中文版 | English
Title

耐高温热塑性聚酰亚胺的合成及其在临时键合中的应用

Alternative Title
SYNTHESIS OF HIGH TEMPERATURE RESISTANT THERMOPLASTIC POLYIMIDE AND ITS APPLICATION IN TEMPORARY BONDING
Author
Name pinyin
LIU Wen
School number
12032275
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
张国平
Mentor unit
中国科学院深圳先进技术研究院
Publication Years
2022-05-09
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

摩尔定律指导集成电路产业发展了半个多世纪,但物理和功耗极限的逼近使得人们开始探究其他方式来推进半导体行业的发展,先进封装被视为一种重要的解决方案。在先进的封装工艺中,三维集成电路(three Dimensional Integrated Circuit, 3DIC)和晶圆级封装(Wafer Level Packaging, WLP)等需要超薄晶圆作为器件基础,而临时键合/解键合工艺作为晶圆减薄的重要方式被广泛关注,其中的临时键合材料需要耐高温和可溶解的特性。本文通过选取含有柔性醚键的4,4’-氧双邻苯二甲酸酐(4,4-Oxydiphthalic anhydride, ODPA)和具有扭曲非共面结构的5(6)-氨基-1-(4-氨基苯基)-1,3,3-三甲基二胺(5(6)-amino-1-(4-aminophenyl)-1,3,3-Trimethylindane, DAPI)分别作为二酐和二胺单体,通过热亚胺化和化学亚胺化两种方式合成了耐高温的热塑性聚酰亚胺(Thermoplastic Polyimide, TPI),并将其应用于临时键合工艺。主要包括以下两个方面的研究内容:
(1)探究热亚胺化条件对TPI薄膜性能的影响。随着亚胺化温度的升高以及最高亚胺化温度时间的延长,材料的亚胺化率逐渐增大,溶解度逐渐减小,热学性能逐渐提高,力学性能逐渐增强。研究发现,亚胺化时间对薄膜性能的影响没有亚胺化温度对膜性能的影响显著。除此之外,该系列TPI拥有较好的紫外光吸收性能。
(2)运用化学亚胺化的方式合成了一系列TPI,测试表明其亚胺化率达到97%,同时具有优异的热学、力学、光学等综合性能。并将其成功应用于8英寸晶圆的临时键合制程。随后用能量密度为440 mJ/cm2的紫外激光进行解键合,然后将拆解开的晶圆浸泡在N-甲基吡咯烷酮(NMP)溶液中,能谱测试显示浸泡后的晶圆表面无胶体残留,故本文中合成的TPI有望以释放层材料运用于临时键合/解键合的制程中。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07
References List

[1] MORI T, YAMAGUCHI T, MARUYAMA Y, et al. Material Development for 3D Wafer Bond and De-bonding Process[C]. 2015 IEEE 65th Electronic Components and Technology Conference(ECTC). 2015: 899-905.
[2] CHENG CA, TSAI T Y, HUANG YH, et al. Characterization of Temporary Bonding and Laser Release Using Polyimide and a 300-nm Photolysis Polymer System for High-Throughput 3-D IC Applications[J]. IEEE transactions on components, packaging, and manufacturing technology, 2017, 7(3): 456-462.
[3] 张国平, 夏建文, 刘强等. 面向超薄柔性器件加工的激光解键合方案[J]. 纺织学报, 2018, 39(5): 155-159.
[4] FARRENS S N, BISSON P, SOOD S, et al. Thin Wafer Handling Challenges and Emerging Solutions[C]. ECS transactions, 2019, 27 (1): 801-806.
[5] LIU JJ, TAN JH, ZENG Y, et al. Synthesis and characterization of high-barrier polyimide containing rigid planar moieties and amide groups[J]. Polymer testing, 2017, 61: 83-92.
[6] PATIL Y S, SALUNKHE P H, MAHINDRAKAR J N, et al. Synthesis and characterization of aromatic polyimides containing tetraphenylfuran-thiazole moiety[J]. Journal of thermal analysis and calorimetry, 2018, 135(6): 3057-3068.
[7] PURUSHOTHAMAN R, VAITINADIN H S. Incorporation of COF‐LZU‐1 into the terpolyimide matrix to obtain COF‐LZU‐1/terpolyimide composites with ultra‐low dielectric constant[J]. Polymer engineering and science, 2019, 59(4): 814-820.
[8] REE B J, KOBAYASHI S, HEO K, et al. Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units[J]. Polymer, 2019, 169: 225-233.
[9] CAO X, WEN J, SONG L, et al. Polyimide hollow glass microspheres composite films with low dielectric constant and excellent thermal performance[J]. Journal of applied polymer science, 2021, 138(25).
[10] B.ITRS H. The international technology roadmap for semiconductors[M]. Berlin: Springer, 2011.
[11] MOORE G E. Progress in digital integrated electronics[J]. IEEE Solid-State Circuits Society Newsletter, 2006, 11(3): 36-37.
[12] DESAI S B, MADHVAPATHY S R, SACHID A B, et al. MoS₂ transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308): 99-102.
[13] FAN W, HE T, YANG S, et al. Vertical MoS2 transistors with sub-1-nm gate lengths[J]. Nature, 2022, 603(7900): 259-264.
[14] R. B G. The electronic packaging handbook[M]. Boca Raton: CRC Press LLC, 2017.
[15] 于大全. 硅通孔三维封装技术[M]. 北京: 电子工业出版社, 2021.
[16] P. L M. Beam-lead technongy[J]. Bell System Technical, 1966, 45(2): 233-253.
[17] METZ E D. Metal problems in plastic encapsulated integrated circuits[J]. Proceedings of the IEEE, 1969, 57(9): 1606-1609.
[18] JOHNSON D R, WILLYARD D L. Influence of lead frame thickness on the flexure resistance and peel strength of thermocompression bonds[R]. Albuquerque, 1975.
[19] MARTIN J H. Interconnection of planar electronic structures[P]. America, US3904934. 1975-09-09.
[20] Devlin D J. Integrated circuit package and lead frame[P]. America, US4289922. 1981-09-15.
[21] ADAMS V J B P T, HUGHES H G, ET AL. Semiconductor wafer level package[P]. America, US5323051. 1994-06-21.
[22] DANG B, WRIGHT S L, ANDRY P S, et al. 3D chip stacking with C4 technology[J]. IBM journal of research and development, 2008, 52(6): 599-609.
[23] SUN-RONG J, TIEN-PEI C, CHE-YU Y, et al. A Compact Analytic Model of the Strain Field Induced by Through Silicon Vias[J]. IEEE transactions on electron devices, 2012, 59(3): 777-782.
[24] 王谦. 集成电路先进封装材料[M]. 北京: 电子工业出版社, 2021.
[25] FARMELO G. The Pleasure of Finding Things Out[J]. Nature, 1999, 401(2): 426.
[26] 罗江波. 高性能硅转接板的系统设计及集成制造方法研究[D]. 上海: 上海交通大学, 2019.
[27] 李冬洋. 基于光刻和电镀的超精细引线技术研究[D]. 上海: 上海交通大学, 2019.
[28] 洪荣华. 晶圆级芯片尺寸封装的热-机械可靠性研究[D]. 上海: 复旦大学, 2012.
[29] BIECK F, SPILLER S, MOLINA F, et al. Carrierless design for handling and processing of ultrathin wafers[C]. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) 2010, 316-322.
[30] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in Polyimide‐Based Materials for Space Applications[J]. Advanced materials, 2019, 31(18).
[31] KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature, 2013, 499(7459): 458-463.
[32] LI C, WANG Y, YIN Y, et al. A comprehensive study of pyrazine-contained and low-temperature curable polyimide[J]. Polymer, 2021, 228: 123963.
[33] ZHUANG Y, SEONG J G, LEE Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in polymer science, 2019, 92: 35-88.
[34] BOGERT M T, RENSHAW R R. 4-amino-o-phthalic acid and some of its derivatives[J]. Journal of the American Chemical Society, 1908, 30(7): 1135-1144.
[35] EDWARDS W M, MAXWELL, ROBINSON IVAN. Polyimides of pyromellitic acid[P]. America, US2710853. 1955-06-14.
[36] 石红兵. 可溶性聚酰亚胺及其复合材料的制备与研究[D]. 南京: 东南大学, 2019.
[37] NI HJ, LIU JG, WANG ZH, et al. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications[J]. Journal of industrial and engineering chemistry, 2015, 28: 16-27.
[38] 苗杰. 含大体积扭曲结构的聚酰亚胺的合成与性能[D]. 合肥: 中国科学技术大学, 2020.
[39] 刘新. 四元共聚热塑性聚酰亚胺及其低介电材料的制备与性能研究[D]. 广州: 华南理工大学, 2020.
[40] 丁孟贤. 聚酰亚胺-化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2012.
[41] ROGERS M E, BRINK M H, MCGRATH J E, et al. Semicrystalline and amorphous fluorine-containing polyimides[J]. Polymer, 1993, 34(4): 849-855.
[42] SHIODA T, TAKAMATSU N, SUZUKI K, et al. Influence of water sorption on refractive index of fluorinated polyimide[J]. Polymer, 2003, 44(1): 137-142.
[43] WANG CY, LI G, JIANG JM. Synthesis and properties of fluorinated poly(ether ketone imide)s based on a new unsymmetrical and concoplanar diamine: 3,5-Dimethyl-4-(4-amino-2-trifluoromethylphenoxy)-4′-aminobenzophenone[J]. Polymer, 2009, 50(7): 1709-1716.
[44] XIE K, LIU J G, ZHOU H W, et al. Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl- phenoxy) benzene and dianhydrides[J]. Polymer, 2001, 42(17): 7267-7274.
[45] TAMAI S, YAMAGUCHI A, OHTA M. Melt processible polyimides and their chemical structures[J]. Polymer, 1996, 37(16): 3683-3692.
[46] HASEGAWA M, KANEKI T, TSUKUI M, et al. High-temperature polymers overcoming the trade-off between excellent thermoplasticity and low thermal expansion properties[J]. Polymer, 2016, 99: 292-306.
[47] 邢天成. 双面柔性覆铜板用热塑性聚酰亚胺(TPI)的研究[D]. 广州: 华南理工大学, 2018.
[48] KUROKI T S Y, OKUMURA T, ET AL. Crystalline Polyimide for Melt Molding with Satisfactory Thermal Stability[P]. America, US6458912. 2002-10-01.
[49] SEIDEL A, KROSCHWITZ J I, KIRK-OTHMER R E, et al. Kirk-Othmer Encyclopedia of Chemical Technology[M]. 2004.
[50] EASTMOND G C, PAPROTNY J. Synthesis of Bis(ether anhydride)s for Poly(ether imide)s having 1,2-Linked Units by Nitrodisplacement with Catechol Derivatives[J]. Macromolecules, 1995, 28(7): 2140-2146.
[51] RATTA V, AYAMBEM A, MCGRATH J E, et al. Crystallization and multiple melting behavior of a new semicrystalline polyimide based on 1,3-bis(4-aminophenoxy)benzene (TPER) and 3,3′,4,4′-biphenonetetracarboxylic dianhydride (BTDA)[J]. Polymer, 2001, 42(14): 6173-6186.
[52] GE JJ, LI CY, XUE G, et al. Rubbing-Induced Molecular Reorientation on an Alignment Surface of an Aromatic Polyimide Containing Cyanobiphenyl Side Chains[J]. Journal of the American Chemical Society, 2001, 123(24): 5768-5776.
[53] CHEN WX, ZHOU ZX, YANG TT, et al. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety[J]. Reactive & Functional Polymers, 2016, 108: 71-77.
[54] SYDLIK S A, CHEN Z, SWAGER T M. Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices[J]. Macromolecules, 2011, 44(4): 976-980.
[55] LIU J, LI J, WANG T, et al. Organosoluble thermoplastic polyimide with improved thermal stability and UV absorption for temporary bonding and debonding in ultra-thin chip package[J]. Polymer, 2022, 244.
[56] CAO XW, WEI C, HE GJ, et al. Synthesis and characterization of a novel quaternary copolymerized thermoplastic copolyimide with excellent heat resistance, thermoplasticity, and solubility[J]. Express polymer letters, 2020, 14(8): 757-767.
[57] LI H, WANG W, CHEN G, et al. Highly soluble phenylethynyl terminated oligoimides derived from 5(6)-amino-1-(4-aminophenyl)-1,3,3-trimethylindane, 4,4′-oxydianiline and mixed thioetherdiphthalic anhydride isomers[J]. Journal of polymer research, 2018, 25(1): 1-9.
[58] ZHOU D, YUAN L, HONG W, et al. Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix[J]. Polymer, 2019, 173: 66-79.
[59] 孔德亮. 高耐热聚酰亚胺塑料的制备及热性能研究[D]. 长春: 吉林大学, 2017.
[60] LIU T-Q, ZHENG F, MA X, et al. High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications[J]. Polymer, 2020, 209: 122963.
[61] LIU T J, SIL M C, CHEN C M. Well-organized organosilane composites for adhesion enhancement of heterojunctions[J]. Composites science and technology, 2020, 193: 108135.
[62] XU Y, ZHAO A, WANG X, et al. Influence of curing accelerators on the imidization of polyamic acids and properties of polyimide films[J]. Journal of Wuhan University of Technology. Materials science edition, 2016, 31(5): 1137-1143.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TQ323.7
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343124
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
刘纹. 耐高温热塑性聚酰亚胺的合成及其在临时键合中的应用[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032275-刘纹-中国科学院深圳理(3939KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘纹]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘纹]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘纹]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.