[1] MORI T, YAMAGUCHI T, MARUYAMA Y, et al. Material Development for 3D Wafer Bond and De-bonding Process[C]. 2015 IEEE 65th Electronic Components and Technology Conference(ECTC). 2015: 899-905.
[2] CHENG CA, TSAI T Y, HUANG YH, et al. Characterization of Temporary Bonding and Laser Release Using Polyimide and a 300-nm Photolysis Polymer System for High-Throughput 3-D IC Applications[J]. IEEE transactions on components, packaging, and manufacturing technology, 2017, 7(3): 456-462.
[3] 张国平, 夏建文, 刘强等. 面向超薄柔性器件加工的激光解键合方案[J]. 纺织学报, 2018, 39(5): 155-159.
[4] FARRENS S N, BISSON P, SOOD S, et al. Thin Wafer Handling Challenges and Emerging Solutions[C]. ECS transactions, 2019, 27 (1): 801-806.
[5] LIU JJ, TAN JH, ZENG Y, et al. Synthesis and characterization of high-barrier polyimide containing rigid planar moieties and amide groups[J]. Polymer testing, 2017, 61: 83-92.
[6] PATIL Y S, SALUNKHE P H, MAHINDRAKAR J N, et al. Synthesis and characterization of aromatic polyimides containing tetraphenylfuran-thiazole moiety[J]. Journal of thermal analysis and calorimetry, 2018, 135(6): 3057-3068.
[7] PURUSHOTHAMAN R, VAITINADIN H S. Incorporation of COF‐LZU‐1 into the terpolyimide matrix to obtain COF‐LZU‐1/terpolyimide composites with ultra‐low dielectric constant[J]. Polymer engineering and science, 2019, 59(4): 814-820.
[8] REE B J, KOBAYASHI S, HEO K, et al. Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units[J]. Polymer, 2019, 169: 225-233.
[9] CAO X, WEN J, SONG L, et al. Polyimide hollow glass microspheres composite films with low dielectric constant and excellent thermal performance[J]. Journal of applied polymer science, 2021, 138(25).
[10] B.ITRS H. The international technology roadmap for semiconductors[M]. Berlin: Springer, 2011.
[11] MOORE G E. Progress in digital integrated electronics[J]. IEEE Solid-State Circuits Society Newsletter, 2006, 11(3): 36-37.
[12] DESAI S B, MADHVAPATHY S R, SACHID A B, et al. MoS₂ transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308): 99-102.
[13] FAN W, HE T, YANG S, et al. Vertical MoS2 transistors with sub-1-nm gate lengths[J]. Nature, 2022, 603(7900): 259-264.
[14] R. B G. The electronic packaging handbook[M]. Boca Raton: CRC Press LLC, 2017.
[15] 于大全. 硅通孔三维封装技术[M]. 北京: 电子工业出版社, 2021.
[16] P. L M. Beam-lead technongy[J]. Bell System Technical, 1966, 45(2): 233-253.
[17] METZ E D. Metal problems in plastic encapsulated integrated circuits[J]. Proceedings of the IEEE, 1969, 57(9): 1606-1609.
[18] JOHNSON D R, WILLYARD D L. Influence of lead frame thickness on the flexure resistance and peel strength of thermocompression bonds[R]. Albuquerque, 1975.
[19] MARTIN J H. Interconnection of planar electronic structures[P]. America, US3904934. 1975-09-09.
[20] Devlin D J. Integrated circuit package and lead frame[P]. America, US4289922. 1981-09-15.
[21] ADAMS V J B P T, HUGHES H G, ET AL. Semiconductor wafer level package[P]. America, US5323051. 1994-06-21.
[22] DANG B, WRIGHT S L, ANDRY P S, et al. 3D chip stacking with C4 technology[J]. IBM journal of research and development, 2008, 52(6): 599-609.
[23] SUN-RONG J, TIEN-PEI C, CHE-YU Y, et al. A Compact Analytic Model of the Strain Field Induced by Through Silicon Vias[J]. IEEE transactions on electron devices, 2012, 59(3): 777-782.
[24] 王谦. 集成电路先进封装材料[M]. 北京: 电子工业出版社, 2021.
[25] FARMELO G. The Pleasure of Finding Things Out[J]. Nature, 1999, 401(2): 426.
[26] 罗江波. 高性能硅转接板的系统设计及集成制造方法研究[D]. 上海: 上海交通大学, 2019.
[27] 李冬洋. 基于光刻和电镀的超精细引线技术研究[D]. 上海: 上海交通大学, 2019.
[28] 洪荣华. 晶圆级芯片尺寸封装的热-机械可靠性研究[D]. 上海: 复旦大学, 2012.
[29] BIECK F, SPILLER S, MOLINA F, et al. Carrierless design for handling and processing of ultrathin wafers[C]. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) 2010, 316-322.
[30] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in Polyimide‐Based Materials for Space Applications[J]. Advanced materials, 2019, 31(18).
[31] KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature, 2013, 499(7459): 458-463.
[32] LI C, WANG Y, YIN Y, et al. A comprehensive study of pyrazine-contained and low-temperature curable polyimide[J]. Polymer, 2021, 228: 123963.
[33] ZHUANG Y, SEONG J G, LEE Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in polymer science, 2019, 92: 35-88.
[34] BOGERT M T, RENSHAW R R. 4-amino-o-phthalic acid and some of its derivatives[J]. Journal of the American Chemical Society, 1908, 30(7): 1135-1144.
[35] EDWARDS W M, MAXWELL, ROBINSON IVAN. Polyimides of pyromellitic acid[P]. America, US2710853. 1955-06-14.
[36] 石红兵. 可溶性聚酰亚胺及其复合材料的制备与研究[D]. 南京: 东南大学, 2019.
[37] NI HJ, LIU JG, WANG ZH, et al. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications[J]. Journal of industrial and engineering chemistry, 2015, 28: 16-27.
[38] 苗杰. 含大体积扭曲结构的聚酰亚胺的合成与性能[D]. 合肥: 中国科学技术大学, 2020.
[39] 刘新. 四元共聚热塑性聚酰亚胺及其低介电材料的制备与性能研究[D]. 广州: 华南理工大学, 2020.
[40] 丁孟贤. 聚酰亚胺-化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2012.
[41] ROGERS M E, BRINK M H, MCGRATH J E, et al. Semicrystalline and amorphous fluorine-containing polyimides[J]. Polymer, 1993, 34(4): 849-855.
[42] SHIODA T, TAKAMATSU N, SUZUKI K, et al. Influence of water sorption on refractive index of fluorinated polyimide[J]. Polymer, 2003, 44(1): 137-142.
[43] WANG CY, LI G, JIANG JM. Synthesis and properties of fluorinated poly(ether ketone imide)s based on a new unsymmetrical and concoplanar diamine: 3,5-Dimethyl-4-(4-amino-2-trifluoromethylphenoxy)-4′-aminobenzophenone[J]. Polymer, 2009, 50(7): 1709-1716.
[44] XIE K, LIU J G, ZHOU H W, et al. Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl- phenoxy) benzene and dianhydrides[J]. Polymer, 2001, 42(17): 7267-7274.
[45] TAMAI S, YAMAGUCHI A, OHTA M. Melt processible polyimides and their chemical structures[J]. Polymer, 1996, 37(16): 3683-3692.
[46] HASEGAWA M, KANEKI T, TSUKUI M, et al. High-temperature polymers overcoming the trade-off between excellent thermoplasticity and low thermal expansion properties[J]. Polymer, 2016, 99: 292-306.
[47] 邢天成. 双面柔性覆铜板用热塑性聚酰亚胺(TPI)的研究[D]. 广州: 华南理工大学, 2018.
[48] KUROKI T S Y, OKUMURA T, ET AL. Crystalline Polyimide for Melt Molding with Satisfactory Thermal Stability[P]. America, US6458912. 2002-10-01.
[49] SEIDEL A, KROSCHWITZ J I, KIRK-OTHMER R E, et al. Kirk-Othmer Encyclopedia of Chemical Technology[M]. 2004.
[50] EASTMOND G C, PAPROTNY J. Synthesis of Bis(ether anhydride)s for Poly(ether imide)s having 1,2-Linked Units by Nitrodisplacement with Catechol Derivatives[J]. Macromolecules, 1995, 28(7): 2140-2146.
[51] RATTA V, AYAMBEM A, MCGRATH J E, et al. Crystallization and multiple melting behavior of a new semicrystalline polyimide based on 1,3-bis(4-aminophenoxy)benzene (TPER) and 3,3′,4,4′-biphenonetetracarboxylic dianhydride (BTDA)[J]. Polymer, 2001, 42(14): 6173-6186.
[52] GE JJ, LI CY, XUE G, et al. Rubbing-Induced Molecular Reorientation on an Alignment Surface of an Aromatic Polyimide Containing Cyanobiphenyl Side Chains[J]. Journal of the American Chemical Society, 2001, 123(24): 5768-5776.
[53] CHEN WX, ZHOU ZX, YANG TT, et al. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety[J]. Reactive & Functional Polymers, 2016, 108: 71-77.
[54] SYDLIK S A, CHEN Z, SWAGER T M. Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices[J]. Macromolecules, 2011, 44(4): 976-980.
[55] LIU J, LI J, WANG T, et al. Organosoluble thermoplastic polyimide with improved thermal stability and UV absorption for temporary bonding and debonding in ultra-thin chip package[J]. Polymer, 2022, 244.
[56] CAO XW, WEI C, HE GJ, et al. Synthesis and characterization of a novel quaternary copolymerized thermoplastic copolyimide with excellent heat resistance, thermoplasticity, and solubility[J]. Express polymer letters, 2020, 14(8): 757-767.
[57] LI H, WANG W, CHEN G, et al. Highly soluble phenylethynyl terminated oligoimides derived from 5(6)-amino-1-(4-aminophenyl)-1,3,3-trimethylindane, 4,4′-oxydianiline and mixed thioetherdiphthalic anhydride isomers[J]. Journal of polymer research, 2018, 25(1): 1-9.
[58] ZHOU D, YUAN L, HONG W, et al. Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix[J]. Polymer, 2019, 173: 66-79.
[59] 孔德亮. 高耐热聚酰亚胺塑料的制备及热性能研究[D]. 长春: 吉林大学, 2017.
[60] LIU T-Q, ZHENG F, MA X, et al. High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications[J]. Polymer, 2020, 209: 122963.
[61] LIU T J, SIL M C, CHEN C M. Well-organized organosilane composites for adhesion enhancement of heterojunctions[J]. Composites science and technology, 2020, 193: 108135.
[62] XU Y, ZHAO A, WANG X, et al. Influence of curing accelerators on the imidization of polyamic acids and properties of polyimide films[J]. Journal of Wuhan University of Technology. Materials science edition, 2016, 31(5): 1137-1143.
Edit Comment