[1] 范国亮. 5G 移动通信发展现状对传输网络的需求[J]. 中国新通信, 2017, 19(20): 1.
[2] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, PP(99): 1-1.
[3] 苏芬芳. 微波通信的主要技术与应用价值探讨[J]. 中国新通信, 2018, 20(17): 1.
[4] WANG X, KONG L, KONG F, et al. Millimeter wave communication: A comprehensive survey[J]. IEEE Communications Surveys Tutorials, 2018, 20(3): 1616-1653.
[5] SÓBESTER A, FORRESTER A I. Geometry parameterization: Philosophy and practice[M]. John Wiley & Sons, 2014: 275-275.
[6] KOZIEL S, OGURTSOV S. Multilevel microwave design optimization with automated model fidelity adjustment[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24(3): 281-288.
[7] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005.
[8] STYBLINSKI M, OPALSKI L J. Algorithms and software tools for IC yield optimization based on fundamental fabrication parameters[J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 1986, 5(1): 79-89.
[9] COUCKUYT I, FORRESTER A, GORISSEN D, et al. Blind Kriging: Implementation and performance analysis[J]. Advances in Engineering Software, 2012, 49: 1-13.
[10] HOSDER S. Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2012, 3(1-2): 117-139.
[11] YANG X S. Engineering optimization: An introduction with metaheuristic applications[M]. John Wiley & Sons, 2010.
[12] JORGE N, STEPHEN J W. Numerical Optimization[M]. Spinger, 2006.
[13] KOLDA T G, LEWIS R M, TORCZON V. Optimization by direct search: New perspectives on some classical and modern methods[J]. SIAM review, 2003, 45(3): 385-482.
[14] SASTRY K, GOLDBERG D, KENDALL G. Genetic algorithms[M]. Springer, 2005: 97-125.
[15] BäCK T, FOGEL D B, MICHALEWICZ Z. Evolutionary computation 1: Basic algorithms and operators[M]. CRC Press, 2018.
[16] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
[17] KENNEDY J. The particle swarm: social adaptation of knowledge[C]//Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC’97). IEEE, 1997: 303-308.
[18] DIRECTOR S, ROHRER R. The generalized adjoint network and network sensitivities[J]. IEEE Transactions on Circuit Theory, 1969, 16(3): 318-323.
[19] PIRONNEAU O. Optimal shape design for elliptic systems[M]. Springer, 1982: 42-66.
[20] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260.
[21] PAPADIMITRIOU D I, GIANNAKOGLOU K C. Aerodynamic shape optimization using first and second order adjoint and direct approaches[J]. Archives of Computational Methods in Engineering, 2008, 15(4): 447-488.
[22] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design[J]. AIAA paper, 2013, 287: 2013.
[23] FORRESTER A I, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1-3): 50-79.
[24] SIMPSON T W, POPLINSKI J, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150.
[25] PIETRENKO-DABROWSKA A, KOZIEL S. Accelerated antenna optimization using design database and Kriging surrogates[C]//2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020: 2061-2062.
[26] JACOBS J P, DU PLESSIS W P. Efficient modeling of missile RCS magnitude responses by Gaussian processes[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3228-3231.
[27] ZHANG Z, CHENG Q S, CHEN H, et al. An efficient hybrid sampling method for neural network-based microwave component modeling and optimization[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(7): 625-628.
[28] ZHANG J W, YE S B, LIU H, et al. Filtering out antenna effects from GPR data by an RBF neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1378-1382.
[29] ZHANG Z, CHEN H, YU Y, et al. Yield-constrained optimization design using polynomial chaos for microwave filters[J]. IEEE Access, 2021, 9: 22408-22416.
[30] 刘璨. 微波滤波器的建模与调试策略设计[D]. 武汉: 中国地质大学, 2019.
[31] DING X, DEVABHAKTUNI V, CHATTARAJ B, et al. Neural-network approachesto electromagnetic-based modeling of passive components and their applications to highfrequency and high-speed nonlinear circuit optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 436-449.
[32] MACCHIARELLA G, TRAINA D. A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurements[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(5): 243-245.
[33] FENG F, ZHANG C, MA J, et al. Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(1): 60-77.
[34] ZHAO P, WU K L. Model-based vector-fitting method for circuit model extraction of coupledresonator diplexers[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1787-1797.
[35] HE Y, WANG G, SONG X, et al. A coupling matrix and admittance function synthesis for mixed topology filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64 (12): 4444-4454.
[36] BANDLER J W, CHENG Q S, DAKROURY S A, et al. Space mapping: the state of the art[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 337-361.
[37] KOZIEL S, OGURTSOV S. Antenna design by simulation-driven optimization[M]. Cham: Springer International Publishing, 2014: 1-4.
[38] LEIFSSON L, KOZIEL S, KURGAN P. Automated low-fidelity model setup for surrogatebased aerodynamic optimization[M]//Solving Computationally Expensive Engineering Problems. Springer, 2014: 87-111.
[39] LEIFSSON L T, KOZIEL S, HOSDER S, et al. Physics-based multi-fidelity surrogate modeling with entropy-based availability methods[C]//AIAA Modeling and Simulation Technologies Conference. 2014: 0473.
[40] KOZIEL S, OGURTSOV S, COUCKUYT I, et al. Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas[J]. IEEE Transactions on Antennas and Propagation, 2012, 61(3): 1301-1308.
[41] ALEXANDROV N M, LEWIS R M. An overview of first-order model management for engineering optimization[J]. Optimization and Engineering, 2001, 2(4): 413-430.
[42] TOROPOV V V. Simulation approach to structural optimization[J]. Structural Optimization, 1989, 1(1): 37-46.
[43] ECHEVERRĭA D, HEMKER P W. Space mapping and defect correction[J]. Computational Methods in Applied Mathematics, 2005, 5(2): 107-136.
[44] KOZIEL S, BANDLER J W, MADSEN K. Space mapping with adaptive response correction for microwave design optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2): 478-486.
[45] KOZIEL S. Shape-preserving response prediction for microwave design optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2829-2837.
[46] WU K L, ZHANG R, EHLERT M, et al. An explicit knowledge-embedded space mapping technique and its application to optimization of LTCC RF passive circuits[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(2): 399-406.
[47] SONG Y, CHENG Q S, KOZIEL S. Multi-fidelity local surrogate model for computationally efficient microwave component design optimization[J]. Sensors, 2019, 19(13): 3023.
[48] XIAO L Y, SHAO W, JIN F L, et al. Multiparameter modeling with ANN for antenna design [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3718-3723.
[49] LIU B, AKINSOLU M O, SONG C, et al. An efficient method for complex antenna design based on a self adaptive surrogate model-assisted optimization technique[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2302-2315.
[50] 宋怡然. 基于替代模型的微波器件优化方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[51] CHENG Q S, KOZIEL S, BANDLER J W. Simplified space-mapping approach to enhancement of microwave device models[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2006, 16(5): 518-535.
[52] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
[53] GIUNTA A, WOJTKIEWICZ S, ELDRED M. Overview of modern design of experiments methods for computational simulations[C]//41st Aerospace Sciences Meeting and Exhibit. 2003: 649.
[54] GUSTAVSEN B, SEMLYEN A. Rational approximation of frequency domain responses by vector fitting[J]. IEEE Transactions on Power Delivery, 1999, 14(3): 1052-1061.
[55] 向珈林. 广角AVO 有理函数表征方法研究[D]. 北京: 中国石油大学, 2019.
[56] KOZIEL S, LEIFSSON L. Simulation-driven design by knowledge-based response correction techniques[M]. Springer, 2016.
[57] STORN R, PRICE K. Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[58] 汤安迪, 韩统, 徐登武, 等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用, 2021, 41(8): 8.
[59] BANDLER J W, BIERNACKI R M, CHEN S H, et al. Space mapping technique for electromagnetic optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42 (12): 2536-2544.
[60] 吴生彪. 微波腔体滤波器建模与计算机调试策略[D]. 武汉: 中国地质大学, 2020.
[61] VALLOZZI L, HERTLEER C, ROGIER H. Latest developments in the field of textile antennas[M]. Elsevier, 2016: 599-626.
[62] 克劳斯. 天线: 第三版[M]. 北京: 电子工业出版社, 2011.
[63] WANG X, KONG L, KONG F, et al. Millimeter wave communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1616-1653.
[64] COMITE D, PODILCHAK S K, BACCARELLI P, et al. Analysis and design of a compact leaky-wave antenna for wide-band broadside radiation[J]. Scientific Reports, 2018, 8(1): 1-14.
[65] BUI C D, NGUYEN-TRONG N, NGUYEN T K. A planar dual-band and dual-sense circularly polarized microstrip patch leaky-wave antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2162-2166.
[66] LIU J, JACKSON D R, LONG Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots[J]. IEEE Transactions on Antennas and Propagation, 2011, 60(1): 20-29.
[67] SÁNCHEZ-ESCUDEROS D, FERRANDO-BATALLER M, HERRANZ J I, et al. Periodicleaky-wave antenna on planar Goubau line at millimeter-wave frequencies[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1006-1009.
[68] MINATTI G, CAMINITA F, CASALETTI M, et al. Spiral leaky-wave antennas based on modulated surface impedance[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(12): 4436-4444.
[69] ZHANG H C, HE P H, TANG W X, et al. Planar spoof SPP transmission lines: Applications in microwave circuits[J]. IEEE Microwave Magazine, 2019, 20(11): 73-91.
[70] WEI D, LI J, YANG J, et al. Wide-scanning-angle leaky-wave array antenna based on microstrip SSPPs-TL[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(8): 1566-1570.
[71] YIN J Y, REN J, ZHANG Q, et al. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5181-5189.
[72] YU H W, JIAO Y C, ZHANG C, et al. Dual-linearly polarized leaky-wave patch array with low cross-polarization levels using symmetrical spoof surface plasmon polariton lines[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(3): 1781-1786.
[73] ABDEL-WAHAB W M, BUSUIOC D, SAFAVI-NAEINI S. Millimeter-wave high radiation efficiency planar waveguide series-fed dielectric resonator antenna (DRA) array: analysis, design, and measurements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 2834-2843.
Edit Comment