中文版 | English
Title

水下无线光通信系统研究及其 FPGA 实现

Alternative Title
RESEARCH ON UNDERWATER WIRELESS OPTICAL COMMUNICATION SYSTEMSWITH FPGA IMPLEMENTATION
Author
Name pinyin
CHEN Rui
School number
12032578
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
刘召军
Mentor unit
电子与电气工程系
Publication Years
2022-05-12
Submission date
2022-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

相比于传统的水下无线系统,水下无线光通信(UWOC)展示出了其多方面的优势,诸如具有高带宽、高传输速率、抗干扰能力强、低延时、低功耗以及安全好等,对满足未来实时,高带宽高速率要求下的水下无线通信提供了极具潜力的技术方案。有效地优化水下无线光通信系统,提升系统传输速率以及适配具体场景的应用,对研究水下无线光通信有非常重要的意义。目前,水下无线光通信已成为海洋探测系统的重要技术之一,对其通信速率和系统结构性能的研究引起了国内外众多学者的关注。

本文主要从水下光通信系统的光源、调制方案以及系统硬件设计与实现来展开实践研究。作为热门且性能优异的发光器件,Micro-LED有着电流密度高、发光效率高以及响应速度快等优势,适合水下光通信系统的搭建。根据实验制备高性能Micro-LED光源器件,并结合开发灵活的现场可编程门阵列(FPGA)芯片,设计并搭建了脉冲位置调制(PPM)方案和正交频分复用调制(OFDM)方案的水下无线光通信系统。在文章中,测试Micro-LED等光源性能,获得单颗Micro-LED的最高-3dB调制带宽为177MHz。其次,阐述了系统实现的框架,并利用XilinxISE开发软件设计PPM方案的系统各模块,其中包括误差测试模块。利用仿真软件对FPGA发射机和接收机的实现结果进行了验证。通过仿真和实验测试,我们实现并演示了一个基于FPGA50Mbps UWOC系统,该系统采用PPM调制方案并利用Micro-LED作为光源。此外,提出了以Micro-LED作为光源的OFDM调制的UWOC系统设计方案,并参照IEEE802.11a协议规定对系统发射端和接收端的各个模块进行设计。由仿真和验证结果可得,该OFDM调制方案的系统在信号传输为32Mbps下各模块功能均可正确工作。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] 毕重人. 我国海洋传统优势产业转型升级问题研究[D]. 北京交通大学, 2020.
[2] 孙久文, 高宇杰. 中国海洋经济发展研究[J],区域经济评论, 2021(01): 38-47.
[3] 韩东, 贺寅, 陈立军, et al. 水下通信技术及其难点[J],科技创新与应用, 2021(01): 155-159.
[4] Murgod T R, Sundaram S M. Survey on underwater optical wireless communication: perspectives and challenges[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2019, 13(1): 138.
[5] Zhaoquan Z, Shu F, Huihui Z, et al. A Survey of Underwater Optical Wireless Communications[J]. COMST, 2017, 19(1): 204-238.
[6] Liu Tengda Z H U J Z Y. Review on FPGA-Based Accelerators in Deep Learning[J]. Jisuanji kexue yu tansuo, 2021, 15(11): 2093-2104.
[7] Shan J, Lazarescu M T, Cortadella J, et al. Fast Energy-Optimal Multikernel DNN-Like Application Allocation on Multi-FPGA Platforms[J]. TCAD, 2022, 41(4): 1186-1190.
[8] Srinivasa Rao P, Yedukondalu K. Hardware implementation of digital image skeletonization algorithm using FPGA for computer vision applications[J]. Journal of visual communication and image representation, 2019, 59: 140-149.
[9] 揭应平. FPGA芯片设计及其应用分析[J]. Applications of IC, 2017, 34(12): 37-41.
[10] 田雨晨. FPGA芯片设计及其应用[J]. 数字通信世界, 2019(4): 228.
[11] Cox W C, Jr. A 1 Mbps Underwater Communication System Using a 405 nm Laser Diode and Photomultiplier Tube, 2008.
[12] Simpson J A, Cox W C, Krier J R, et al. 5 Mbps optical wireless communication with error correction coding for underwater sensor nodes: IEEE, 2010: 1-4.
[13] Nakamura K, Mizukoshi I, Hanawa M. Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel[J]. OPT EXPRESS, 2015, 23(2): 1558-1566.
[14] Jingpeng L, Zhaorui G, Bing Z, et al. A design of underwater wireless laser communication system based on PPM modulating method: IEEE, 2016: 1-6.
[15] 林奥博. 基于FPGA的水下OFDM无线可见光通信系统[D]. 浙江大学, 2017.
[16] Wang P, Li C, Xu Z. A Cost-Efficient Real-Time 25 Mb/s System for LED-UOWC: Design, Channel Coding, FPGA Implementation, and Characterization[J]. JLT, 2018, 36(13): 2627-2637.
[17] Wang J, Tian C, Yang X, et al. Underwater wireless optical communication system using a 16-QAM modulated 450-nm laser diode based on an FPGA[J]. Appl Opt, 2019, 58(16): 4553.
[18] Li J, Yang B, Ye D, et al. A Real-Time, Full-Duplex System for Underwater Wireless Optical Communication: Hardware Structure and Optical Link Model[J]. Access, 2020, 8: 109372-109387.
[19] Zhang Y, Zhang M, Zhou H, et al. A Long Distance Real-time DPSK Visible Light Communication System Based on FPGA[C]. 2019 18th International Conference on Optical Communications and Networks (ICOCN), 2019: 1-3.
[20] Pramono S, Hamka M, Hanifa A, et al. Design and Development of Bit Error Measurement using FPGA for Visible Light Communication[J], 2021.
[21] Kang J, Wang L, Yue C P. Design of a Real-Time Visible Laser Light Communication System with Basedband in FPGA for High Definition video Transmission: IEEE, 2019: 179-180.
[22] Qingyuan H, Min Z, Weishu X, et al. FPGA-based 120Mbps online visible light communication system with RGB LEDs: IEEE, 2016: 1-3.
[23] Farhat Z A, Ahfayd M H, Mather P J, et al. Practical implementation of duobinary pulse position modulation using FPGA and visible light communication: IEEE, 2017: 253-256.
[24] Lu M, Xiao S, Zhang L, et al. Real-time VLC system integrated with positioning beacon transmission based on 2ASK-CE-OFDM coding[J]. Optics communications, 2019, 452: 252-257.
[25] Lihui Y, Min W, Junfei F, et al. The high-speed optical OFDM transmitter based on FPGA. Stevenage, UK: Stevenage, UK: IET, 2013: 368-371.
[26] Ahfayd M H, Farhat Z A, Sibley M J N, et al. Visible light communication based system using high power LED and dicode pulse position modulation technique: IEEE, 2017: 1-4.
[27] Aobo L, Weichao L, Jing X, et al. Underwater wireless optical communication using a directly modulated semiconductor laser: IEEE, 2015: 1-4.
[28] Xu J, Lin A, Yu X, et al. Underwater Laser Communication Using an OFDM-Modulated 520-nm Laser Diode[J]. LPT, 2016, 28(20): 2133-2136.
[29] Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. OPT EXPRESS, 2015, 23(18): 23302-23309.
[30] Richard W. Spinrad K L C M J P. Ocean optics [electronic resource][M]. New York : Oxford: New York : Oxford University PressOxford : Clarendon Press, 1994, 1994.
[31] Anguita D, Brizzolara D, Parodi G, et al. Optical wireless underwater communication for AUV: Preliminary simulation and experimental results[C]: 1-5.
[32] Morel A, Gentili B, Claustre H, et al. Optical Properties of the "Clearest" Natural Waters[J]. Limnology and oceanography, 2007, 52(1): 217-229.
[33] Duntley S Q J J O T O S O A. Light in the Sea[J], 1963, 53(2): 214-233.
[34] Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: A survey[J]. Ad hoc networks, 2019, 94: 101935.
[35] He G, Lv Z, Qiu C, et al. Performance Evaluation of 520nm Laser Diode Underwater Wireless Optical Communication Systems in the Presence of Oceanic Turbulence[J]. SID International Symposium Digest of technical papers, 2020, 51(S1): 47-50.
[36] Ji R, Wang S, Liu Q, et al. High-Speed Visible Light Communications: Enabling Technologies and State of the Art[J]. Applied sciences, 2018, 8(4): 589.
[37] He G, Lv Z, Qiu C, et al. 21.3: The Influence of NLOS on Underwater Wireless Optical Communication System Using an InGaN‐based Micro‐LED and NRZ‐OOK Modulation[J]. SID International Symposium Digest of technical papers, 2021, 52(S2): 286-288.
[38] Chi N, Shi M, Zhao Y, et al. LED-based high-speed visible light communications[C]: 105590I-105590I-8.
[39] Gabriel C, Khalighi M, Bourennane S, et al. Investigation of suitable modulation techniques for underwater wireless optical communication[C]: 1-3.
[40] 丁凌琦 穆道生 蒋. OFDM技术应用现状分析[J]. Computer Engineering & Software, 2016, 37(10): 130-134.
[41] 张万东 戴鸿鹏 刘理 陈. 4G通信系统中OFDM技术的分析[J]. Telecom World, 2017(20): 9-10.
[42] Simon J, Prabakaran N. Optimal wavelets with Binary Phase Shift Keying modulator utilized simulation analysis of 4G/5G OFDM systems[J]. INT J COMMUN SYST, 2021, 34(9): n/a.
[43] 杨昉. OFDM原理与标准 : 通信技术的演进[M]. 北京: 北京 : 电子工业出版社,2013, 2013.
[44] Huang Y, Hsiang E-L, Deng M-Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives[J]. Light, science & applications, 2020, 9(1): 105-105.
[45] Lin R, Liu X, Zhou G, et al. InGaN Micro‐LED Array Enabled Advanced Underwater Wireless Optical Communication and Underwater Charging[J]. Advanced optical materials, 2021, 9(12): 2002211-n/a.
[46] Liu Z, Lin C-H, Hyun B-R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light Sci Appl, 2020, 9(1): 83-83.
[47] IEEE Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: High Speed Physical Layer in the 5 GHz band[J]. IEEE Std 802.11a-1999, 1999: 1-102.

Academic Degree Assessment Sub committee
创新创业学院
Domestic book classification number
TN929.1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343116
DepartmentSchool of Innovation and Entrepreneurship
Recommended Citation
GB/T 7714
陈锐. 水下无线光通信系统研究及其 FPGA 实现[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032578-陈锐-创新创业学院.p(5421KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[陈锐]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[陈锐]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈锐]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.