[1] Eming S A, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Science translational medicine, 2014, 6(265): 265sr6-265sr6.
[2] Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
[3] Fei Y, Huang Q, Hu Z, et al. Biomimetic Cerium Oxide Loaded Gelatin PCL Nanosystems for Wound Dressing on Cutaneous Care Management of Multidrug-Resistant Bacterial Wound Healing[J]. Journal of Cluster Science, 2021, 32(5): 1289-1298.
[4] Zhang X, Shu W, Yu Q, et al. Functional biomaterials for treatment of chronic wound[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 516.
[5] Zhao W, Zhang X, Zhang R, et al. Self-assembled herbal medicine encapsulated by an oxidation-sensitive supramolecular hydrogel for chronic wound treatment[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 56898-56907.
[6] Shah S A, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review[J]. International journal of biological macromolecules, 2019, 139: 975-993.
[7] 李炳旻, 王芳芳, 李倩坤,等. 糖尿病溃疡的发生机制与治疗进展[J]. 解放军医学院学报, 2019, 40(10):3.
[8] 汤洋, 简华刚. 糖尿病足慢性溃疡的治疗方法新进展[J]. 重庆医学, 2019, 48(18):4.
[9] David G,Armstrong,Andrew J M, et al. Diabetic Foot Ulcers and Their Recurrence. [J] . The New England journal of medicine, 2017, 376(24):2367-2375.
[10] Eming S A, Wynn T A, Martin P. Inflammation and metabolism in tissue repair and regeneration[J]. Science, 2017, 356(6342): 1026-1030.
[11] Gao S Q, Chang C, Li J J, et al. Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis[J]. Drug Delivery, 2018, 25(1): 1779-1789.
[12] 许飞, 许志俊, 廖文强,等. 慢性难愈性创面的治疗研究进展[J]. 江西医药, 2020, 55(3):5.
[13] Cano Sanchez M, Lancel S, Boulanger E, et al. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review[J]. Antioxidants, 2018, 7(8): 98.
[14] Sarkar P, Stefi R V, Pasupuleti M, et al. Antioxidant molecular mechanism of adenosyl homocysteinase from cyanobacteria and its wound healing process in fibroblast cells[J]. Molecular biology reports, 2020, 47(3): 1821-1834.
[15] Tsai H C, Lehman C W, Chen C M. Use of platelet-rich plasma and platelet-derived patches to treat chronic wounds[J]. Journal of Wound Care, 2019, 28(1): 15-21.
[16] Han G, Ceilley R. Chronic wound healing: a review of current management and treatments[J]. Advances in therapy, 2017, 34(3): 599-610.
[17] Chen H, Guo L, Wicks J, et al. Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration[J]. Journal of Materials Chemistry B, 2016, 4(21): 3770-3781.
[18] Xu Z, Han S, Gu Z, et al. Advances and impact of antioxidant hydrogel in chronic wound healing[J]. Advanced healthcare materials, 2020, 9(5): 1901502.
[19] Shi K, Wang Y L, Qu Y, et al. Synthesis, characterization and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo[J]. Scientific reports, 2016, 6(1): 1-15.
[20] Sohal R S, Sohal B H, Brunk U T. Relationship between antioxidant defenses and longevity in different mammalian species[J]. Mechanisms of Ageing and Development, 1990, 53(3):217-227.
[21] Lin W, Qi X, Guo W, et al. A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing[J]. Stem cell research & therapy, 2020, 11(1): 1-17.
[22] Le Thi P, Lee Y, Tran D L, et al. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy[J]. Acta Biomaterialia, 2020, 103: 142-152.
[23] Liu H, Qu X, Kim E, et al. Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species[J]. Biomaterials, 2018, 162: 109-122.
[24] Zhang D, Wang B, Sun Y, et al. Injectable Enzyme‐Based Hydrogel Matrix with Precisely Oxidative Stress Defense for Promoting Dermal Repair of Burn Wound[J]. Macromolecular Bioscience, 2020, 20(6): 2000036.
[25] Kunkemoeller B, Kyriakides T R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition[J]. Antioxidants & Redox Signaling, 2017, 27(12): 823-838.
[26] 王艳杰. 二氧化铈基纳米材料的抗氧化机理及生物应用研究[D]. 华中科技大学, 2015.
[27] Xu M, Hua Y, Qi Y, et al. Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement[J]. Experimental Dermatology, 2019, 28(7): 776-785.
[28] Ezhilarasu H, Vishalli D, Dheen S T, et al. Nanoparticle-based therapeutic approach for diabetic wound healing[J]. Nanomaterials, 2020, 10(6): 1234.
[29] Tyeb S, Kumar N, Kumar A, et al. Flexible agar-sericin hydrogel film dressing for chronic wounds[J]. Carbohydrate polymers, 2018, 200: 572-582.
[30] Sung T J, Wang Y Y, Liu K L, et al. Pholiota nameko polysaccharides promotes cell proliferation and migration and reduces ROS content in H2O2-induced L929 cells[J]. Antioxidants, 2020, 9(1): 65.
[31] Wang S, Zheng H, Zhou L, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria[J]. Nano letters, 2020, 20(7): 5149-5158.
[32] Liu T, Xiao B, Xiang F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J]. Nature communications, 2020, 11(1): 1-16.
[33] Liang Y, Zhao X, Hu T, et al. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin[J]. Journal of colloid and interface science, 2019, 556: 514-528.
[34] Wang T, Zheng Y, Shen Y, et al. Chitosan nanoparticles loaded hydrogels promote skin wound healing through the modulation of reactive oxygen species[J]. Artificial cells, nanomedicine, and biotechnology, 2018, 46(sup1): 138-149.
[35] Zhu Y, Yao Z, Liu Y, et al. Incorporation of ROS-responsive substance P-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications[J]. International Journal of Nanomedicine, 2020, 15: 333.
[36] Hu C, Zhang F, Long L, et al. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing[J]. Journal of Controlled Release, 2020, 324: 204-217.
[37] Zhang S, Ou Q, Xin P, et al. Polydopamine/puerarin nanoparticle-incorporated hybrid hydrogels for enhanced wound healing[J]. Biomaterials science, 2019, 7(10): 4230-4236.
[38] Fan Y, Wu W, Lei Y, et al. Edaravone-loaded alginate-based nanocomposite hydrogel accelerated chronic wound healing in diabetic mice[J]. Marine drugs, 2019, 17(5): 285.
[39] Ziegler D , Nowak H , Kempler P , et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant -lipoic acid: a meta-analysis[J]. Diabetic Medicine, 2004;21(2:)114-21.
[40] Hou J, Chen L, Zhou M, et al. Multi-layered polyamide/collagen scaffolds with topical sustained release of N-acetylcysteine for promoting wound healing[J]. International Journal of Nanomedicine, 2020, 15: 1349.
[41] Puertas-Bartolomé M, Benito-Garzón L, Fung S, et al. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior[J]. Materials Science and Engineering: C, 2019, 105: 110040.
[42] Tang P, Han L, Li P, et al. Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing[J]. ACS applied materials & interfaces, 2019, 11(8): 7703-7714.
[43] 赵璐璐. 制备高效活性氧自由基清除能力的铈掺杂碳量子点用于生物抗氧化的研究[D]. 江苏大学
[44] Rather H A, Thakore R, Singh R, et al. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application[J]. Bioactive materials, 2018, 3(2): 201-211.
[45] Wu H, Li F, Wang S, et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing[J]. Biomaterials, 2018, 151: 66-77.
[46] Mengzhen Zhang, Chao Zhang, Xinyun Zhai,et al. Antibacterial mechanism and activity of cerium oxide nanoparticles[J]. Science China Materials, 2019, 62(3).
[47] Zhang M, Zhao L, Du F, et al. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging[J]. Nanotechnology, 2019, 30(32): 325101.
[48] Kobyliak N, Abenavoli L, Kononenko L, et al. Neuropathic diabetic foot ulcers treated with cerium dioxide nanoparticles: A case report[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2019, 13(1): 228-234.
[49] Augustine R, Zahid A A, Hasan A, et al. Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity[J]. ACS Biomaterials Science & Engineering, 2020, 7(1): 279-290.
[50] Kim J W, Mahapatra C, Hong J Y, et al. Functional Recovery of Contused Spinal Cord in Rat with the Injection of Optimal‐Dosed Cerium Oxide Nanoparticles[J]. Advanced Science, 2017, 4(10): 1700034.
[51] Baino F, Novajra G, Miguez-Pacheco V, et al. Bioactive glasses: Special applications outside the skeletal system[J]. Journal of Non-Crystalline Solids, 2016, 432: 15-30.
[52] Westhauser F, Rehder F, Decker S, et al. Ionic dissolution products of Cerium-doped bioactive glass nanoparticles promote cellular osteogenic differentiation and extracellular matrix formation of human bone marrow derived mesenchymal stromal cells[J]. Biomedical Materials, 2021, 16(3): 035028.
[53] Rivera L R, Cochis A, Biser S, et al. Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing[J]. Bioactive materials, 2021, 6(5): 1479-1490.
[54] Miguez-Pacheco V, Hench L L, Boccaccini A R. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues[J]. Acta biomaterialia, 2015, 13: 1-15.
[55] Matter M T, Furer L A, Starsich F H L, et al. Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles[J]. ACS applied materials & interfaces, 2018, 11(3): 2830-2839.
[56] Chen Q, Wu J, Liu Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing[J]. Materials Science and Engineering: C, 2019, 105: 110083.
[57] Nicolini V , Malavasi G , Menabue L , et al. Cerium-doped bioactive 45S5 glasses: spectroscopic, redox, bioactivity and biocatalytic properties[J]. Journal of Materials Science, 2017, 52(15):8845-8857.
[58] 陈丽嫚, 汪涛, 李康. 壳聚糖/羟丙基甲基纤维素温敏水凝胶的制备[J]. 高分子材料科学与工程, 2016, 32(11):7.
[59] Park M H, Joo M K, Choi B G, et al. Biodegradable thermogels[J]. Accounts of chemical research, 2012, 45(3): 424-433.
[60] Akash M S H, Rehman K, Chen S. Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides[J]. Polymer Reviews, 2014, 54(4): 573-597.
[61] Deng L, Liu Y, Yang L, et al. Injectable and bioactive methylcellulose hydrogel carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111159.
[62] Zhang L, Shen W, Luan J, et al. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel[J]. Acta Biomaterialia, 2015, 23: 271-281.
[63] 李宁. 甲基纤维素疏水改性温敏水凝胶及其给药性能的研究[D]. 天津大学, 2012.
[64] Barros S C, da Silva A A, Costa D B, et al. Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies[J]. Cellulose, 2014, 21(6): 4531-4544.
[65] Zhang Y, Gao C, Li X, et al. Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion[J]. Carbohydrate polymers, 2014, 101: 171-178.
[66] Zhang T, Zheng N, Luo J, et al. Thermo-sensitive Hydrogel Incorporating Maleic Anhydride Modified Microcrystalline Cellulose[C].IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 446(2): 022055.
[67] 田野. 温敏羟乙基纤维素衍生物的设计合成及其性能研究[D]. 大连理工大学, 2017.
[68] Lu B, Zhu D Y, Yin J H, et al. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway[J]. Biofabrication, 2019, 11(2): 025012.
[69] Chen Q, Wu J, Liu Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing[J]. Materials Science and Engineering: C, 2019, 105: 110083.
[70] Sultana T, Gwon J G, Lee B T. Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention[J]. Materials Science and Engineering: C, 2020, 110: 110661.
[71] Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020, 258: 120286.
Edit Comment