[1] 王亚楠, 吴思缈, 刘鸣. 中国脑卒中15年变化趋势和特点 [J]. 华西医学, 2021, 36(06): 803-807.
[2] Nam Y, Koo B, Cichocki A, et al. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control [J]. IEEE Transactions on Biomedical Engineering, 2013, 61(2): 453-462.
[3] Farina D, Merletti R, Enoka R M. The extraction of neural strategies from the surface EMG [J]. Journal of applied physiology, 2004, 96(4): 1486-1495.
[4] 吴宸宇. 柔性电极的发展与应用前景 [J]. 中国高新科技, 2019(09): 105-107.
[5] Chan A D C, Englehart K B. Continuous myoelectric control for powered prostheses using hidden Markov models [J]. IEEE Transactions on biomedical engineering, 2004, 52(1): 121-124.
[6] Hu X, Wang Z, Ren X. Classification of surface EMG signal using relative wavelet packet energy [J]. Computer methods and programs in biomedicine, 2005, 79(3): 189-195.
[7] Englehart K, Hudgins B, Parker P A, et al. Classification of the myoelectric signal using time-frequency based representations [J]. Medical engineering & physics, 1999, 21(6-7): 431-438.
[8] 徐瑞, 李志才, 王雯婕, 王紫尧, 明东. 基于肌电的人机交互控制策略及其应用与挑战 [J]. 电子测量与仪器学报, 2020, 34(02): 1-11.
[9] 石月. 柔性电极制备及导电聚合物修饰研究 [D]. 北京印刷学院, 2021.
[10] Xie K, Zhang S, Dong S, et al. Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment [J]. Scientific reports, 2017, 7(1): 1-8.
[11] Tang L J, Wang M H, Tian H C, et al. Progress in research of flexible MEMS microelectrodes for neural interface [J]. Micromachines, 2017, 8(9): 281.
[12] 吴军. 聚酰亚胺表面高功率脉冲磁控溅射技术制备Cu膜工艺研究 [D]. 哈尔滨工业大学, 2020.
[13] Lapatki B G, Van Dijk J P, Jonas I E, et al. A thin, flexible multielectrode grid for high-density surface EMG [J]. Journal of Applied Physiology, 2004, 96(1): 327-336.
[14] 董中飞, 陈香, 邓浩, 张永强. 柔性同心圆差分阵列表面肌电电极研制 [J]. 电子测量与仪器学报, 2012, 26(04): 359-366.
[15] Corporation H P. Applied computational intelligence and soft computing [J]. Hindawi Limited, 2008, 2010(10):752-63.
[16] 曹玉珍, 陈成, 胡勇, 刘洪涛. 基于独立成份分析的肌电信号消噪方法研究 [J]. 信号处理, 2003(04): 369-372.
[17] Graupe D, Cline W K. Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1975 (2): 252-259.
[18] Saridis G N, Gootee T P. EMG pattern analysis and classification for a prosthetic arm [J]. IEEE Transactions on Biomedical Engineering, 1982 (6): 403-412.
[19] Zardoshti-Kermani M, Wheeler B C, Badie K, et al. EMG feature evaluation for movement control of upper extremity prostheses [J]. IEEE Transactions on Rehabilitation Engineering, 1995, 3(4): 324-333.
[20] 韩晓新, 邢绍邦, 刘海燕, 朱品伟, 胡春华, 沃松林. 基于EMG频域特征的假肢机电信号识别研究 [J]. 测试技术学报, 2011, 25(04): 346-350.
[21] Gant L, Fethke N, Gerr F. Spectral analysis of root-mean-square processed surface electromyography data as a measure of repetitive muscular exertion [C]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Sage CA: Los Angeles, CA: SAGE Publications, 2012, 56(1): 1140-1144.
[22] 蔡立羽, 王志中, 张海虹. 基于短时傅里叶变换的肌电信号识别方法 [J]. 中国医疗器械杂志, 2000(03): 133-136.
[23] Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control [J]. IEEE transactions on biomedical engineering, 2003, 50(7): 848-854.
[24] Almström C, Herberts P, Körner L. Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals [J]. International orthopaedics, 1981, 5(1): 15-21.
[25] 王人成, 黄昌华, 李波, 金德闻, 张济川. 基于BP神经网络的表面肌电信号模式分类的研究 [J]. 中国医疗器械杂志, 1998(02): 63-66.
[26] Saponas T S, Tan D S, Morris D, et al. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces [C]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2008: 515-524.
[27] Villarejo J J, Frizera A, Bastos T F, et al. Pattern recognition of hand movements with low density sEMG for prosthesis control purposes [C]. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). IEEE, 2013: 1-6.
[28] Veer K, Sharma T. A novel feature extraction for robust EMG pattern recognition [J]. Journal of medical engineering & technology, 2016, 40(4): 149-154.
[29] Yi Z, Lingling D, Yuan L, et al. Design of a surface EMG based human-machine interface for an intelligent wheelchair [C]. IEEE 2011 10th International Conference on Electronic Measurement & Instruments. IEEE, 2011, 3: 132-136.
[30] 刘建伟. 肌电控制接口的自适应方法研究 [D]. 上海交通大学, 2016.
[31] He J, Sheng X, Zhu X, et al. Electrode density affects the robustness of myoelectric pattern recognition system with and without electrode shift [J]. IEEE journal of biomedical and health informatics, 2018, 23(1): 156-163.
[32] 邱青菊. 表面肌电信号的特征提取与模式分类研究 [D]. 上海交通大学, 2009.
[33] Li G, Schultz A E, Kuiken T A. Quantifying pattern recognition—Based myoelectric control of multifunctional transradial prostheses [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(2): 185-192.
[34] 王涛. 基于表面肌电信号的多自由度假肢控制算法及系统研究 [D]. 重庆大学, 2016.
[35] 马丽. 基于表面肌电信号的手指活动模式检测 [D]. 重庆大学, 2008.
[36] 李醒飞, 朱嘉, 杨晶晶, 张国雄, 卢志扬. 基于肌电信号的人手运动状态的辨识 [J]. 中国生物医学工程学报, 2007(02): 166-169.
[37] 李会军, 宋爱国. 上肢康复训练机器人的研究进展及前景 [J]. 机器人技术与应用, 2006(04): 32-36.
[38] Huang H, Ingalls T, Olson L, et al. Interactive multimodal biofeedback for task-oriented neural rehabilitation [C]. 2005 IEEE engineering in medicine and biology 27th annual conference. IEEE, 2006: 2547-2550.
[39] 徐宝国, 彭思, 宋爱国. 基于运动想象脑电的上肢康复机器人 [J]. 机器人, 2011, 33(03): 307-313.
[40] 张冬蕊, 耿艳娟, 徐礼胜, 张秀峰, 李光林. 虚拟现实手部康复训练系统的设计与实现 [J]. 集成技术, 2013, 2(04): 32-38.
[41] OREHAB-ARM智能康复训练[EB/OL].http://www.oymotion.com/product44/103
[2021-11-18]
[42] Xiang Z, Yen S C, Sheshadri S, et al. Progress of Flexible Electronics in Neural Interfacing–A Self‐Adaptive Non‐Invasive Neural Ribbon Electrode for Small Nerves Recording [J]. Advanced Materials, 2016, 28(22): 4472-4479.
[43] Tang L J, Wang M H, Tian H C, et al. Progress in research of flexible MEMS microelectrodes for neural interface [J]. Micromachines, 2017, 8(9): 281.
[44] Ferro M D, Melosh N A. Electronic and ionic materials for neurointerfaces [J]. Advanced Functional Materials, 2018, 28(12): 1704335.
[45] 路敦强, 王为, 陈永鹏. 基于ADS1298的表面肌电采集系统设计 [J]. 天津师范大学学报(自然科学版), 2015, 35(01): 34-37.
[46] 薛金伟. 面向前臂截肢患者的虚拟现实康复方法研究 [D]. 中国科学院大学(中国科学院深圳先进技术研究院), 2020.
[47] 班帅. 人体上肢表面肌电信号采集与处理的研究 [D]. 东北大学, 2012.
[48] Boschmann A, Platzner M. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array [C]. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012: 4324-4327.
[49] Zhou P, Lowery M M, Englehart K B, et al. Decoding a new neural–machine interface for control of artificial limbs [J]. Journal of neurophysiology, 2007, 98(5): 2974-2982.
[50] Hargrove L, Englehart K, Hudgins B. The effect of electrode displacements on pattern recognition based myoelectric control [C]. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006: 2203-2206.
[51] 李强. 表面肌电信号的运动单位动作电位检测 [D]. 中国科学技术大学, 2008.
[52] Inbar G F, Paiss O, Allin J, et al. Monitoring surface EMG spectral changes by the zero crossing rate [J]. Medical and Biological Engineering and Computing, 1986, 24(1): 10-18.
[53] Phinyomark A, Phukpattaranont P, Limsakul C. Feature reduction and selection for EMG signal classification [J]. Expert systems with applications, 2012, 39(8): 7420-7431.
[54] Adewuyi A A, Hargrove L J, Kuiken T A. Evaluating EMG feature and classifier selection for application to partial-hand prosthesis control [J]. Frontiers in neurorobotics, 2016, 10: 15.
[55] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 60-121.
[56] Kumar S, Kumar D K, Alemu M, et al. EMG based voice recognition [C]. Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004. IEEE, 2004: 593-597.
Edit Comment