中文版 | English
Title

高效顶发射量子点发光二极管的结构和性能研究

Alternative Title
RESEARCH ON STRUCTURE AND PROPERTIES OF HIGHLY EFFICIENT TOP EMISSION QUANTUM-DOT LIGHT EMITTING DIODES
Author
Name pinyin
SHI Liangliang
School number
11930197
Degree
硕士
Discipline
0809 电子科学与技术
Subject category of dissertation
08 工学
Supervisor
陈树明
Mentor unit
电子与电气工程系
Publication Years
2022-05-06
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

量子点发光二极管 ( QLED) 由于具有色纯度高、 高效率和溶液制
备等优点,被认为最有希望成为下一代显示技术。经过多年来研究人员
的共同努力, QLED 效率以及稳定性都得到了极大的提升。但是大多数
报道的 QLED 都是基于底发射结构。 然而,对于显示应用来说,顶发射
量子点发光二极管( TQLED)可以获得更高的显示器的开口率、效率和
颜色饱和度。 目前顶发射结构大都采用半透明金属 作为顶电极的强微腔
结构,该结构存在着严重的角依赖发射和无法实现白光出射的问题。此
外,金属顶电极的吸收和表面等离子体激元效应也会降低器件的发射效
率。
为了解决上述问题, 本文首先,采用铟锌氧化物( IZO)代替传统金
属作为顶电极,开发出了高效稳定的 TQLED。由于 IZO 的高透过率,器件
的微腔效应得到了削弱, 光谱的角度稳定性得到了提升。 其次, 在 IZO 电
极上引入纳米球散射层作为出光结构,有效的实现了对器件内部波导模式
的光萃取,大幅提升了相应器件的出光效率。所制备的出光红色、绿色和
蓝色器件外量子效率(EQE), 分别实现了 35%、 50%和 133%的提升幅度,
相应器件的 EQE 最大值分别为 32.5%、 19.2%和 10.3%。其中红色 TQLED
的 EQE 刷新了目前顶发射红光器件的记录。 此外, 纳米球的散射作用极大
的提升了器件的发光强度和光谱的角度稳定性,实现了 0 度-75 度观测角内
光谱的零偏移。
最后,将纳米球散射层应用于顶发射混合白光器件,很好的将被微腔
效应调制的白光光谱还原出来,实现了均衡的白光出射( 0.292, 0.359)。
相比于常规白光 QLED,基于微球的 QLED 器件具有更优异的器件性能。
最终获得亮度为 47210 cd/m2,电流效率为 19.1 cd/A, EQE 为 8.06%的顶
发射白光量子点发光二极管,完成了对顶发射白光领域的初步探索。
 

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] PENG ZA, PENG XG. Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor[J]. Journal of the American ChemicalSociety, 2001, 123(1):183-184.
[2] PENG ZA, PENG XG. Nearly monodisperse and shape -controlled CdSenanocrystals via alternative routes: nucleation and growth[J]. Journal of theAmerican Chemical Society, 2002, 124(13):3343 -3353.
[3] ROGACH AL, GAPONIK N, LUPTON JM, et al. Light -emitting diodes withsemiconductor nanocrystals[J]. Angewandte Chemie International Edition,2008, 47(35):6538-6549.
[4] PAL BN, ROBEL I, MOHITE A, et al. High-sensitivity p-n junctionphotodiodes based on PbS nanocrystal quantum dots[J]. Advanced FunctionalMaterials, 2012, 22(8):1741-1748.
[5] BASKOUTAS S, TERZIS AF. Size-dependent band gap of colloidal quantumdots[J]. Journal of Applied Physics, 2006, 99(1):013708.
[6] WANG R, SHANG Y, KANJANABOOS P, et al. Colloidal quantum dot ligandengineering for high performance solar cells[J]. Energy & EnvironmentalScience, 2016, 9(4):1130-1143.
[7] QIAO K, DENG H, YANG X, et al. Spectra-selective PbS quantum dot infraredphotodetectors[J]. Nanoscale, 2016, 8(13):37-43.
[8] KIM JH, JO DY, LEE KH, et al. White electroluminescent lighting devicebased on a single quantum dot emitter[J]. Advanced Materials, 2016,28(25):5093-5098.
[9] MEDINTZ IL, UYEDA HT, GOLDMAN ER, et al. Quantum dot bioconjugatesfor imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6):435.
[10] DABBOUSI BO, RODRIGUEZ-VIEJO J, MIKULEC FV, et al. (CdSe) ZnScore-shell quantum dots: synthesis and characterization of a size series ofhighly luminescent nanocrystallites[J]. The Journal of Physical Chemistry B,1997, 101(46):9463-9475.
[11] WANG X, SUN G, LI N, et al. Quantum dots derived from two -dimensionalmaterials and their applications for catalysis and energy[J]. Chemical SocietyReviews, 2016, 45(8):2239-2262.
[12] SUN Y, JIANG Y, SUN X W, et al. Beyond OLED: efficient quantum dot light -emitting diodes for display and lighting application[J]. The C hemical Record,2019, 19(8):1729-1752.
[13] WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materialssynthesis, quantum size effects, and photophysical properties[J]. The Journalof Physical Chemistry, 1991, 95(2):525-532.
[14] PIETRYGA JM, PARK YS, LIM J, et al. Spectroscopic and device aspects ofnanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18):10513 -10622.
[15] BAE WK, BROVELLI S, KLIMOV VI. Spectroscopic insights into theperformance of quantum dot light emitting diodes[J]. MRS Bulletin, 20 13,38(9):721-730.
[16] SHIRASAKI Y, SUPRAN GJ, BAWENDI MG , et al. Emergence of colloidalquantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1):13 -23.
[17] TALAPIN DV, STECKEL J. Quantum dot light-emitting devices[J]. MRSBulletin, 2013, 38(9):685-691.
[18] SADASIVAN S, BAUSEMER K, CORLISS S, et al. Invited paper:performance benchmarking of wide color gamut televisions and monitors[C].SID Symposium Digest of Technical Papers . 2016, 47(1):333-335.
[19] SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrixorganic light-emitting diode display using printable elastic conductors[J].Nature Materials, 2009, 8(6):494.
[20] DAI X, DENG Y, PENG X, et al. Quantum-dot light-emitting diodes for largearea displays: towards the dawn of commercialization[J]. Advanced Materials,2017, 29(14):1607022.
[21] NEGHABI M, BEHJAT A. Electrical and electroluminescence properties ofITO/PEDOT: PSS/TPD: Alq3: C6 0/Al organic light emitting diodes[J]. Curre ntApplied Physics, 2012, 12(2):597 -601.
[22] BARTH S, WOLF U, BÄSSLER H, et al. Current injection from a metal to adisordered hopping system. III. Comparison between experiment and MonteCarlo simulation[J]. Physical Review B, 1999, 60(12):8791.
[23] SHI S, MA D. Investigation on internal electric field distribution of organiclight-emitting diodes (OLEDs) with Eu2O3 buffer layer[J]. Physica StatusSsolidi (a), 2009, 206(11):2641-2644.
[24] SU Q, SUN Y, ZHANG H, et al. Origin of positive aging in quantum-dot lightemitting diodes[J]. Advanced Science, 2018, 5(10):1800549.
[25] WANG F, SUN W, LIU P, et al. Achieving balanced charge injection of bluequantum dot light-emitting diodes through transport layer doping strategies[J].The Journal of Physical Chemistry Letters, 2019, 10(5):960 -965.
[26] SEINO Y, SASABE H, PU YJ, et al. High-performance blue phosphorescentOLEDs using energy transfer from exciplex[J]. Advanced Materials, 2014,26(10):1612-1616.
[27] LI Z, CHEN F, WANG L, et al. Synthesis and evaluation of ideal core/shellquantum dots with precisely controlled shell gr owth: nonblinking, singlephotoluminescence decay channel, and suppressed FRET[J]. Chemistry ofMaterials, 2018, 30(11):3668-3676.
[28] KAGAN CR, MURRAY CB, BAWENDI MG . Long-range resonance transferof electronic excitations in close -packed CdSe quantum-dot solids[J]. PhysicalReview B, 1996, 54(12):8633.
[29] PAL BN, GHOSH Y, BROVELLI S, et al. ‘Giant’ CdSe/CdS core/shellnanocrystal quantum dots as efficient electroluminescent materials: stronginfluence of shell thickness on light -emitting diode performance[J]. Na noLetter, 2012, 12(1):331 -336.
[30] FANG T, WANG T, LI X, et al. Perovskite QLED with an external quantumefficiency of over 21% by modulating electronic transport[J]. ScienceBulletin, 2021, 66(1):36-43.
[31] WANG S, DOU X, CHEN L, et al. Enhanced light out-coupling efficiency ofquantum dot light emitting diodes by nanoimprint lithography[J]. Nanoscale,2018, 10(24):11651-11656.
[32] BATHELT R, BUCHHAUSER D, GÄRDITZ C, et al. Light extraction fromOLEDs for lighting applications through light scattering[J]. OrganicElectronics, 2007, 8(4):293-299.
[33] MÖLLER S, FORREST SR. Improved light out-coupling in organic lightemitting diodes employing ordered microlens arrays[J]. Jo urnal of AppliedPhysics, 2002, 91(5):3324-3327.
[34] COLVIN VL, SCHLAMP MC, ALIVISATOS AP . Light-emitting diode madefrom cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1994, 370(6488):354-357.
[35] COE S, WOO WK, BAWENDI M, et al. Electroluminescence from singlemonolayers of nanocrystals in molecular organic devices[J]. Nature, 2002,420(6917):800-803.
[36] CARUGE JM, HALPERT JE, WOOD V, et al. Colloidal quantum-dot lightemitting diodes with metal-oxidecharge transport layers[J]. Nature Photoni cs,2008, 2(4):247-250.
[37] CARUGE JM, HALPERT JE, BULOVIĆ V, et al. NiO as an inorganic hole -transporting layer in quantum -dot light-emitting devices[J]. Nano Letters, 2006,6(12):2991-2994.
[38] QIAN L, ZHENG Y, XUE J, et al. Stable and efficient quantum-dot lightemitting diodes based on solution -processed multilayer structures[J]. NaturePhotonics, 2011, 5(9):543-548.
[39] STOUWDAM JW, JANSSEN RAJ. Red, green, and blue quantum dot LEDswith solution processable ZnO nanocrystal electron injection layers[J].Journal of Materials Chemistry, 2008, 18(16):1889 -1894.
[40] ZHANG H, WANG S, SUN X, et al. Solution-processed vanadium oxide as anefficient hole injection layer for quantum -dot light-emitting diodes[J]. Journalof Materials Chemistry C, 2017, 5(4):817 -823.
[41] LEE KH, LEE JH, SONG WS, et al. Highly efficient, color -pure, color-stableblue quantum dot light-emitting devices[J]. ACS Nano, 2013, 7(8):7295-7302.
[42] SHEN H, GAO Q, ZHANG Y, et al. Visible quantum dot light-emitting diodeswith simultaneous high brightness and efficiency[J]. Nature Photonics, 2019,13(3):192-197.
[43] YANG Z, WU Q, LIN G, et al. All-solution processed inverted green quantumdot light-emitting diodes with concurrent high efficiency and long lifetime[J].Materials Horizons, 2019, 6(10):2009 -2015.
[44] WANG L, LIN J, HU Y, et al. Blue quantum dot light-emitting diodes withhigh electroluminescent efficiency[J]. ACS Applied Materials & Interface,2017, 9(44):38755-38760.
[45] CHEN S, DENG L, XIE J, et al. Recent developments in top-emitting organiclight-emitting diodes[J]. Advanced Materials, 2010, 22(46):5227 -5239.
[46] YANG X, MUTLUGUN E, DANG C, et al. Highly flexible, electrically driven,top-emitting, quantum dot light-emitting stickers[J]. ACS Nano, 2014,8(8):8224-8231.
[47] LIU G, ZHOU X, CHEN S. Very bright and efficient microcavity top-emittingquantum dot light-emitting diodes with Ag electrodes[J]. ACS AppliedMaterials & Interfaces, 2016, 8(26):16768.
[48] TANG Z, LIN J, WANG L, et al. High performance, top -emitting, quantum dotlight-emitting diodes with all solution-processed functional layers[J]. Journalof Materials Chemistry C, 2017, 5(35):9138 -9145.
[49] LEE T, KIM BJ, LEE H, et al. Bright and stable quantum dot light-emittingdiodes[J]. Advanced Materials, 2022, 34(4):2106276.
[50] ZHANG H, CHEN S. An ZnMgO:PVP inorganic–organic hybrid electrontransport layer: Towards efficient bottom-emission and transparent quantumdot light-emitting diodes[J]. Journal of Materials Chemistry C, 2019,7(8):2291-2298.
[51] CHOI MK, YANG J, KIM DC, et al. Extremely vivid, highly transparent, andultrathin quantum dot light-emitting diodes[J]. Advanced Materials, 2018,30(1):1703279.
[52] DUHME E, SCHOTTKY W. Rectifying and photo-electric effects at contactsbetween cuprous oxide and sputtered electrodes[J]. Naturwissenschaften,1930, 18:735.
[53] JUNG BY, KIM NY, LEE C, et al. Control of resonant wavelength fromorganic light-emitting materials by use of a Fabry-Perot microcavitystructure[J]. Applied Optics, 2002, 41(16):3312-3318.
[54] ZHOU W, CHEN J, LI Y, et al. Copper mesh templated by breath -figurepolymer films as flexible transparent electrodes for organic photovoltaicdevices[J]. ACS Applied Materials & Interface, 2016, 8(17):11122-11127.
[55] LIANG H, ZHU R, DONG Y, et al. Enhancing the outcoupling efficiency ofquantum dot LEDs with internal nano-scattering pattern[J]. Optics Express,2015, 23(10):12910-12922.
[56] WANG S, DOU X, CHEN L, et al. Enhanced light out-coupling efficiency ofquantum dot light emitting diodes b y nanoimprint lithography[J]. Nanoscale,2018, 10(24):11651-11656.
[57] ZHU R, LUO Z, WU ST. Light extraction analysis and enhancement in aquantum dot light emitting diode[J]. Optics Express, 2014, 22(107):A1783 -A1798.
[58] SONG J, LEE H, JEONG E G, et al. Organic light‐ emitting diodes: pushingtoward the limits and beyond[J]. Advanced Materials, 2020, 32(35):1907539.
[59] WANG ZB, HELANDER MG, QIU J, et al. Unlocking the full potential oforganic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011,5(12):753-757.
[60] LEE T, HAHM D, KIM K, et al. Highly efficient and bright inverted top‐emitting InP quantum dot light-emitting diodes introducing a hole ‐suppressing interlayer[J]. Small, 2019, 15(50):1905162.
[61] LI D, FENG J, ZHU Y, et al. Enhanced efficiency of top-emission InP-basedgreen quantum dot light-emitting diodes with optimized angulardistribution[J]. Nano Research, 2021, 14(11):4243 -4249.
[62] BERA D, QIAN L, TSENG TK, et al. Quantum dots and their multimodalapplications: a Review[J]. Materials, 2010, 3(4):2260 -2345.
[63] BAE WK, LIM J, LEE D, et al. R/G/B/natural white light thin colloidalquantum dot-based light-emitting devices[J]. Advanced Materials, 2014,26(37):6387-6393.
[64] LEE KH, HAN CY, KANG HD, et al. Highly efficient, color-reproducible fullcolor electroluminescent devices based on red/green/blue quantum dot-mixedmultilayer[J]. ACS Nano, 2015, 9(11):10941 -10949.
[65] LEE KH, HAN CY, JANG EP, et al. Full-color capable light-emitting diodesbased on solution-processed quantum dot layer stacking [J]. Nanoscale, 2018,10(14):6300-6305.
[66] ZHANG H, SU Q, SUN Y, et al. Efficient and color stable white quantum -dotlight-emitting diodes with external quantum efficiency over 23 %[J]. AdvancedOptical Materials, 2018, 6(16):1800354.
[67] KRUMMACHER BC, NOWY S, FRISCHEISEN J, et al. Efficiency analysis oforganic light-emitting diodes based on optical simulation[J]. OrganicElectronics, 2009, 10(3):478 -485.
[68] YEE KS, CHEN JS. The finite-difference time-domain (FDTD) and the finite -volume time-domain (FVTD) methods in solving Maxwell's equations[J].IEEE Transactions on Antennas and Propagatio n, 1997, 45(3):354-363.

Academic Degree Assessment Sub committee
电子与电气工程系
Domestic book classification number
TN383.1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343126
DepartmentDepartment of Electrical and Electronic Engineering
Recommended Citation
GB/T 7714
石亮亮. 高效顶发射量子点发光二极管的结构和性能研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930197-石亮亮-电子与电气工程(7468KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[石亮亮]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[石亮亮]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[石亮亮]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.