中文版 | English
Title

琼脂糖水凝胶多孔阵列在构建体外肺癌仿生系统的应用

Alternative Title
Application of Porous Array using Agarose Hydrogel in Mimicking 3D Microenvironment of Lung Cancer
Author
Name pinyin
XU Yanshan
School number
12032304
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
潘浩波
Mentor unit
中国科学院深圳先进技术研究院
Tutor of External Organizations
刘鸿达
Tutor units of foreign institutions
爱绿光电
Publication Years
2022-05-07
Submission date
2022-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

  肺癌具有高发病率和高病死率,在人类健康问题中较为突出。现代医疗技术有段提供许多治疗方法包括手术、放疗、化疗、靶向治疗等。但是临床上可供选择的化疗药物与靶向药物种类繁多,与病人可承受的用药风险形成一对矛盾,所以需要开发适合的体外肿瘤仿生模型用于药物筛选。

  本研究通过三方面的条件进行调控,对仿生培养的条件组合进行探索,包括营养条件:10%FBS5%血小板裂解液(hPL)、氧气条件:正常氧气含量和2%氧气含量、二维培养和三维培养。在三维培养中利用1%琼脂糖溶液制备三维多空阵列结构的多孔阵列,实现三维培养和软性基材两方面的仿生。

  随后探索出了在不同条件组合中基因表达的差异,蛋白标志物表达的差异。探索体外构建非小细胞肺癌细胞球用于药物筛选的最佳条件。证明了5% hPL培养基、2%低氧条件的细胞球培养条件下可以促使A549细胞中更高比例的细胞表达出癌症干细胞的特征蛋白,其中包括CD133CD44EpCAM;并且在进一步的顺铂、紫杉醇、厄洛替尼和长春瑞滨的药物抗性测试中证实了该培养条件下的细胞具有更高的药物抗性,与体内肺腺癌实体瘤中细胞的异质性和存在药物抗性相类似,并进行免疫缺陷小鼠体内成瘤性实验、传代性实验和肿瘤微环境pH变化实验。未来将改进动物成瘤实验,引入多细胞共培养体系,最终用于肿瘤类器官体外培养,进而用于新药开发、高通量病人药物筛选。

Other Abstract

    Lung cancer is a prominent part of human health problems because of its high incidence rate and high mortality. Modern medical technology provides many treatment methods, including surgery, radiotherapy, chemotherapy, targeted therapy and so on. However, there are many kinds of chemotherapeutic drugs and targeted drugs that can be selected clinically, which forms a pair of contradictions with the drug risk that patients can bear.

         In this study, the combination of conditions for bionic culture was explored through the regulation of three aspects, including nutritional conditions: 10%FBS and 5% platelet lysate (hPL), oxygen conditions: normal oxygen content and 2% oxygen content, two-dimensional culture and three-dimensional culture. In three-dimensional culture, 1% agarose solution was used to prepare 3D multi-space array microporous plates to realize the bionics of 3D culture and soft substrate.

         Subsequently, differences in gene expression and protein marker expression were explored in different combinations of conditions. To explore the optimal conditions of cell spheres of non-small cell lung cancer for drug screening in vitro.It is proved that the condition of 5% hPL medium and 2% hypoxia for tumor spheroid can promote a higher proportion of A549 cells to express the characteristic protein of cancer stem cells, and the further drug resistance test confirmed that the cells under this culture condition have higher drug resistance, which is similar to the heterogeneity and drug resistance of cells in lung adenocarcinoma solid tumors in vivo. This research result can be used in the development of new drugs and the culture and amplification of patients before drug screening in the future.

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07
References List

[1] Hyuna S, Jacques F, L. S R, Mathieu L, Isabelle S, Ahmedin J, Freddie B. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA: A Cancer Journal for Clinicians, 2021, 71(3).
[2] Gelatti A C Z, Drilon A, Santini F C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) [J]. Lung cancer (Amsterdam, Netherlands), 2019, 137: 113-22.
[3] 中国非小细胞肺癌放射治疗临床指南(2020版) [J]. 中华放射肿瘤学杂志, 2020, 29(08): 599-607.
[4] Zhang Q, Rong Y, Yi K, Huang L, Chen M, Wang F. Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications [J]. Theranostics, 2020, 10(26): 12060-71.
[5] Zhao P, Zhou W, Liu C, Zhang H, Cheng Z, Wu W, Liu K, Hu H, Zhong C, Zhang Y, Zhou D, Liu F, Dai Y, Wang J, Zou C. Establishment and Characterization of a CTC Cell Line from Peripheral Blood of Breast Cancer Patient [J]. Journal of Cancer, 2019, 10(24): 6095-104.
[6] Toolan H W. Growth of human tumors in cortisone-treated laboratory animals: the possibility of obtaining permanently transplantable human tumors [J]. Cancer Res, 1953, 13(4-5): 389-94.
[7] Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, Maki R, Gaya A, Bedi A, Zacharoulis S, Ravi R, Wexler L H, Hoque M O, Rodriguez-Galindo C, Pass H, Peled N, Davies A, Morris R, Hidalgo M, Sidransky D. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors [J]. Annals of oncology : official journal of the European Society for Medical Oncology, 2017, 28(10): 2595-605.
[8] Shultz L D, Lyons B L, Burzenski L M, Gott B, Chen X, Chaleff S, Kotb M, Gillies S D, King M, Mangada J, Greiner D L, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells [J]. Journal of immunology (Baltimore, Md : 1950), 2005, 174(10): 6477-89.
[9] Morgan K M, Riedlinger G M, Rosenfeld J, Ganesan S, Pine S R. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine [J]. Frontiers in oncology, 2017, 7: 2.
[10] Wang X, Sun Y, Xu Y, Wen D, An N, Leng X, Fu G, Lu S, Chen Z. Mini-patient-derived xenograft assay based on microfluidic technology promises to be an effective tool for screening individualized chemotherapy regimens for advanced non-small cell lung cancer [J]. Cell biology international, 2021, 45(9): 1887-96.
[11] Pardal R, Clarke M F, Morrison S J. Applying the principles of stem-cell biology to cancer [J]. Nat Rev Cancer, 2003, 3(12): 895-902.
[12] Tuveson D, Clevers H. Cancer modeling meets human organoid technology [J]. Science (New York, NY), 2019, 364(6444): 952-5.
[13] Xu R, Zhou X, Wang S, Trinkle C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions [J]. Pharmacology & therapeutics, 2021, 218: 107668.
[14] Xiao W, Ren L, Chen Z, Fang L T, Zhao Y, Lack J, Guan M, Zhu B, Jaeger E, Kerrigan L, Blomquist T M, Hung T, Sultan M, Idler K, Lu C, Scherer A, Kusko R, Moos M, Xiao C, Sherry S T, Abaan O D, Chen W, Chen X, Nordlund J, Liljedahl U, Maestro R, Polano M, Drabek J, Vojta P, Kõks S, Reimann E, Madala B S, Mercer T, Miller C, Jacob H, Truong T, Moshrefi A, Natarajan A, Granat A, Schroth G P, Kalamegham R, Peters E, Petitjean V, Walton A, Shen T W, Talsania K, Vera C J, Langenbach K, de Mars M, Hipp J A, Willey J C, Wang J, Shetty J, Kriga Y, Raziuddin A, Tran B, Zheng Y, Yu Y, Cam M, Jailwala P, Nguyen C, Meerzaman D, Chen Q, Yan C, Ernest B, Mehra U, Jensen R V, Jones W, Li J L, Papas B N, Pirooznia M, Chen Y C, Seifuddin F, Li Z, Liu X, Resch W, Wang J, Wu L, Yavas G, Miles C, Ning B, Tong W, Mason C E, Donaldson E, Lababidi S, Staudt L M, Tezak Z, Hong H, Wang C, Shi L. Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing [J]. Nature biotechnology, 2021, 39(9): 1141-50.
[15] Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? [J]. Human genetics, 2016, 135(3): 359-62.
[16] Puls T J, Tan X, Husain M, Whittington C F, Fishel M L, Voytik-Harbin S L. Development of a Novel 3D Tumor-tissue Invasion Model for High-throughput, High-content Phenotypic Drug Screening [J]. Scientific reports, 2018, 8(1): 13039.
[17] Gao D, Vela I, Sboner A, Iaquinta P J, Karthaus W R, Gopalan A, Dowling C, Wanjala J N, Undvall E A, Arora V K, Wongvipat J, Kossai M, Ramazanoglu S, Barboza L P, Di W, Cao Z, Zhang Q F, Sirota I, Ran L, MacDonald T Y, Beltran H, Mosquera J M, Touijer K A, Scardino P T, Laudone V P, Curtis K R, Rathkopf D E, Morris M J, Danila D C, Slovin S F, Solomon S B, Eastham J A, Chi P, Carver B, Rubin M A, Scher H I, Clevers H, Sawyers C L, Chen Y. Organoid cultures derived from patients with advanced prostate cancer [J]. Cell, 2014, 159(1): 176-87.
[18] Jing W, Ze-hong L, James W, Lin-bo Z. Lung cancer stem cells and implications for future therapeutics [J]. Cell biochemistry and biophysics, 2014, 69(3).
[19] Virginia T, Rosa C, Renato F, Donatella M, Antonello L R, Giuseppe V, Gaetano R, Giuseppe P. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer [J]. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 2009, 36(3).
[20] Zuhal E, Ceren E, Gulperi O, Vildan B C, Zekeriya D. Effect of SIRT1 activators and inhibitors on CD44+/CD133+‑enriched non‑small cell lung cancer cells [J]. Molecular medicine reports, 2020, 22(1).
[21] Sheng L, Jian-Guo S, Jing-Bo W, Hai-Xia L, Cong-Hui Z, Tong X, Hu M, Zhong-Quan Z, Quan Y, An-Mei Z, Bo Z, Zheng-Tang C. Aberrant microRNAs expression in CD133⁺/CD326⁺ human lung adenocarcinoma initiating cells from A549 [J]. Molecules and cells, 2012, 33(3).
[22] G K, K S, Y Y, C D, M D, I P. CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients [J]. British journal of cancer, 2003, 88(2).
[23] Zhang W C, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh B S, Sun L L, Tai B C, Nga M E, Bhakoo K K, Jayapal S R, Nichane M, Yu Q, Ahmed D A, Tan C, Sing W P, Tam J, Thirugananam A, Noghabi M S, Pang Y H, Ang H S, Mitchell W, Robson P, Kaldis P, Soo R A, Swarup S, Lim E H, Lim B. Glycine Decarboxylase Activity Drives Non-Small Cell Lung Cancer Tumor-Initiating Cells and Tumorigenesis [J]. Cell, 2012, 148(5).
[24] Abdul S N, Shaik F K, Nian L M, Ling M P, Norashikin Z, Atiqah F N, Zuhairi A R A, Zubaidah Z, Hisham Y B, Puteri B. Novel triple‑positive markers identified in human non‑small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics [J]. Oncology reports, 2018, 40(2).
[25] Ohara K, Kinoshita S, Ando J, Azusawa Y, Ishii M, Harada S, Mitsuishi Y, Asao T, Tajima K, Yamamoto T, Takahashi F, Komatsu N, Takahashi K, Ando M. SCLC-J1, a novel small cell lung cancer cell line [J]. Biochemistry and biophysics reports, 2021, 27: 101089.
[26] Taniguchi H, Sen T, Rudin C M. Targeted Therapies and Biomarkers in Small Cell Lung Cancer [J]. Frontiers in oncology, 2020, 10: 741.
[27] Kayser G. [Non-small cell lung cancer. New biomarkers for diagnostics and therapy] [J]. Der Pathologe, 2015, 36 Suppl 2: 189-93.
[28] Xiewan C, Rongxia L, Dezhi L, Jianguo S. Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications [J]. Oncotarget, 2017, 8(10).
[29] Nyrop J J, Benn S J. Intratumor heterogeneity and chemotherapy-induced changes in EGFR status in non-small cell lung cancer [J]. Cancer chemotherapy and pharmacology, 2012, 69(2).
[30] Tengteng W, Donglin Z, Yong Y, Guangda Y, Hongya X, Rongming S. The application of nano-enrichment in CTC detection and the clinical significance of CTCs in non-small cell lung cancer (NSCLC) treatment [J]. PloS one, 2019, 14(7).
[31] Francesca C, G R D, Nicholas M, Sakshi G, Chris A, P P S, Cong Z, A W G, Mariam J-H, Nicolai B, Jackie P, Sik K C, Saba F, J B D, Daniel S-T, Fabio G, David M, Rajesh S, Maise A B, Crispin H, Selvaraju V, Yvonne S, Philip C, Sophia W, Barbara M, Marek D, Dhruva B, Jonathan T, Fiona B, Crispin M, Allan H, Ged B, Charles S, Caroline D. Publisher Correction: Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse [J]. Nature medicine, 2020, 26(7).
[32] DâOronzo S, Brown J, Coleman R. The role of biomarkers in the management of bone-homing malignancies [J]. Journal of Bone Oncology, 2017, 9.
[33] Maximilian H, Barbara R, Lukas K, Ernst U, Christoph W, Andreas F, Adelina P, Robert Z, Gerhard H. Effects of salinomycin and niclosamide on small cell lung cancer and small cell lung cancer circulating tumor cell lines [J]. Investigational new drugs, 2020, 38(4).
[34] Magdalena K, Aleksandra M, J Z A. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells [J]. Pathobiology : journal of immunopathology, molecular and cellular biology, 2012, 79(4).
[35] Waqas I, Saleh A, Ahmed A, Hasan M, S S K. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis [J]. Oncotarget, 2016, 7(46).
[36] Enkhbat M, Liu Y-C, Kim J, Xu Y, Yin Z, Liu T-M, Deng C-X, Zou C, Xie X, Li X, Wang P-Y. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy [J]. Advanced Therapeutics, 2021, 4(7): 2100017.
[37] Wu T, Dai Y. Tumor microenvironment and therapeutic response [J]. Cancer letters, 2017, 387: 61-8.
[38] Meads M B, Gatenby R A, Dalton W S. Environment-mediated drug resistance: a major contributor to minimal residual disease [J]. Nat Rev Cancer, 2009, 9(9): 665-74.
[39] E S, J C W. CYSTIC ORGANOID TERATOMA: (Report of a Case) [J]. Canadian Medical Association journal, 1946, 55(2).
[40] Toshiro S, G V R, J S H, Marc v d W, Nick B, E S D, H v E J, Arie A, Pekka K, J P P, Hans C. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche [J]. Nature, 2009, 459(7244).
[41] Barker N, Huch M, Kujala P, Wetering M v d, Snippert H J, Es J H v, Sato T, Stange D E, Begthel H, Born M v d, Danenberg E, Brink S v d, Korving J, Abo A, Peters P J, Wright N, Poulsom R, Clevers H. Lgr5 +ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro [J]. Cell Stem Cell, 2009, 6(1).
[42] Boj S F, Hwang C-I, Baker L A, Chio I I C, Engle D D, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector M S, Gracanin A, Oni T, Yu K H, Boxtel R v, Huch M, Rivera K D, Wilson J P, Feigin M E, Öhlund D, Handly-Santana A, Ardito-Abraham C M, Ludwig M, Elyada E, Alagesan B, Biffi G, Yordanov G N, Delcuze B, Creighton B, Wright K, Park Y. Organoid Models of Human and Mouse Ductal Pancreatic Cancer [J]. Cell, 2015, 160(1-2).
[43] Kopper O, Witte C d, Lõhmussaar K, Valle-Inclan J E, Hami N, Kester L, Balgobind A, Korving J, Proost N, Begthel H, Wijk L v, Revilla S, Theeuwsen R, Ven M v d, Roosmalen M v, Ponsioen B, Ho V, Neel B, Bosse T, Gaarenstroom K, Vrieling H, Vreeswijk M, Diest P v, Witteveen P, Jonges T, Bos J, Oudenaarden A v, Zweemer R, Snippert H, Kloosterman W, Clevers H. P119 An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity [J]. International Journal of Gynecologic Cancer, 2019, 29(Suppl 4).
[44] Jarno D, R K W, Dong G, Else D, L S C, Yu C, Hans C. Organoid culture systems for prostate epithelial and cancer tissue [J]. Nature protocols, 2016, 11(2).
[45] Sachs N, Ligt J d, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind A V, Wind K, Gracanin A, Begthel H, Korving J, Boxtel R v, Duarte A A, Lelieveld D, Hoeck A v, Ernst R F, Blokzijl F, Nijman I J, Hoogstraat M, Ven M v d, Egan D A, Zinzalla V, Moll J, Boj S F, Voest E E, Wessels L, Diest P J v, Rottenberg S, Gerhardus R. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity [J]. Cell, 2018, 172(1-2).
[46] Yan H H N, Siu H C, Law S, Ho S L, Yue S S K, Tsui W Y, Chan D, Chan A S, Ma S, Lam K O, Bartfeld S, Man A H Y, Lee B C H, Chan A S Y, Wong J W H, Cheng P S W, Chan A K W, Zhang J, Shi J, Fan X, Kwong D L W, Mak T W, Yuen S T, Clevers H, Leung S Y. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening [J]. Cell Stem Cell, 2018, 23(6).
[47] Dijkstra K K, Cattaneo C M, Weeber F, Chalabi M, Haar J v d, Fanchi L F, Slagter M, Velden D L v d, Kaing S, Kelderman S, Rooij N v, Leerdam M E v, Depla A, Smit E F, Hartemink K J, Groot R d, Wolkers M C, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher T N, Voest E E. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids [J]. Cell, 2018, 174(6).
[48] S N A, S B A, C C E, F M A, J C I. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs [J]. Biotechnology and bioengineering, 2019, 116(1).
[49] Santo V E, Estrada M F, Rebelo S P, Abreu S, Silva I, Pinto C, Veloso S C, Serra A T, Boghaert E, Alves P M, Brito C. Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models [J]. Journal of Biotechnology, 2016, 221.
[50] Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis [J]. Journal of biomolecular screening, 2006, 11(8): 922-32.
[51] Wang P Y, Pingle H, Koegler P, Thissen H, Kingshott P. Self-assembled binary colloidal crystal monolayers as cell culture substrates [J]. Journal of materials chemistry B, 2015, 3(12): 2545-52.
[52] Kelm J M, Timmins N E, Brown C J, Fussenegger M, Nielsen L K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types [J]. Biotechnol Bioeng, 2003, 83(2): 173-80.
[53] Godugu C, Patel A R, Desai U, Andey T, Sams A, Singh M. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies [J]. PLoS One, 2013, 8(1): e53708.
[54] Zhang M, Boughton P, Rose B, Lee C S, Hong A M. The use of porous scaffold as a tumor model [J]. International journal of biomaterials, 2013, 2013: 396056.
[55] Sodunke T R, Turner K K, Caldwell S A, McBride K W, Reginato M J, Noh H M. Micropatterns of Matrigel for three-dimensional epithelial cultures [J]. Biomaterials, 2007, 28(27): 4006-16.
[56] L S G. HIF-1 inhibitors for cancer therapy: from gene expression to drug discovery [J]. Current pharmaceutical design, 2009, 15(33).
[57] Vander Heiden M G, Cantley L C, Thompson C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation [J]. Science (New York, NY), 2009, 324(5930): 1029-33.
[58] Sanson A J, Malangoni M A. Hypoxia increases nitric oxide concentrations that are not completely inhibited by L-NMMA [J]. The Journal of surgical research, 2003, 110(1): 202-6.
[59] Schoch H J, Fischer S, Marti H H. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain [J]. Brain : a journal of neurology, 2002, 125(Pt 11): 2549-57.
[60] Dongliang W, Chaoshuai Z, Fei X, Aimi Z, Mingming J, Kunchi Z, Liu L, Qian H, Jian Z, Jianjun L, Hao Y, Gang H. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2 [J]. Theranostics, 2021, 11(6).
[61] Zaeem N M, Yosra M, Jane M, Meriem H, Salem C. Crosstalk between CTC, Immune System and Hypoxic Tumor Microenvironment [J]. Cancer microenvironment : official journal of the International Cancer Microenvironment Society, 2014, 7(3).
[62] Chen D, Wu Y X, Qiu Y B, Wan B B, Liu G, Chen J L, Lu M D, Pang Q F. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis [J]. Phytomedicine : international journal of phytotherapy and phytopharmacology, 2020, 67: 153138.
[63] Chen S Y, Tsuneyama K, Yen M H, Lee J T, Chen J L, Huang S M. Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer [J]. Scientific reports, 2021, 11(1): 12033.
[64] Golebiewska E M, Poole A W. Platelet secretion: From haemostasis to wound healing and beyond [J]. Blood Reviews, 2015, 29(3).
[65] Shujun W, Jie Y, Guangchao Z, Ran L, Ying D, Zhimei C, Jianfeng L, Yanfei S, Baoan C. Current applications of platelet gels in wound healing—A review [J]. Wound Repair and Regeneration, 2021, 29(3).
[66] Burnouf T, Strunk D, Koh M B C, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? [J]. Biomaterials, 2016, 76.
[67] Cowan D H, Graham J, Paskevich M C, Quinn P G. Influence of platelet lysate on colony formation of human breast cancer cells [J]. Breast cancer research and treatment, 1983, 3(2): 171-8.
[68] Guoqun J, Jian K, Changyu Y, Shilun W, Wenbing S. Platelet lysates in Hepatocellular Carcinoma patients after radiofrequency ablation facilitate tumor proliferation, invasion and vasculogenic mimicry [J]. International journal of medical sciences, 2020, 17(14).
[69] Caine G J, Lip G Y, Blann A D. Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis [J]. Annals of medicine, 2004, 36(4): 273-7.
[70] Alejandro T C, Kathryn M M, Emanuele C, T D C, A R C, Premal L, M L A, F V J, Norihiro W. Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity [J]. Journal for immunotherapy of cancer, 2019, 7(1).
[71] Tsai C-C, Hong Y-J, Lee R J, Cheng N-C, Yu J. Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel [J]. Journal of Materials Chemistry B, 2019, 7(7).
[72] Elena M-V, Asunción G-S. Cell Culture Techniques: Corticosteroid Treatment in A549 Human Lung Epithelial Cell [J]. Methods in molecular biology (Clifton, NJ), 2016, 1434.
[73] L M M, J F O. Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions [J]. Methods in enzymology, 2020, 632.
[74] Verjans E T, Doijen J, Luyten W, Landuyt B, Schoofs L. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? [J]. Journal of cellular physiology, 2018, 233(4): 2993-3003.
[75] Amir B B, Amir S, Syahida A. CD133: beyond a cancer stem cell biomarker [J]. Journal of drug targeting, 2019, 27(3).
[76] Li C, Chenying F, Qing Z, Chengqi H, Feng Z, Quan W. The role of CD44 in pathological angiogenesis [J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2020, 34(10).
[77] Forster-Horváth C, Mészáros L, Rásó E, Döme B, Ladányi A, Morini M, Albini A, Tímár J. Expression of CD44v3 protein in human endothelial cells in vitro and in tumoral microvessels in vivo [J]. Microvascular research, 2004, 68(2): 110-8.
[78] Benjamin B, Cédric B. Unravelling cancer stem cell potential [J]. Nature reviews Cancer, 2013, 13(10).
[79] Savani R C, Cao G, Pooler P M, Zaman A, Zhou Z, DeLisser H M. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis [J]. The Journal of biological chemistry, 2001, 276(39): 36770-8.
[80] M S L, A B J, Y Y B, R C L, L H J. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma [J]. The American journal of surgical pathology, 2010, 34(8).
[81] Novak D, Hüser L, Elton J J, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology [J]. Seminars in Cancer Biology, 2019.
[82] Chou Y T, Lee C C, Hsiao S H, Lin S E, Lin S C, Chung C H, Chung C H, Kao Y R, Wang Y H, Chen C T, Wei Y H, Wu C W. The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer [J]. Stem cells (Dayton, Ohio), 2013, 31(12): 2607-19.
[83] Vasquez J C, Huttner A, Zhang L, Marks A, Chan A, Baehring J M, Kahle K T, Dhodapkar K M. SOX2 immunity and tissue resident memory in children and young adults with glioma [J]. Journal of Neuro-Oncology, 2017, 134(1): 41-53.
[84] Khot M I, Downey C L, Armstrong G, Svavarsdottir H S, Jarral F, Andrew H, Jayne D G. The role of ABCG2 in modulating responses to anti-cancer photodynamic therapy [J]. Photodiagnosis and Photodynamic Therapy, 2020, 29(C).
[85] David W, Fengzhi L. New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies [J]. Journal of experimental & clinical cancer research : CR, 2015, 34(1).
[86] Wei M, Jian-Ting Z. Human ABCG2: structure, function, and its role in multidrug resistance [J]. International journal of biochemistry and molecular biology, 2012, 3(1).
[87] E S A, J J P, R R D. Molecular pharmacology of ABCG2 and its role in chemoresistance [J]. Molecular pharmacology, 2013, 84(5).
[88] Luo Q, Beaver J M, Liu Y, Zhang Z. Dynamics of p53: A Master Decider of Cell Fate [J]. Genes, 2017, 8(2).
[89] Emral D, Xiaokan Z, Yeon P J, Bin T, Esther K F. Positive and negative feedback loops in the p53 and mRNA 3' processing pathways [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9).
[90] B V, D L, J L A. Surfing the p53 network [J]. Nature, 2000, 408(6810).
[91] Georgakilas A G, Martin O A, Bonner W M. p21: A Two-Faced Genome Guardian [J]. Trends in Molecular Medicine, 2017, 23(4).
[92] Faria M H G, Patrocínio R M d S V d, Filho M O d M, Rabenhorst S H B. Immunoexpression of tumor suppressor genes p53, p21WAF1/CIP1 and p27KIP1 in humam astrocystic tumors Imuno-expressão dos genes supressores tumorais p53, p21WAF1/CIP1 e p27KIP1 em tumores astrocíticos humanos [J]. Arquivos de Neuro-Psiquiatria, 2007, 65(4b).
[93] Gottlieb T M, Oren M. p53 and apoptosis [J]. Seminars in Cancer Biology, 1998, 8(5).
[94] Mathumai K. Treating p53 Mutant Aggregation-Associated Cancer [J]. Cancers, 2018, 10(6).
[95] Huang L, Yang Y, Yang F, Liu S, Zhu Z, Lei Z, Guo J. Functions of EpCAM in physiological processes and diseases (Review) [J]. International journal of molecular medicine, 2018, 42(4): 1771-85.
[96] Mingjing S, Zhonghua X, Weihua X, Kanqiu J, Fuquan Z, Qifeng D, Zhonghen X, Yongbing C. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway [J]. Journal of experimental & clinical cancer research : CR, 2019, 38(1).
[97] J-P T, Z-Y Y, Y-M Z, D N, Z-J Z, X-Q L. Gemcitabine and cisplatin for treatment of lung cancer in vitro and vivo [J]. European review for medical and pharmacological sciences, 2018, 22(12).
[98] Zasadil L M, Andersen K A, Yeum D, Rocque G B, Wilke L G, Tevaarwerk A J, Raines R T, Burkard M E, Weaver B A. Cytotoxicity of Paclitaxel in Breast Cancer Is due to Chromosome Missegregation on Multipolar Spindles [J]. Science Translational Medicine, 2014, 6(229).
[99] Jian H, E S, Zhen-Hai Z, Jing W, Lei Y, Li C, Zhong-Cheng K, Xiao-Bin T, Xiao-Bin J, Huixia L. Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles [J]. Drug delivery, 2017, 24(1).
[100] Erlotinib [J]. Reactions Weekly, 2021, 1862(1).
[101] Janet D, A S E. Issues and progress with protein kinase inhibitors for cancer treatment [J]. Nature reviews Drug discovery, 2003, 2(4).
[102] D M J, G B E, K I K, L A, B B, A C, C D, J D, J M M, P M M, M N, A P V, R P L, M R M, D S, A T, P M. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase [J]. Cancer research, 1997, 57(21).
[103] Francesco L, Enrico M, Francesco S, Evita M, Michela R, Giulia D, Attilio O, Claudio C, Giovanni M. New monoclonal antibodies and tyrosine kinase inhibitors in B-cell acute lymphoblastic leukemia [J]. Minerva medica, 2020, 111(5).
[104] 陈一川, 刘嘉苗, 卢婷, 唐敬群, 李乐之, 刘芳. 长链非编码RNA应激诱导长链非编码转录本5对肺癌细胞厄洛替尼敏感性的影响及其机制 [J]. 中南大学学报(医学版), 2020, 45(08): 886-91.
[105] Anna C. Vinorelbine in cancer therapy [J]. Current drug targets, 2012, 13(8).
[106] Song'e L, Kai M, Hongxia Z, Shuren W, Mei L, Weina Z, Shufang L, Ningzhi X. Molecular, biological characterization and drug sensitivity of chidamide-resistant non-small cell lung cancer cells [J]. Oncology letters, 2017, 14(6).
[107] Cheng L, Ramesh A V, Flesken-Nikitin A, Choi J, Nikitin A Y. Mouse models for cancer stem cell research [J]. Toxicologic pathology, 2010, 38(1): 62-71.
[108] Chen L, Xiao Z, Meng Y, Zhao Y, Han J, Su G, Chen B, Dai J. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs [J]. Biomaterials, 2012, 33(5): 1437-44.
[109] de Ridder L, Cornelissen M, de Ridder D. Autologous spheroid culture: a screening tool for human brain tumour invasion [J]. Critical reviews in oncology/hematology, 2000, 36(2-3): 107-22.
[110] Kaczarek E, Zapf S, Bouterfa H, Tonn J C, Westphal M, Giese A. Dissecting glioma invasion: interrelation of adhesion, migration and intercellular contacts determine the invasive phenotype [J]. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, 1999, 17(5-6): 625-41.
[111] Johnson R, Hammer M, Sheridan J, Revel J P. Gap junction formation between reaggregated Novikoff hepatoma cells [J]. Proc Natl Acad Sci U S A, 1974, 71(11): 4536-40.
[112] Wojtkowiak J W, Rothberg J M, Kumar V, Schramm K J, Haller E, Proemsey J B, Lloyd M C, Sloane B F, Gillies R J. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments [J]. Cancer Res, 2012, 72(16): 3938-47.
[113] Schornack P A, Gillies R J. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors [J]. Neoplasia (New York, NY), 2003, 5(2): 135-45.
[114] Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson J K, Markowitz S, Zhou S, Diaz L A, Jr., Velculescu V E, Lengauer C, Kinzler K W, Vogelstein B, Papadopoulos N. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells [J]. Science (New York, NY), 2009, 325(5947): 1555-9.
[115] Zhong J, Kang Q, Cao Y, He B, Zhao P, Gou Y, Luo Y, He T C, Fan J. BMP4 augments the survival of hepatocellular carcinoma (HCC) cells under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway [J]. American journal of cancer research, 2021, 11(3): 793-811.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
R73-35+1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343111
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
徐艳姗. 琼脂糖水凝胶多孔阵列在构建体外肺癌仿生系统的应用[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032304-徐艳姗-中国科学院深圳(3620KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[徐艳姗]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[徐艳姗]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[徐艳姗]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.