中文版 | English
Title

电子封装用低介电环氧树脂固化剂的合成及性能研究

Alternative Title
SYNTHESIS AND PROPERTY OF LOW-DkEPOXY RESIN CURING AGENT FOR ELECTRONIC PACKAGING
Author
Name pinyin
WANG Gang
School number
12032270
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
于淑会
Mentor unit
中国科学院深圳理工大学(筹)
Publication Years
2022-05-11
Submission date
2022-06-28
University
南方科技大学
Place of Publication
深圳
Abstract
  随着5G 时代的到来和智能电子产品的快速发展,数字电路对集约化和高密度的性能要求提高,伴随着信号传输频率朝着高频频带的偏移,急速增加的传播速率会带来层间寄生电容、阻抗和线间串扰等缺陷,同时需要满足巨大的信号吞吐量。为了解决这些问题,印刷电路覆铜板层间介质材料必须具有较低的介电常数(Dk)和介电损耗(Df)。环氧树脂是印刷电路板(PCB)领域中应用最广泛的聚合物材料。然而,其高介电常数和高介电损耗不能满足高频高速 IC 封装基材中先进封装材料的要求。
  本研究以增加环氧体系自由体积作为出发点,从固化剂分子结构改性入手,设计、合成了一种新型芳香二胺单体 TTSA,通过引入极性低、刚性强的非共平面分子结构单元(“螺中心”结构)来增大聚合物的分子自由体积,从而改善环氧树脂的介电性能。本文对不同固化体系的固化反应动力学进行了研究,确定了最佳的固化条件,制备了相应的环氧树脂薄膜材料,建立了固化剂的分子结构与环氧基材料的热力学性能和高频介电性能之间的关系。环氧薄膜材料具有优异的热稳定性和力学性能(失重 5%的热降解温度(Td5wt%):357℃Ar);耐热指数:190℃;玻璃化转变温度(Tg217℃),同时在 5 GHz 下显示着良好的低介电常数(Dk2.91)和介电损耗值(Df0.02)。此外,该树脂的吸水率低至 0.64%,满足电介质材料的要求。这些结果表明新型固化剂TTSA 为改性环氧树脂提供了一种新的途径,在高性能印制线路板基材中具有应用值。
Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07
References List

[1] Tian Q, Yuan Y C, Rong M Z, et al. A thermally remendable epoxy resin[J]. Journal of Materials Chemistry, 2009, 19(9): 1289-1296.
[2] Zhou J, Lucas J P. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512.
[3] Luft J H. Improvements in epoxy resin embedding methods[J]. The Journal of biophysical and biochemical cytology, 1961, 9(2): 409.
[4] Jeon H R, Park J H, Shon M Y. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 849-853.
[5] Das G, Kalita R D, Deka H, et al. Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites[J]. Progress in Organic Coatings, 2013, 76(7-8): 1103-1111.
[6] Lee S B, Lee H J, Hong I K. Diluent filler particle size effect for thermal stability of epoxy type resin[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(2): 635-641.
[7] Ma C, Sánchez-Rodríguez D, Kamo T. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics[J]. Journal of Hazardous Materials, 2021, 412: 125329.
[8] Ramadan N, Taha M, La Rosa A D, et al. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants[J]. Materials, 2021, 14(5): 1181.
[9] Yang S, Huo S, Wang J, et al. A highly fire-safe and smoke-suppressive single- component epoxy resin with switchable curing temperature and rapid curing rate[J]. Composites Part B: Engineering, 2021, 207: 108601.
[10] Yang C, Yang Z G. Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink‐jet printing[J]. Journal of applied polymer science, 2013, 129(1): 187-192.
[11] Jin F L, Kim H Y, Park S J. Effect of fluorine functional groups on surface and mechanical interfacial properties of epoxy resins[J]. Journal of fluorine chemistry, 2007, 128(3): 184-189.
[12] Wazalwar R, Sahu M, Raichur A M. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: Current status and road to industrialization[J]. Nanoscale Advances, 2021, 3(10): 2741-2776.
[13] Jiang W, Jin F L, Park S J. Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles[J]. Journal of Industrial and Engineering chemistry, 2012, 18(2): 594-596.
[14] Zhou J, Lucas J P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512.
[15] 余彪, 陈智坚, 潘港元, 陈子明, 郭森. 双酚 A 型环氧树脂基结构胶的制备及性 能研究[J]. 合成材料老化与应用, 2020, 49(06): 8-10.
[16] Yang C, Yang Z G. Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink‐jet printing[J]. Journal of applied polymer science, 2013, 129(1): 187-192.
[17] Czub P. Synthesis of high‐molecular‐weight epoxy resins from modified natural oils and Bisphenol A or BisphenolA‐based epoxy resins[J]. Polymers for Advanced Technologies, 2009, 20(3): 194-208.
[18] Wu C C, Lee W J. Synthesis and properties of copolymer epoxy resins prepared from copolymerization of bisphenol A, epichlorohydrin, and liquefied Dendrocalamus latiflorus[J]. Journal of applied polymer science, 2010, 116(4): 2065-2073.
[19] 李 金 娥 . 双 酚 F 型 环 氧 树 脂 /聚 噻 吩 复 合 吸 波 材 料 研 究 [J]. 热 固 性 树 脂, 2021, 36(03): 21-24.
[20] Wang C, Tang Y, Zhou Y, et al. Cyanate ester resins toughened with epoxy- terminated and fluorine-containing polyaryletherketone[J]. Polymer Chemistry, 2021, 12(26): 3753-3761.
[21] Maier G. Low dielectric constant polymers for microelectronics[J]. Progress in polymer science, 2001, 26(1): 3-65.
[22] Jin F L, Kim H Y, Park S J. Effect of fluorine functional groups on surface and mechanical interfacial properties of epoxy resins[J]. Journal of fluorine chemistry, 2007, 128(3): 184-189.
[23] Lv G, Jensen E, Shan N, et al. Effect of aromatic/aliphatic structure and cross- linking density on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2021, 3(3): 1555-1562.
[24] Back J H, Hwang C, Baek D, et al. Synthesis of urethane-modified aliphatic epoxy using a greenhouse gas for epoxy composites with tunable properties: Toughened polymer, elastomer, and pressure-sensitive adhesive[J]. Composites Part B: Engineering, 2021, 222: 109058.
[25] Tao Z, Yang S, Chen J, et al. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins[J]. European Polymer Journal, 2007, 43(4): 1470-1479.
[26] Gao N, Liu W Q, Yan Z L, et al. Synthesis and properties of transparent cycloaliphatic epoxy–silicone resins for opto-electronic devices packaging[J]. Optical Materials, 2013, 35(3): 567-575.
[27] Liu X F, Xiao Y F, Luo X, et al. Flame-Retardant multifunctional epoxy resin with high performances[J]. Chemical Engineering Journal, 2022, 427: 132031.
[28] Lee M C, Ho T H, Wang C S. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application[J]. Journal of Applied Polymer Science, 1996, 62(1): 217-225.
[29] Aouf C, Nouailhas H, Fache M, et al. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin[J]. European Polymer Journal, 2013, 49(6): 1185-1195.
[30] Mo J, Ma W, Zhang W, et al. Structure and properties of carbon intercalated halloysite and its organosilicone hybrid film with low dielectric constant[J]. Materials & Design, 2017, 128: 56-63.
[31] Lu J, Wang B, Jia P, et al. Designing advanced 0D-2D hierarchical structure for Epoxy resin to accomplish exceeding thermal management and safety[J]. Chemical Engineering Journal, 2022, 427: 132046.
[32] Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure[J]. Polymer, 2001, 42(10): 4493-4499.
[33] Xu H J, Jin F L, Park S J. Synthesis of a novel phosphorus-containing flame retardant for epoxy resins[J]. Bulletin of the Korean Chemical Society, 2009, 30(11): 2643-2646.
[34] Shao Z B, Zhang M X, Li Y, et al. A novel multi-functional polymeric curing agent: synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency[J]. Chemical Engineering Journal, 2018, 345: 471-482.
[35] Yu Z, Ma S, Liu Y, et al. Facile synthesis of bio-based latent curing agent and its high-Tg epoxy network[J]. European Polymer Journal, 2022, 164: 110965.
[36] Chen Z, Wang L, Lin J, et al. A theoretical insight into the curing mechanism of phthalonitrile resins promoted by aromatic amines[J]. Physical Chemistry Chemical Physics, 2021, 23(32): 17300-17309.
[37] Wang J W, Li Y, Nie W, et al. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines[J]. Nature communications, 2021, 12(1): 1-10.
[38] Gröger H. Biocatalytic concepts for synthesizing amine bulk chemicals: Recent approaches towards linear and cyclic aliphatic primary amines and ω-substituted derivatives thereof[J]. Applied microbiology and biotechnology, 2019, 103(1): 83- 95.
[39] Wazarkar K, Sabnis A. Cardanol based anhydride curing agent for epoxy coatings[J]. Progress in Organic Coatings, 2018, 118: 9-21.
[40] Park S J, Jin F L. Thermal stabilities and dynamic mechanical properties of sulfone- containing epoxy resin cured with anhydride[J]. Polymer degradation and stability, 2004, 86(3): 515-520.
[41] Shimada N, Takahashi N, Ohse N, et al. Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids[J]. Chemical Communications, 2020, 56(86): 13145-13148.
[42] Parıldar R A, Ibik A A B. Characterization of tertiary amine and epoxy functional all-acrylic coating system[J]. Progress in Organic Coatings, 2013, 76(6): 955-958.
[43] Huo S, Wang J, Yang S, et al. Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin[J]. Polymer Degradation and Stability, 2019, 159: 79-89.
[44] Chung* W W C, Leung S W F. Collaborative planning, forecasting and replenishment: a case study in copper clad laminate industry[J]. Production planning & control, 2005, 16(6): 563-574.
[45] 百 度 网 .中 国 挠 性 覆 铜 板 (FCCL)市 场 深 度 调 查 及 未 来 五 年 发 展 战 略 研 究 报 告 [EB/OL].
[2012-01-15].http://www.doczj.com/doc/de963486f90f76c661371abd- 5.html.
[46] Shamkhalichenar H, Bueche C J, Choi J W. Printed circuit board (pcb) technology for electrochemical sensors and sensing platforms[J]. Biosensors, 2020, 10(11): 159.
[47] Jensen S. The PCB story[J]. Ambio, 1972: 123-131.
[48] Dhanumalayan E, Joshi G M. Performance properties and applications of polytetrafluoroethylene (PTFE)—a review[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 247-268.
[49] Lenoble V, Laclautre C, Serpaud B, et al. As (V) retention and As (III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin[J]. Science of the Total Environment, 2004, 326(1-3): 197-207.
[50] Das A, Marnot A E C, Fallon J J, et al. Material extrusion-based additive manufacturing with blends of polypropylene and hydrocarbon resins[J]. ACS Applied Polymer Materials, 2019, 2(2): 911-921.
[51] Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology[J]. Materials science and engineering: R: Reports, 2002, 38(2): 55-105.
[52] Johnson R O, Burlhis H S. Polyetherimide: A new high‐performance thermoplastic resin[C]//Journal of Polymer Science: Polymer Symposia. New York: Wiley Subscription Services, Inc. A Wiley Company, 1983, 70(1): 129-143.
[53] Liu Z, Tang C, Chen P, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin[J]. RSC advances, 2014, 4(51): 26881-26887.
[54] Ge M, Zhang J, Zhao C, et al. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates[J]. Materials & Design, 2019, 182: 108028.
[55] Chung W Y, Brahma S, Hou S C, et al. Petroleum waste hydrocarbon resin as a carbon source modified on a Si composite as a superior anode material in lithium ion batteries[J]. Materials Chemistry and Physics, 2021, 259: 124011.
[56] Rysselberghe P V. Remarks concerning the Clausius-Mossotti law[J]. The Journal of Physical Chemistry, 2002, 36(4): 1152-1155.
[57] Chen N, Long C, Li Y, et al. A hamburger-structure imidazolium-modified silica/polyphenyl ether composite membrane with enhancing comprehensive performance for anion exchange membrane applications[J]. Electrochimica Acta, 2018, 268: 295-303.
[58] 杨建伟, 王正洲. 含磷双环戊二烯酚醛固化剂的合成及固化环氧树脂的性能[J]. 高分子材料科学与工程, 2017, 33(5): 7-13.
[59] Wu F, Zhou X, Yu X. Reaction mechanism, cure behavior and properties of a multifunctional epoxy resin, TGDDM, with latent curing agent dicyandiamide[J]. RSC advances, 2018, 8(15): 8248-8258.
[60] Wang P, Chen L, Xiao H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 104-113.
[61] Luo H, Qiu J. Carbon nanotubes/epoxy resin metacomposites with adjustable radio- frequency negative permittivity and low dielectric loss[J]. Ceramics International, 2019, 45(1): 843-848.
[62] 张帆. 低介电聚酰亚胺的合成及其性能研究[D]. 深圳: 中国科学院大学 (中国科 学院深圳先进技术研究院)材料学科硕士学位, 2020: 13-16.
[63] Hassan N, Yau K L A, Wu C. Edge computing in 5G: A review[J]. IEEE Access, 2019, 7: 127276-127289.
[64] Lv G, Jensen E, Shen C, et al. Effect of amine hardener molecular structure on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2020, 3(1): 259-267.
[65] Pittala R K, Ben B S, Ben B A. Self‐healing performance assessment of epoxy resin and amine hardener encapsulated polymethyl methacrylate microcapsules reinforced epoxy composite[J]. Journal of Applied Polymer Science, 2021, 138(23): 50550.
[66] Wegmann A. Chemical resistance of waterborne epoxy/amine coatings[J]. Progress in Organic Coatings, 1997, 32(1-4): 231-239.
[67] Jung M R, Horgen F D, Orski S V, et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms[J]. Marine Pollution Bulletin, 2018, 127: 704-716.
[68] Emwas A H, Roy R, McKay R T, et al. NMR spectroscopy for metabolomics research[J]. Metabolites, 2019, 9(7): 123.
[69] Amri F, Niazi A, Yazdanipour A. Three-pesticide residue analysis in tomato using a fast pressure variation in-syringe dispersive liquid-phase microextraction technique coupled with gas chromatography-mass spectrometry by assisting experimental design[J]. International Journal of Environmental Analytical Chemistry, 2020: 1-18.
[70] Cai H, Li P, Sui G, et al. Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC[J]. Thermochimica Acta, 2008, 473(1-2): 101-105.
[71] Redmann A, Oehlmann P, Scheffler T, et al. Thermal curing kinetics optimization of epoxy resin in Digital Light Synthesis[J]. Additive Manufacturing, 2020, 32: 101018.
[72] Zhao Y, Drummer D. Influence of filler content and filler size on the curing kinetics of an epoxy resin[J]. Polymers, 2019, 11(11): 1797.
[73] Lascano D, Quiles-Carrillo L, Balart R, et al. Kinetic analysis of the curing of a partially biobased epoxy resin using dynamic differential scanning calorimetry[J]. Polymers, 2019, 11(3): 391.
[74] Kuo C Y, Don T M, Lin Y T, et al. Synthesis of pH-sensitive sulfonamide-based hydrogels with controllable crosslinking density by post thermo-curing[J]. Journal of Polymer Research, 2019, 26(1): 1-9.
[75] Bannov A G, Popov M V, Kurmashov P B. Thermal analysis of carbon nanomaterials: advantages and problems of interpretation[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(1): 349-370.
[76] Flynn J H. Thermal analysis kinetics-problems, pitfalls and how to deal with them[J]. Journal of thermal analysis, 1988, 34(1): 367-381.
[77] 韩俊华, 吕建, 徐晓伟, 等. 环氧粉末涂料的固化动力学和固化工艺的研究[J]. 热固性树脂, 2010, 25(3): 1-5.
[78] 成健, 邵灏, 李振明, 等. 2, 4-二硝基咪唑含能锂盐的热分解行为及其对 AP 热 分解的催化作用[J]. 固体火箭技术, 2018, 4: 2-4.
[79] 赵一搏, 罗运军, 李晓萌, 等. BAMO-GAP 三嵌段共聚物的热分解动力学及反应 机理[J]. 高分子材料科学与工程, 2012, 28(11): 42-45.
[80] 孟琳, 杨超越, 高翼强. 非等温 DSC 法不饱和聚酯树脂固化反应动力学研究[J]. 热固性树脂, 2018, 5: 3-6.
[81] Rappaport T S, Shu S, Mayzus R, et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work![J]. IEEE Access, 2013, 1(1): 335-349.
[82] Dogra A, Jha R K, Jain S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies[J]. IEEE Access, 2020, 9: 67512-67547.
[83] Ahmad W S H M W, Radzi N A M, Samidi F S, et al. 5G technology: Towards dynamic spectrum sharing using cognitive radio networks[J]. IEEE Access, 2020, 8: 14460-14488.
[84] 师伟伦. 5G 无线通信技术概念及其应用[J]. 科学大众, 2020(2): 53-53.
[85] Wang L, Liu C, Shen S, et al. Low dielectric constant polymers for high speed communication network[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(4): 138-148.
[86] 祝大同. 低介电常数电路板用烯丙基化聚苯醚树脂[J]. 绝缘材料, 2001, 34(1):6.
[87] Huo W, Chen Y, Zhang Z, et al. Highly porous barium strontium titanate (BST) ceramic foams with low dielectric constant from particle‐stabilized foams[J]. Journal of the American Ceramic Society, 2018, 101(4): 1737-1746.
[88] Duann Y F, Liu T M, Cheng K C, et al. Thermal stability of some naphthalene-and phenyl-based epoxy resins[J]. Polymer Degradation and Stability, 2004, 84(2): 305- 310.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TM215.1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343114
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
王刚. 电子封装用低介电环氧树脂固化剂的合成及性能研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032270-王刚-中国科学院深圳理(5021KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[王刚]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[王刚]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王刚]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.