中文版 | English
Title

基于稀疏惯性传感器的人体姿态还原

Alternative Title
HUMAN POSTURE RECONSTRUCTION BASED ON SPARSE INERTIAL SENSORS
Author
Name pinyin
ZHENG Zhaolong
School number
11930587
Degree
硕士
Discipline
0801 力学
Subject category of dissertation
08 工学
Supervisor
陈士博
Mentor unit
机械与能源工程系
Publication Years
2022-05-10
Submission date
2022-06-14
University
南方科技大学
Place of Publication
深圳
Abstract

稀疏惯性传感器动作捕捉有着很大的发展潜力,相比于传统动作捕捉,
它有着穿戴方便、不受遮挡影响的优点。然而传感器测量信息的缺失会使
得还原的人体姿态存在误差。为了解决稀疏惯性传感器人体姿态还原方法
还原精度低、帧率有限的问题,本文从先验模型、数据选择、传感器安装
位置选择三方面进行了优化。
为了提高稀疏惯性动作捕捉先验模型的还原精度,本文在现有基于神
经网络的单阶段人体姿态估计模型和三阶段人体姿态估计模型的基础上对
输入特征进行了优选,对优化函数进行了改进。本文利用改进的三阶段人
体姿态还原模型进行了实时人体动作捕捉。通过测试,六节点与十节点模
型的人体骨骼姿态平均还原误差分别约为6.69°和6.10°。
为了使得先验模型能够更加准确地还原相应应用场景的动作,本文还
提出了面向特定应用场景的先验模型训练数据选择方法。本文将深度学习
训练数据选择问题描述为一个最优化问题,其目标是选出与目标应用场景
的相关程度高且自身之间冗余性小的数据。我们将从目标场景采集的数据
作为参考数据,利用提出的基于信息量的两步启发式数据选择算法,从整
个数据集中选择最优数据。与在整个数据集和手动选择数据上训练的模型
相比,依据算法选择数据训练的先验模型具有更好的性能。
另一方面,由于传感器测量信息的量及可靠性受到传感器放置位置的
影响,所以选择合适的传感器放置位置也将使先验模型有更好的姿态还原
效果。本文提出了一种贪心算法来搜索相对最优的传感器组合,使得选取
的传感器测量信息与未选择传感器位置信息相关性尽可能的大、已选择传
感器间测量信息冗余性尽可能的小。实验结果表明,本文的传感器选择算
法选择的传感器配置的姿态还原性能优于主成分分析(PCA)和手动选择
的默认传感器配置。随着传感器数量的增加,本文的传感器选择算法的位
姿重建误差逐渐减小,这证明了所提出的算法考虑到了传感器测量信息冗
余的优势。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] HACHAJ T, PIEKARCZYK M, OGIELA M R. Supporting Rehabilitation Process with Novel Motion Capture Analysis Method[C]// 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS). 2018.

[2] G. JIE, C. GUILING, H. LIN AND Z. DONG. Application Research on Motion Capture System Data Reuse in Virtual Reality Environment[C]// 2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanjing, China, 2010, pp. 114-116.

[3] NOIUMKAR S, TIRAKOAT S. Use of Optical Motion Capture in Sports Science: A Case Study of Golf Swing[C]// International Conference on Informatics & Creative Multimedia. IEEE, 2014.

[1]

[4] GUERRA-FILHO G. Optical Motion Capture: Theory and Implementation[J]. RITA, 2005, 12(2): 61-90.

[5] KOK M, HOL J D, SCHÖN T B. An optimization-based approach to human body motion capture using inertial sensors[J]. IFAC Proceedings Volumes, 2014, 47(3): 79-85.

[6] KIM Y, BAEK S, BAE B C. Motion capture of the human body using multiple depth sensors[J]. Etri Journal, 2017, 39(2): 181-190.

[7] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2d pose estimation using part affinity fields[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7291-7299.

[8] CHEN X, YUILLE A L. Articulated pose estimation by a graphical model with image dependent pairwise relations[J]. Advances in neural information processing systems, 2014, 27.

[9] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//European conference on computer vision. Springer, Cham, 2016: 483-499.

[10] TOMPSON J J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[J]. Advances in neural information processing systems, 2014, 27.

[11] TOSHEV A, SZEGEDY C. Deeppose: Human pose estimation via deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1653-1660.

[12] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2016: 4724-4732.

[13] PAVLAKOS G, ZHOU X, DERPANIS K G, et al. Coarse-to-fine volumetric prediction for single-image 3D human pose[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7025-7034.

[14] PAVLAKOS G, ZHU L, ZHOU X, et al. Learning to estimate 3D human pose and shape from a single color image[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 459-468.

[15] TOME D, RUSSELL C, AGAPITO L. Lifting from the deep: Convolutional 3d pose estimation from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2500-2509.

[16] ZHOU X, ZHU M, LEONARDOS S, et al. Sparseness meets deepness: 3d human pose estimation from monocular video[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 4966-4975.

[17] MEHTA D, SOTNYCHENKO O, MUELLER F, et al. Single-shot multi-person 3d pose estimation from monocular rgb[C]//2018 International Conference on 3D Vision (3DV). IEEE, 2018: 120-130.

[18] MEHTA D, SRIDHAR S, SOTNYCHENKO O, et al. Vnect: Real-time 3d human pose estimation with a single rgb camera[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 1-14.

[19] OMRAN M, LASSNER C, PONS-MOLL G, et al. Neural body fitting: Unifying deep learning and model based human pose and shape estimation[C]//2018 international conference on 3D vision (3DV). IEEE, 2018: 484-494.

[20] COLYER S L, EVANS M, COSKER D P, et al. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system[J]. Sports medicine-open, 2018, 4(1): 1-15.

[21] PAVLLO D, FEICHTENHOFER C, GRANGIER D, et al. 3d human pose estimation in video with temporal convolutions and semi-supervised training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7753-7762.

[22] CAI Y, GE L, LIU J, et al. Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 2272-2281.

[23] QIU H, WANG C, WANG J, et al. Cross view fusion for 3d human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 4342-4351.

[24] ROETENBERG D, LUINGE H, SLYCKE P. Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors[J]. Xsens Motion Technologies BV, Tech. Rep, 2009, 1.

[25] MARKUS M, BERTRAM T, GABRIELE B. On Inertial Body Tracking in the Presence of Model Calibration Errors[J]. Sensors, 2016, 16(7):1132.

[26] BOUVIER B, DUPREY S, CLAUDON L, et al. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations[J]. Sensors, 2015.

[27] TAETZ B, BLESER G, MIEZAL M. Towards Self-Calibrating Inertial Body Motion Capture[J]. 2016.

[28] MÜLLER P, BÉGIN M A, SCHAUER T, et al. Alignment-free, self-calibrating elbow angles measurement using inertial sensors[J]. IEEE journal of biomedical and health informatics, 2016, 21(2): 312-319.

[29] MIEZAL M, TAETZ B, BLESER G. Real-time inertial lower body kinematics and ground contact estimation at anatomical foot points for agile human locomotion[C]//2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017: 3256-3263.

[30] KOK M, HOL J D, SCHÖN T B. An optimization-based approach to human body motion capture using inertial sensors[J]. IFAC Proceedings Volumes, 2014, 47(3): 79-85.

[31] ZHANG Z, WONG W, WU J. Ubiquitous Human Upper-Limb Motion Estimation using Wearable Sensors[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(4):513-521.

[32] WONG W. Wearable sensors for 3D upper limb motion modeling and ubiquitous estimation[J]. Control Theory and Technology, 2011(01):10-17.

[33] 明星, 胡玉枝. 诺亦腾:让非洲传说走向全球[J]. 中关村, 2019(8).

[34] 崔丽君,黄天羽,冯枫,张杰,杨凯,刘陈.基于少量惯性传感器的姿态重建与仿真[J].系统仿真学报,2017,29(10):2261-2267.

[35] VLASIC D, ADELSBERGER R, VANNUCCI G, et al. Practical motion capture in everyday surroundings[J]. ACM transactions on graphics (TOG), 2007, 26(3): 35-es.

[36] TROJE N F. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns[J]. Journal of vision, 2002, 2(5): 2-2.

[37] SANGER T D. Human arm movements described by a low-dimensional superposition of principal components[J]. Journal of Neuroscience, 2000, 20(3): 1066-1072.

[38] SAFONOVA A, HODGINS J K, POLLARD N S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces[J]. ACM Transactions on Graphics (ToG), 2004, 23(3): 514-521.

[39] PONS-MOLL G, BAAK A, GALL J, et al. Outdoor human motion capture using inverse kinematics and von mises-fisher sampling[C]//2011 International Conference on Computer Vision. IEEE, 2011: 1243-1250.

[40] VON MARCARD T, PONS-MOLL G, ROSENHAHN B. Human pose estimation from video and imus[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(8): 1533-1547.

[41] ANDREWS S , HUERTA I , KOMURA T, et al. Real-time Physics-based Motion Capture with Sparse Sensors[C]// European Conference on Visual Media Production. ACM, 2016:1-10.

[42] TAUTGES J , ARNOZINKE, KRUGER B, et al. Motion Reconstruction Using Sparse Accelerometer Data[J]. Acm Transactions on Graphics, 2011, 30(3):1-12.

[43] VON MARCARD T, ROSENHAHN B, BLACK M J, et al. Sparse inertial poser: Automatic 3d human pose estimation from sparse imus[C]//Computer Graphics Forum. 2017, 36(2): 349-360.

[44] OPER M, MAHMOOD N, ROMERO J, et al. SMPL: A skinned multi-person linear model[J]. ACM transactions on graphics (TOG), 2015, 34(6): 1-16.

[45] HUANG Y, KAUFMANN M, AKSAN E, et al. Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time[J]. ACM Transactions on Graphics (TOG), 2018, 37(6): 1-15.

[46] YI X, ZHOU Y, XU F. TransPose: real-time 3D human translation and pose estimation with six inertial sensors[J]. ACM Transactions on Graphics (TOG), 2021, 40(4): 1-13.

[47] YUHANG Y, YINGLIANG L, YAO M, et al. Training data selection for short term load forecasting[C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2011, 3: 1040-1043.

[48] BALCÁZAR J, DAI Y, WATANABE O. A random sampling technique for training support vector machines[C]//International Conference on Algorithmic Learning Theory. Springer, Berlin, Heidelberg, 2001: 119-134.

[49] FERRAGUT E M, LASKA J. Randomized sampling for large data applications of SVM[C]//2012 11th International Conference on Machine Learning and Applications. IEEE, 2012, 1: 350-355.

[50] TSAGALIDIS E, EVANGELIDIS G. The effect of training set selection in meteorological data mining[C]//2010 14th Panhellenic Conference on Informatics. IEEE, 2010: 61-65.

[51] LEE Y J, MANGASARIAN O L. RSVM: Reduced support vector machines[C]//Proceedings of the 2001 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2001: 1-17.

[52] LEE Y J, HUANG S Y. Reduced support vector machines: A statistical theory[J]. IEEE Transactions on neural networks, 2007, 18(1): 1-13.

[53] LI X, CERVANTES J, YU W. Fast classification for large data sets via random selection clustering and support vector machines[J]. Intelligent Data Analysis, 2012, 16(6): 897-914.

[54] ZHAI J H, XUI H Y, ZHANG S F, et al. Instance selection based on supervised clustering[C]//2012 International Conference on Machine Learning and Cybernetics. IEEE, 2012, 1: 112-117.

[55] KOSKIMAKI H, JUUTILAINEN I, LAURINEN P, et al. Two-level clustering approach to training data instance selection: a case study for the steel industry[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008: 3044-3049.

[56] KANEDA Y, ZHAO Q, LIU Y. On-Line training with guide data: Shall we select the guide data randomly or based on cluster centers?[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2016: 1-7.

[57] ZHENG J, YANG W, LI X. Training data reduction in deep neural networks with partial mutual information based feature selection and correlation matching based active learning[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017: 2362-2366.

[58] LIU S H, CHU F H, LIN S H, et al. Training data selection for improving discriminative training of acoustic models[C]//2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2007: 284-289.

[59] MOORE R C, LEWIS W. Intelligent selection of language model training data[C]//Proceedings of the ACL 2010 conference short papers. 2010: 220-224.

[60] COLE C A, THRASHER J F, STRAYER S M, et al. Resolving ambiguities in accelerometer data due to location of sensor on wrist in application to detection of smoking gesture[C]//2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2017: 489-492.

[61] ORHA I, ONIGA S. Study regarding the optimal sensors placement on the body for human activity recognition[C]//2014 IEEE 20th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2014: 203-206.

[62] DOBRUCALI O, BARSHAN B. Sensor-activity relevance in human activity recognition with wearable motion sensors and mutual information criterion[M]//Information Sciences and Systems 2013. Springer, Cham, 2013: 285-294.

[63] CHING Y T, CHENG C C, HE G W, et al. Full model for sensors placement and activities recognition[C]//Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. 2017: 17-20.

[64] MURAO K, MOGARI H, TERADA T, et al. Evaluation function of sensor position for activity recognition considering wearability[C]//Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. 2013: 623-632.

[65] BANOS O, TOTH M A, DAMAS M, et al. Dealing with the effects of sensor displacement in wearable activity recognition[J]. Sensors, 2014, 14(6): 9995-10023.

[66] KUNZE K, LUKOWICZ P. Sensor placement variations in wearable activity recognition[J]. IEEE Pervasive Computing, 2014, 13(4): 32-41.

[67] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2673-2681.

[68] DING C, PENG H. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of bioinformatics and computational biology, 2005, 3(02): 185-205.

[69] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. science, 2011, 334(6062): 1518-1524.

[70] MALHI A, GAO R X. PCA-based feature selection scheme for machine defect classification[J]. IEEE transactions on instrumentation and measurement, 2004, 53(6): 1517-1525.

[71] Mixamo. 2020. Available online: https://www.mixamo.com/#/?page=1&type= Character (accessed on 9 May 2021)

[72] TROJE N F. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns[J]. Journal of vision, 2002, 2(5): 2-2.

[73] MÜLLER M, RÖDER T, CLAUSEN M, et al. Documentation mocap database hdm05[J]. 2007.

[74] DE LA TORRE F, HODGINS J, BARGTEIL A, et al. Guide to the carnegie mellon university multimodal activity (cmu-mmac) database[J]. 2009.

[75] IONESCU C, PAPAVA D, OLARU V, et al. Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 36(7): 1325-1339.

[76] MANDERY C, TERLEMEZ Ö, DO M, et al. The KIT whole-body human motion database[C]//2015 International Conference on Advanced Robotics (ICAR). IEEE, 2015: 329-336.

[77] AKHTER I, BLACK M J. Pose-conditioned joint angle limits for 3D human pose reconstruction[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1446-1455.

[78] TRUMBLE M, GILBERT A, MALLESON C, et al. Total capture: 3d human pose estimation fusing video and inertial sensors[C]//Proceedings of 28th British Machine Vision Conference. University of Surrey, 2017: 1-13.

[79] MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: Archive of motion capture as surface shapes[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 5442-5451.

Academic Degree Assessment Sub committee
机械与能源工程系
Domestic book classification number
TP273
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343125
DepartmentDepartment of Mechanical and Energy Engineering
Recommended Citation
GB/T 7714
郑昭龙. 基于稀疏惯性传感器的人体姿态还原[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930587-郑昭龙-机械与能源工程(4146KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[郑昭龙]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[郑昭龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郑昭龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.