5.
[75] CHI X, LUO W, SONG J, et al. Kindlin-2 in Sertoli cells is essential for testis development and male fertility in mice [J]. Cell Death Dis, 2021, 12(6): 604.
[76] WANG H, WANG C, LONG Q, et al. Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway [J]. Development, 2021, 148(10).
[77] LARJAVA H, PLOW E F, WU C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion [J]. EMBO Rep, 2008, 9(12): 1203-8.
[78] !!! INVALID CITATION !!!
[79].
[79] AVILA-FLORES A, ARRANZ-NICOLAS J, MERIDA I. Transcriptional Activity of FOXO Transcription Factors Measured by Luciferase Assays [J]. Methods Mol Biol, 2019, 1890: 91-102.
[80] ISKANDAR K, CAO Y, HAYASHI Y, et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake [J]. Am J Physiol Endocrinol Metab, 2010, 298(4): E787-98.
[81] HOMAN E P, BRANDAO B B, SOFTIC S, et al. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue [J]. J Clin Invest, 2021, 131(19).
[82] KANDULA V, KOSURU R, LI H, et al. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy [J]. Cardiovasc Diabetol, 2016, 15: 44.
[83] GUO L, CAI T, CHEN K, et al. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ [J]. J Cell Biol, 2018, 217(4): 1431-51.
[84] DU S, ZHENG H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases [J]. Cell Biosci, 2021, 11(1): 188.
[85] KITA M, NAKAE J, KAWANO Y, et al. Zfp238 Regulates the Thermogenic Program in Cooperation with Foxo1 [J]. iScience, 2019, 12: 87-101.
[86] DING H R, TANG Z T, TANG N, et al. Protective Properties of FOXO1 Inhibition in a Murine Model of Non-alcoholic Fatty Liver Disease Are Associated With Attenuation of ER Stress and Necroptosis [J]. Front Physiol, 2020, 11: 177.
[87] VALENTI L, RAMETTA R, DONGIOVANNI P, et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis [J]. Diabetes, 2008, 57(5): 1355-62.
[88] MATSUMOTO M, HAN S, KITAMURA T, et al. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism [J]. J Clin Invest, 2006, 116(9): 2464-72.
[89] LI J, CHI Y, WANG C, et al. Pancreatic-derived factor promotes lipogenesis in the mouse liver: role of the Forkhead box 1 signaling pathway [J]. Hepatology, 2011, 53(6): 1906-16.
[90] MATSUMOTO M, POCAI A, ROSSETTI L, et al. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver [J]. Cell Metab, 2007, 6(3): 208-16.
[91] ZHANG L, ZHANG Z, LI C, et al. S100A11 Promotes Liver Steatosis via FOXO1-Mediated Autophagy and Lipogenesis [J]. Cell Mol Gastroenterol Hepatol, 2021, 11(3): 697-724.

Academic Degree Assessment Sub committee
医学院
Domestic book classification number
Q591
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343021
DepartmentSchool of Medicine
Recommended Citation
GB/T 7714
钟一鸣. Kindlin-2 在非酒精性脂肪肝发生进程中的作用探究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930165-钟一鸣-南方科技大学医(5276KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[钟一鸣]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[钟一鸣]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[钟一鸣]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.