[1] PENG ZA, PENG XG. Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor[J]. Journal of the American ChemicalSociety, 2001, 123(1):183-184.
[2] PENG ZA, PENG XG. Nearly monodisperse and shape -controlled CdSenanocrystals via alternative routes: nucleation and growth[J]. Journal of theAmerican Chemical Society, 2002, 124(13):3343 -3353.
[3] ROGACH AL, GAPONIK N, LUPTON JM, et al. Light -emitting diodes withsemiconductor nanocrystals[J]. Angewandte Chemie International Edition,2008, 47(35):6538-6549.
[4] PAL BN, ROBEL I, MOHITE A, et al. High-sensitivity p-n junctionphotodiodes based on PbS nanocrystal quantum dots[J]. Advanced FunctionalMaterials, 2012, 22(8):1741-1748.
[5] BASKOUTAS S, TERZIS AF. Size-dependent band gap of colloidal quantumdots[J]. Journal of Applied Physics, 2006, 99(1):013708.
[6] WANG R, SHANG Y, KANJANABOOS P, et al. Colloidal quantum dot ligandengineering for high performance solar cells[J]. Energy & EnvironmentalScience, 2016, 9(4):1130-1143.
[7] QIAO K, DENG H, YANG X, et al. Spectra-selective PbS quantum dot infraredphotodetectors[J]. Nanoscale, 2016, 8(13):37-43.
[8] KIM JH, JO DY, LEE KH, et al. White electroluminescent lighting devicebased on a single quantum dot emitter[J]. Advanced Materials, 2016,28(25):5093-5098.
[9] MEDINTZ IL, UYEDA HT, GOLDMAN ER, et al. Quantum dot bioconjugatesfor imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6):435.
[10] DABBOUSI BO, RODRIGUEZ-VIEJO J, MIKULEC FV, et al. (CdSe) ZnScore-shell quantum dots: synthesis and characterization of a size series ofhighly luminescent nanocrystallites[J]. The Journal of Physical Chemistry B,1997, 101(46):9463-9475.
[11] WANG X, SUN G, LI N, et al. Quantum dots derived from two -dimensionalmaterials and their applications for catalysis and energy[J]. Chemical SocietyReviews, 2016, 45(8):2239-2262.
[12] SUN Y, JIANG Y, SUN X W, et al. Beyond OLED: efficient quantum dot light -emitting diodes for display and lighting application[J]. The C hemical Record,2019, 19(8):1729-1752.
[13] WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materialssynthesis, quantum size effects, and photophysical properties[J]. The Journalof Physical Chemistry, 1991, 95(2):525-532.
[14] PIETRYGA JM, PARK YS, LIM J, et al. Spectroscopic and device aspects ofnanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18):10513 -10622.
[15] BAE WK, BROVELLI S, KLIMOV VI. Spectroscopic insights into theperformance of quantum dot light emitting diodes[J]. MRS Bulletin, 20 13,38(9):721-730.
[16] SHIRASAKI Y, SUPRAN GJ, BAWENDI MG , et al. Emergence of colloidalquantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1):13 -23.
[17] TALAPIN DV, STECKEL J. Quantum dot light-emitting devices[J]. MRSBulletin, 2013, 38(9):685-691.
[18] SADASIVAN S, BAUSEMER K, CORLISS S, et al. Invited paper:performance benchmarking of wide color gamut televisions and monitors[C].SID Symposium Digest of Technical Papers . 2016, 47(1):333-335.
[19] SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrixorganic light-emitting diode display using printable elastic conductors[J].Nature Materials, 2009, 8(6):494.
[20] DAI X, DENG Y, PENG X, et al. Quantum-dot light-emitting diodes for largearea displays: towards the dawn of commercialization[J]. Advanced Materials,2017, 29(14):1607022.
[21] NEGHABI M, BEHJAT A. Electrical and electroluminescence properties ofITO/PEDOT: PSS/TPD: Alq3: C6 0/Al organic light emitting diodes[J]. Curre ntApplied Physics, 2012, 12(2):597 -601.
[22] BARTH S, WOLF U, BÄSSLER H, et al. Current injection from a metal to adisordered hopping system. III. Comparison between experiment and MonteCarlo simulation[J]. Physical Review B, 1999, 60(12):8791.
[23] SHI S, MA D. Investigation on internal electric field distribution of organiclight-emitting diodes (OLEDs) with Eu2O3 buffer layer[J]. Physica StatusSsolidi (a), 2009, 206(11):2641-2644.
[24] SU Q, SUN Y, ZHANG H, et al. Origin of positive aging in quantum-dot lightemitting diodes[J]. Advanced Science, 2018, 5(10):1800549.
[25] WANG F, SUN W, LIU P, et al. Achieving balanced charge injection of bluequantum dot light-emitting diodes through transport layer doping strategies[J].The Journal of Physical Chemistry Letters, 2019, 10(5):960 -965.
[26] SEINO Y, SASABE H, PU YJ, et al. High-performance blue phosphorescentOLEDs using energy transfer from exciplex[J]. Advanced Materials, 2014,26(10):1612-1616.
[27] LI Z, CHEN F, WANG L, et al. Synthesis and evaluation of ideal core/shellquantum dots with precisely controlled shell gr owth: nonblinking, singlephotoluminescence decay channel, and suppressed FRET[J]. Chemistry ofMaterials, 2018, 30(11):3668-3676.
[28] KAGAN CR, MURRAY CB, BAWENDI MG . Long-range resonance transferof electronic excitations in close -packed CdSe quantum-dot solids[J]. PhysicalReview B, 1996, 54(12):8633.
[29] PAL BN, GHOSH Y, BROVELLI S, et al. ‘Giant’ CdSe/CdS core/shellnanocrystal quantum dots as efficient electroluminescent materials: stronginfluence of shell thickness on light -emitting diode performance[J]. Na noLetter, 2012, 12(1):331 -336.
[30] FANG T, WANG T, LI X, et al. Perovskite QLED with an external quantumefficiency of over 21% by modulating electronic transport[J]. ScienceBulletin, 2021, 66(1):36-43.
[31] WANG S, DOU X, CHEN L, et al. Enhanced light out-coupling efficiency ofquantum dot light emitting diodes by nanoimprint lithography[J]. Nanoscale,2018, 10(24):11651-11656.
[32] BATHELT R, BUCHHAUSER D, GÄRDITZ C, et al. Light extraction fromOLEDs for lighting applications through light scattering[J]. OrganicElectronics, 2007, 8(4):293-299.
[33] MÖLLER S, FORREST SR. Improved light out-coupling in organic lightemitting diodes employing ordered microlens arrays[J]. Jo urnal of AppliedPhysics, 2002, 91(5):3324-3327.
[34] COLVIN VL, SCHLAMP MC, ALIVISATOS AP . Light-emitting diode madefrom cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1994, 370(6488):354-357.
[35] COE S, WOO WK, BAWENDI M, et al. Electroluminescence from singlemonolayers of nanocrystals in molecular organic devices[J]. Nature, 2002,420(6917):800-803.
[36] CARUGE JM, HALPERT JE, WOOD V, et al. Colloidal quantum-dot lightemitting diodes with metal-oxidecharge transport layers[J]. Nature Photoni cs,2008, 2(4):247-250.
[37] CARUGE JM, HALPERT JE, BULOVIĆ V, et al. NiO as an inorganic hole -transporting layer in quantum -dot light-emitting devices[J]. Nano Letters, 2006,6(12):2991-2994.
[38] QIAN L, ZHENG Y, XUE J, et al. Stable and efficient quantum-dot lightemitting diodes based on solution -processed multilayer structures[J]. NaturePhotonics, 2011, 5(9):543-548.
[39] STOUWDAM JW, JANSSEN RAJ. Red, green, and blue quantum dot LEDswith solution processable ZnO nanocrystal electron injection layers[J].Journal of Materials Chemistry, 2008, 18(16):1889 -1894.
[40] ZHANG H, WANG S, SUN X, et al. Solution-processed vanadium oxide as anefficient hole injection layer for quantum -dot light-emitting diodes[J]. Journalof Materials Chemistry C, 2017, 5(4):817 -823.
[41] LEE KH, LEE JH, SONG WS, et al. Highly efficient, color -pure, color-stableblue quantum dot light-emitting devices[J]. ACS Nano, 2013, 7(8):7295-7302.
[42] SHEN H, GAO Q, ZHANG Y, et al. Visible quantum dot light-emitting diodeswith simultaneous high brightness and efficiency[J]. Nature Photonics, 2019,13(3):192-197.
[43] YANG Z, WU Q, LIN G, et al. All-solution processed inverted green quantumdot light-emitting diodes with concurrent high efficiency and long lifetime[J].Materials Horizons, 2019, 6(10):2009 -2015.
[44] WANG L, LIN J, HU Y, et al. Blue quantum dot light-emitting diodes withhigh electroluminescent efficiency[J]. ACS Applied Materials & Interface,2017, 9(44):38755-38760.
[45] CHEN S, DENG L, XIE J, et al. Recent developments in top-emitting organiclight-emitting diodes[J]. Advanced Materials, 2010, 22(46):5227 -5239.
[46] YANG X, MUTLUGUN E, DANG C, et al. Highly flexible, electrically driven,top-emitting, quantum dot light-emitting stickers[J]. ACS Nano, 2014,8(8):8224-8231.
[47] LIU G, ZHOU X, CHEN S. Very bright and efficient microcavity top-emittingquantum dot light-emitting diodes with Ag electrodes[J]. ACS AppliedMaterials & Interfaces, 2016, 8(26):16768.
[48] TANG Z, LIN J, WANG L, et al. High performance, top -emitting, quantum dotlight-emitting diodes with all solution-processed functional layers[J]. Journalof Materials Chemistry C, 2017, 5(35):9138 -9145.
[49] LEE T, KIM BJ, LEE H, et al. Bright and stable quantum dot light-emittingdiodes[J]. Advanced Materials, 2022, 34(4):2106276.
[50] ZHANG H, CHEN S. An ZnMgO:PVP inorganic–organic hybrid electrontransport layer: Towards efficient bottom-emission and transparent quantumdot light-emitting diodes[J]. Journal of Materials Chemistry C, 2019,7(8):2291-2298.
[51] CHOI MK, YANG J, KIM DC, et al. Extremely vivid, highly transparent, andultrathin quantum dot light-emitting diodes[J]. Advanced Materials, 2018,30(1):1703279.
[52] DUHME E, SCHOTTKY W. Rectifying and photo-electric effects at contactsbetween cuprous oxide and sputtered electrodes[J]. Naturwissenschaften,1930, 18:735.
[53] JUNG BY, KIM NY, LEE C, et al. Control of resonant wavelength fromorganic light-emitting materials by use of a Fabry-Perot microcavitystructure[J]. Applied Optics, 2002, 41(16):3312-3318.
[54] ZHOU W, CHEN J, LI Y, et al. Copper mesh templated by breath -figurepolymer films as flexible transparent electrodes for organic photovoltaicdevices[J]. ACS Applied Materials & Interface, 2016, 8(17):11122-11127.
[55] LIANG H, ZHU R, DONG Y, et al. Enhancing the outcoupling efficiency ofquantum dot LEDs with internal nano-scattering pattern[J]. Optics Express,2015, 23(10):12910-12922.
[56] WANG S, DOU X, CHEN L, et al. Enhanced light out-coupling efficiency ofquantum dot light emitting diodes b y nanoimprint lithography[J]. Nanoscale,2018, 10(24):11651-11656.
[57] ZHU R, LUO Z, WU ST. Light extraction analysis and enhancement in aquantum dot light emitting diode[J]. Optics Express, 2014, 22(107):A1783 -A1798.
[58] SONG J, LEE H, JEONG E G, et al. Organic light‐ emitting diodes: pushingtoward the limits and beyond[J]. Advanced Materials, 2020, 32(35):1907539.
[59] WANG ZB, HELANDER MG, QIU J, et al. Unlocking the full potential oforganic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011,5(12):753-757.
[60] LEE T, HAHM D, KIM K, et al. Highly efficient and bright inverted top‐emitting InP quantum dot light-emitting diodes introducing a hole ‐suppressing interlayer[J]. Small, 2019, 15(50):1905162.
[61] LI D, FENG J, ZHU Y, et al. Enhanced efficiency of top-emission InP-basedgreen quantum dot light-emitting diodes with optimized angulardistribution[J]. Nano Research, 2021, 14(11):4243 -4249.
[62] BERA D, QIAN L, TSENG TK, et al. Quantum dots and their multimodalapplications: a Review[J]. Materials, 2010, 3(4):2260 -2345.
[63] BAE WK, LIM J, LEE D, et al. R/G/B/natural white light thin colloidalquantum dot-based light-emitting devices[J]. Advanced Materials, 2014,26(37):6387-6393.
[64] LEE KH, HAN CY, KANG HD, et al. Highly efficient, color-reproducible fullcolor electroluminescent devices based on red/green/blue quantum dot-mixedmultilayer[J]. ACS Nano, 2015, 9(11):10941 -10949.
[65] LEE KH, HAN CY, JANG EP, et al. Full-color capable light-emitting diodesbased on solution-processed quantum dot layer stacking [J]. Nanoscale, 2018,10(14):6300-6305.
[66] ZHANG H, SU Q, SUN Y, et al. Efficient and color stable white quantum -dotlight-emitting diodes with external quantum efficiency over 23 %[J]. AdvancedOptical Materials, 2018, 6(16):1800354.
[67] KRUMMACHER BC, NOWY S, FRISCHEISEN J, et al. Efficiency analysis oforganic light-emitting diodes based on optical simulation[J]. OrganicElectronics, 2009, 10(3):478 -485.
[68] YEE KS, CHEN JS. The finite-difference time-domain (FDTD) and the finite -volume time-domain (FVTD) methods in solving Maxwell's equations[J].IEEE Transactions on Antennas and Propagatio n, 1997, 45(3):354-363.
Edit Comment