中文版 | English
Title

基于瞬态电热技术的石墨烯纤维热输运特性调控和机理研究

Alternative Title
STUDY ON THERMAL TRANSPORT PROPERTIES AND ITS REGULATION MECHANISM OF GRAPHENE FIBER BASED ON TRANSIENT ELECTRO-THERMAL TECHNIQUE
Author
Name pinyin
GAO Enze
School number
12032282
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
汪正平
Mentor unit
中国科学院深圳先进技术研究院
Publication Years
2022-05-11
Submission date
2022-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

随着集成电路的高集成化和高功率化,散热问题已成为制约先进微电子制造业发展的瓶颈问题之一。然而相对于层出不穷的新型热管理材料,相关的导热机理研究受限于导热性能表征严格的实验条件,进展缓慢。在传热领域的研究中,理解和设计材料的热导率一直是工程热物理中的一项长期挑战。本文基于一种瞬态电热测量技术对石墨烯纤维热扩散系数的表征,通过声子散射机理分析,研究不同退火还原工艺下石墨烯纤维的变化规律,进而实现对石墨烯纤维性能的调控。同时,研究了两种不同工艺的石墨烯纤维膜的热扩散系数,并探究其传热机制。

首先,本文采用高温退火调控还原氧化石墨烯纤维性能,通过控制不同退火温度,得到具有不同导热导电性能的石墨烯纤维,研究其性能变化规律及机理。Raman光谱结果显示更高的退火温度可以去除含氧官能团,消除结构缺陷,改善晶粒尺寸,因此随着退火温度提高,声子运输的平均自由程增大。并且采取适当的退火工艺,可使部分还原氧化石墨烯纤维具有良好的热辐射敏感度。

进一步,本文采用焦耳退火替代高温退火细化调控过程,相比于高温退火,焦耳退火效率更高,耗时更短。随着退火电流增大,由于前一次退火中部分无序结构转变为有序结构,后一次退火时间会较前一次退火有所缩短。研究了经退火达到较高石墨化程度的部分还原氧化石墨烯纤维的热扩散系数在低温下的变化规律,其在低温下因Umklapp散射、缺陷散射与边界散射对热传导影响比重的改变,会出现非单调性的变化趋势。

最后,使用瞬态电热技术表征了两种使用不同工艺制备的石墨烯纤维膜的热扩散系数并进一步探究其传热机制。一系列形貌与结构表征显示造成两者传热能力差别的微观原因为晶粒取向,宏观原因为石墨烯纤维的排布取向。引入阻温系数的概念揭示了导致两种石墨烯纤维膜热性能差异的另一个原因是缺陷程度,缺陷程度更高的材料会具有更低的热扩散系数。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07
References List

[1] WALDROP M M. The Chips Are Down for Moore’s Law [J]. Nature News, 2016, 530(7589): 144.
[2] BALL P. Computer Engineering: Feeling the Heat [J]. Nature, 2012, 492(7428): 174-176.
[3] CHU S, MAJUMDAR A. Opportunities and Challenges for a Sustainable Energy Future [J]. Nature, 2012, 488(7411): 294-303.
[4] 何鹏, 耿慧远. 先进热管理材料研究进展 [J]. 材料工程, 2018, 46(4): 11.
[5] XU Z, GAO C. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres [J]. Nature Communications, 2011, 2(1): 571.
[6] XIN G, YAO T, SUN H, et al. Highly Thermally Conductive and Mechanically Strong Graphene Fibers [J]. Science, 2015, 349(6252): 1083-1087.
[7] CHENG Y, CUI G, LIU C, et al. Electric Current Aligning Component Units During Graphene Fiber Joule Heating [J]. Advanced Functional Materials, 2021, n/a(n/a): 2103493.
[8] GAO J, ZOBEIRI H, LIN H, et al. Coherency between Thermal and Electrical Transport of Partly Reduced Graphene Paper [J]. Carbon, 2021, 178: 92-102.
[9] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展 [J]. 物理学报, 2020, (19 vo 69): 37-69.
[10] KIM P, SHI L, MAJUMDAR A, et al. Thermal Transport Measurements of Individual Multiwalled Nanotubes [J]. Physical Review Letters, 2001, 87(21): 215502.
[11] HONE J, WHITNEY M, PISKOTI C, et al. Thermal Conductivity of Single-Walled Carbon Nanotubes [J]. Physical Review B, 1999, 59(4): R2514-R2516.
[12] HOCHBAUM A I, CHEN R, DELGADO R D, et al. Enhanced Thermoelectric Performance of Rough Silicon Nanowires [J]. Nature, 2008, 451(7175): 163-167.
[13] WANG Z, XIE R, BUI C T, et al. Thermal Transport in Suspended and Supported Few-Layer Graphene [J]. Nano Letters, 2011, 11(1): 113-118.
[14] AIYITI A, BAI X, WU J, et al. Measuring the Thermal Conductivity and Interfacial Thermal Resistance of Suspended Mos2 Using Electron Beam Self-Heating Technique [J]. Science Bulletin, 2018, 63(7): 452-458.
[15] DONG L, XI Q, CHEN D, et al. Dimensional Crossover of Heat Conduction in Amorphous Polyimide Nanofibers [J]. National Science Review, 2018, 5(4): 500-506.
[16] CAI Q, SCULLION D, GAN W, et al. High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion [J]. Science Advances, 5(6): eaav0129.
[17] BALANDIN A A, GHOSH S, BAO W, et al. Superior Thermal Conductivity of Single-Layer Graphene [J]. Nano Letters, 2008, 8(3): 902-907.
[18] REPARAZ J S, CHAVEZ-ANGEL E, WAGNER M R, et al. A Novel Contactless Technique for Thermal Field Mapping and Thermal Conductivity Determination: Two-Laser Raman Thermometry [J]. Review of Scientific Instruments, 2014, 85(3): 034901.
[19] CALIZO I, BALANDIN A A, BAO W, et al. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers [J]. Nano Letters, 2007, 7(9): 2645-2649.
[20] YAN R, SIMPSON J R, BERTOLAZZI S, et al. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy [J]. ACS Nano, 2014, 8(1): 986-993.
[21] DOERK G S, CARRARO C, MABOUDIAN R. Single Nanowire Thermal Conductivity Measurements by Raman Thermography [J]. ACS Nano, 2010, 4(8): 4908-4914.
[22] JIANG P, QIAN X, YANG R. Tutorial: Time-Domain Thermoreflectance (Tdtr) for Thermal Property Characterization of Bulk and Thin Film Materials [J]. Journal of Applied Physics, 2018, 124(16): 161103.
[23] EESLEY G L. Observation of Nonequilibrium Electron Heating in Copper [J]. Physical Review Letters, 1983, 51(23): 2140-2143.
[24] ISLAM A, VAN DEN AKKER A, FENG P X L. Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy [J]. Nano Letters, 2018, 18(12): 7683-7691.
[25] SOOD A, XIONG F, CHEN S, et al. Quasi-Ballistic Thermal Transport across Mos2 Thin Films [J]. Nano Letters, 2019, 19(4): 2434-2442.
[26] JIANG P, QIAN X, GU X, et al. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides Mx2 (M = Mo, W and X = S, Se) Using Time-Domain Thermoreflectance [J]. Advanced Materials, 2017, 29(36): 1701068.
[27] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity [J]. Journal of Applied Physics, 1961, 32(9): 1679-1684.
[28] BLUMM J, LINDEMANN A, MIN S. Thermal Characterization of Liquids and Pastes Using the Flash Technique [J]. Thermochimica Acta, 2007, 455(1): 26-29.
[29] LIN W, SHANG J, GU W, et al. Parametric Study of Intrinsic Thermal Transport in Vertically Aligned Multi-Walled Carbon Nanotubes Using a Laser Flash Technique [J]. Carbon, 2012, 50(4): 1591-1603.
[30] GUO J, WANG X, WANG T. Thermal Characterization of Microscale Conductive and Nonconductive Wires Using Transient Electrothermal Technique [J]. Journal of Applied Physics, 2007, 101(6): 063537.
[31] LIN H, LIU X, KOU A, et al. One-Dimensional Thermal Characterization at the Micro/Nanoscale: Review of the Tet Technique [J]. International Journal of Thermophysics, 2019, 40(12): 108.
[32] XIE Y, XU S, XU Z, et al. Interface-Mediated Extremely Low Thermal Conductivity of Graphene Aerogel [J]. Carbon, 2016, 98: 381-390.
[33] DENG C, SUN Y, PAN L, et al. Thermal Diffusivity of a Single Carbon Nanocoil: Uncovering the Correlation with Temperature and Domain Size [J]. ACS Nano, 2016, 10(10): 9710-9719.
[34] KAISER A B, GóMEZ-NAVARRO C, SUNDARAM R S, et al. Electrical Conduction Mechanism in Chemically Derived Graphene Monolayers [J]. Nano Letters, 2009, 9(5): 1787-1792.
[35] ZHU B, WANG R, HARRISON S, et al. Thermal Conductivity of Sic Microwires: Effect of Temperature and Structural Domain Size Uncovered by 0 K Limit Phonon Scattering [J]. Ceramics International, 2018, 44(10): 11218-11224.
[36] HAN M, XIE Y, LIU J, et al. Significantly Reducedc-Axis Thermal Diffusivity of Graphene-Based Papers [J]. Nanotechnology, 2018, 29(26): 265702.
[37] GAO J, XIE D, WANG X, et al. High Thermal Conductivity of Free-Standing Skeleton in Graphene Foam [J]. Applied Physics Letters, 2020, 117(25): 251901.
[38] BALANDIN A A, GHOSH S, TEWELDEBRHAN D, et al. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Silicon Nanoelectronics; proceedings of the 2008 IEEE Silicon Nanoelectronics Workshop, F 15-16 June 2008, 2008 [C].
[39] GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits [J]. Applied Physics Letters, 2008, 92(15): 151911.
[40] CAI W, MOORE A L, ZHU Y, et al. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J]. Nano Letters, 2010, 10(5): 1645-1651.
[41] FAUGERAS C, FAUGERAS B, ORLITA M, et al. Thermal Conductivity of Graphene in Corbino Membrane Geometry [J]. ACS Nano, 2010, 4(4): 1889-1892.
[42] LEE J-U, YOON D, KIM H, et al. Thermal Conductivity of Suspended Pristine Graphene Measured by Raman Spectroscopy [J]. Physical Review B, 2011, 83(8): 081419.
[43] LI Q-Y, XIA K, ZHANG J, et al. Measurement of Specific Heat and Thermal Conductivity of Supported and Suspended Graphene by a Comprehensive Raman Optothermal Method [J]. Nanoscale, 2017, 9(30): 10784-10793.
[44] CHEN S, MOORE A L, CAI W, et al. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments [J]. ACS Nano, 2011, 5(1): 321-328.
[45] PETTES M T, JO I, YAO Z, et al. Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene [J]. Nano Letters, 2011, 11(3): 1195-1200.
[46] XU X, PEREIRA L F C, WANG Y, et al. Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene [J]. Nature Communications, 2014, 5(1): 3689.
[47] YOON K, HWANG G, CHUNG J, et al. Measuring the Thermal Conductivity of Residue-Free Suspended Graphene Bridge Using Null Point Scanning Thermal Microscopy [J]. Carbon, 2014, 76: 77-83.
[48] VASKO F T, RYZHII V. Photoconductivity of Intrinsic Graphene [J]. Physical Review B, 2008, 77(19): 195433.
[49] DAWLATY J M, SHIVARAMAN S, STRAIT J, et al. Measurement of the Optical Absorption Spectra of Epitaxial Graphene from Terahertz to Visible [J]. Applied Physics Letters, 2008, 93(13): 131905.
[50] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine Structure Constant Defines Visual Transparency of Graphene [J]. Science, 2008, 320(5881): 1308-1308.
[51] KUZMENKO A B, VAN HEUMEN E, CARBONE F, et al. Universal Optical Conductance of Graphite [J]. Physical Review Letters, 2008, 100(11): 117401.
[52] KALUGIN N G, JING L, BAO W, et al. Graphene-Based Quantum Hall Effect Infrared Photodetector Operating at Liquid Nitrogen Temperatures [J]. Applied Physics Letters, 2011, 99(1): 013504.
[53] YAN J, KIM M H, ELLE J A, et al. Dual-Gated Bilayer Graphene Hot-Electron Bolometer [J]. Nature Nanotechnology, 2012, 7(7): 472-478.
[54] VORA H, KUMARAVADIVEL P, NIELSEN B, et al. Bolometric Response in Graphene Based Superconducting Tunnel Junctions [J]. Applied Physics Letters, 2012, 100(15): 153507.
[55] DICKERSON W, HEMSWORTH N, GASKELL P, et al. Bolometric Response of Free-Standing Reduced Graphene Oxide Films [J]. Applied Physics Letters, 2015, 107(24): 243103.
[56] HAN Q, GAO T, ZHANG R, et al. Highly Sensitive Hot Electron Bolometer Based on Disordered Graphene [J]. Scientific Reports, 2013, 3(1): 3533.
[57] EL FATIMY A, MYERS-WARD R L, BOYD A K, et al. Epitaxial Graphene Quantum Dots for High-Performance Terahertz Bolometers [J]. Nature Nanotechnology, 2016, 11(4): 335-338.
[58] EVLASHIN S, DYAKONOV P, KHMELNITSKY R, et al. Controllable Laser Reduction of Graphene Oxide Films for Photoelectronic Applications [J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28880-28887.
[59] FERRARI A C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects [J]. Solid State Communications, 2007, 143(1): 47-57.
[60] FERRARI A C, ROBERTSON J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon [J]. Physical Review B, 2000, 61(20): 14095-14107.
[61] MATTHEWS M J, PIMENTA M A, DRESSELHAUS G, et al. Origin of Dispersive Effects of the Raman D Band in Carbon Materials [J]. Physical Review B, 1999, 59(10): R6585-R6588.
[62] TUINSTRA F, KOENIG J L. Raman Spectrum of Graphite [J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130.
[63] FERRARI A C, BASKO D M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene [J]. Nature Nanotechnology, 2013, 8(4): 235-246.
[64] FERRARI A C, RODIL S E, ROBERTSON J. Interpretation of Infrared and Raman Spectra of Amorphous Carbon Nitrides [J]. Physical Review B, 2003, 67(15): 155306.
[65] XU X-L, YANG C-J, YANG J-H, et al. Excellent Dielectric Properties of Poly(Vinylidene Fluoride) Composites Based on Partially Reduced Graphene Oxide [J]. Composites Part B: Engineering, 2017, 109: 91-100.
[66] HAN Y, WANG T, GAO X, et al. Preparation of Thermally Reduced Graphene Oxide and the Influence of Its Reduction Temperature on the Thermal, Mechanical, Flame Retardant Performances of Ps Nanocomposites [J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 336-343.
[67] CHENG Q, PARADIS S, BUI T, et al. Design of Dual-Band Uncooled Infrared Microbolometer [J]. IEEE Sensors Journal, 2011, 11(1): 167-175.
[68] SUN H, WANG C, WANG B. Night Vision Pedestrian Detection Using a Forward-Looking Infrared Camera; proceedings of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, F 10-12 Jan. 2011, 2011 [C].
[69] PAOLUCCI F, LIGATO N, GERMANESE G, et al. Fully Superconducting Josephson Bolometers for Gigahertz Astronomy [J]. Applied Sciences, 2021, 11(2).
[70] MéNDEZ-RIAL R, Á S-L, RODRíGUEZ-GARCíA J, et al. A High-Speed Mwir Uncooled Multi-Aperture Snapshot Spectral Imager for Ir Surveillance and Monitoring; proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), F 4-6 Oct. 2016, 2016 [C].
[71] WU Y, QU Z, OSMAN A, et al. Nanometallic Antenna-Assisted Amorphous Silicon Waveguide Integrated Bolometer for Mid-Infrared [J]. Opt Lett, 2021, 46(3): 677-680.
[72] MICHEL J, LIU J, KIMERLING L C. High-Performance Ge-on-Si Photodetectors [J]. Nature Photonics, 2010, 4(8): 527-534.
[73] SOREF R. Mid-Infrared Photonics in Silicon and Germanium [J]. Nature Photonics, 2010, 4(8): 495-497.
[74] NORTON P. Hgcdte Infrared Detectors [J]. Opto-electronics Review, 2002, 10(3): 159-174.
[75] WEILER D, HOCHSCHULZ F, WüRFEL D, et al. Uncooled Digital Irfpa-Family with 17μm Pixel-Pitch Based on Amorphous Silicon with Massively Parallel Sigma-Delta-Adc Readout; proceedings of the ProcSPIE, F, 2014 [C].
[76] SUMESH M A, KARANTH S, PRAKASH S, et al. Ion Beam Sputtered Ge–Si–O Amorphous Thin Films for Microbolometer Infrared Detectors and Their Application in Earth Sensors [J]. Sensors and Actuators A: Physical, 2013, 192: 81-91.
[77] MATHKAR A, TOZIER D, COX P, et al. Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide [J]. The Journal of Physical Chemistry Letters, 2012, 3(8): 986-991.
[78] VLASSIOUK I, SMIRNOV S, IVANOV I, et al. Electrical and Thermal Conductivity of Low Temperature Cvd Graphene: The Effect of Disorder [J]. Nanotechnology, 2011, 22(27): 275716.
[79] BAE J J, YOON J H, JEONG S, et al. Sensitive Photo-Thermal Response of Graphene Oxide for Mid-Infrared Detection [J]. Nanoscale, 2015, 7(38): 15695-15700.
[80] GOKUS T, NAIR R R, BONETTI A, et al. Making Graphene Luminescent by Oxygen Plasma Treatment [J]. ACS Nano, 2009, 3(12): 3963-3968.
[81] XU Z, WANG X, XIE H. Promoted Electron Transport and Sustained Phonon Transport by DNA Down to 10 k [J]. Polymer, 2014, 55(24): 6373-6380.
[82] XIE Y, XU Z, XU S, et al. The Defect Level and Ideal Thermal Conductivity of Graphene Uncovered by Residual Thermal Reffusivity at the 0 K Limit [J]. Nanoscale, 2015, 7(22): 10101-10110.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TU528
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343103
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
高恩泽. 基于瞬态电热技术的石墨烯纤维热输运特性调控和机理研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032282-高恩泽-中国科学院深圳(5406KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[高恩泽]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[高恩泽]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[高恩泽]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.