中文版 | English

FOXM1 在人胚胎干细胞基因组中的结合位点研究

Alternative Title
Name pinyin
School number
0710 生物学
Subject category of dissertation
07 理学
Mentor unit
Publication Years
Submission date
Place of Publication

作为转录因子 FOX 家族的成员, FOXM1 在细胞周期调控、细胞增殖分化、组织稳态和多种信号通路的调控等生物学过程发挥重要作用。在小鼠胚胎干细胞中发现, FOXM1可以调控细胞干性相关的转录因子 OCT4来维持小鼠胚胎干细胞的干性;同样在人类肿瘤干细胞中发现, FOXM1是 OCT4表达所必备的,表明FOXM1 在人类胚胎干细胞中具有潜在的作用。尽管近些年的研究发现, FOXM1参与胚胎干细胞的多能性和自我更新特征的维持,但是其在胚胎干细胞中的详细功能机制仍然不清楚。因此我们下载并分析了公共数据库的 FOXM1 的 ChIP-seq 数据,通过比较3种细胞系,我们发现 FOXM1 在他们中相同的结合位点非常少, 仅有 281 个, 并且 motif 预测的转录因子也并非 FOX 家族。因此我们选择染色质免疫沉淀后测序(ChIP-seq)这一应用广泛的研究 DNA-蛋白质互作的技术,在人类胚胎干细胞中进行探索。通过完善和优化在人类胚胎干细胞中的 ChIP-seq 实验流程, ChIP-seq实验结果表明,通过 FOXM1 抗体进行 ChIP-seq 在胚胎干细胞中找到的 FOXM1结合位点有限, 仅有两三百个, 不足以挖掘到有效的新的信息。由此,我们利用CRISPR-Cas9 技术,在 FOXM1 基因 3’末端整合了表位标签 FLAG 序列和新霉素
基因序列,成功构建了可以表达带 FLAG 标签的 FOXM1 蛋白和可以使用新霉素进行筛选的 pETChH1 细胞系,用于后续进一步研究。

Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] WEIGEL D, JüRGENS G, KüTTNER F, et al. The homeotic gene fork head encodes a nuclearprotein and is expressed in the terminal regions of the Drosophila embryo [J]. Cell, 1989, 57(4) :645-58.
[2] LAI E, PREZIOSO V R, SMITH E, et al. HNF-3A, a hepatocyte-enriched transcription factorof novel structure is regulated transcriptionally [J]. Genes & development, 1990, 4(8) : 1427-36.
[3] BRADNER J E, HNISZ D, YOUNG R A. Transcriptional Addiction in Cancer [J]. Cell, 2017,168(4) : 629-43.
[4] WEIGEL D, JäCKLE H. The fork head domain: a novel DNA binding motif of eukaryotictranscription factors? [J]. Cell, 1990, 63(3) : 455-6.
[5] HANNENHALLI S, KAESTNER K H. The evolution of Fox genes and their role indevelopment and disease [J]. Nature reviews Genetics, 2009, 10(4) : 233-40.
[6] CLARK K L, HALAY E D, LAI E, et al. Co-crystal structure of the HNF-3/fork head DNArecognition motif resembles histone H5 [J]. Nature, 1993, 364(6436) : 412-20.
[7] BERMAN H, HENRICK K, NAKAMURA H. Announcing the worldwide Protein Data Bank[J]. Nature structural biology, 2003, 10(12) : 980.
[8] JACKSON B C, CARPENTER C, NEBERT D W, et al. Update of human and mouse forkheadbox (FOX) gene families [J]. Human genomics, 2010, 4(5) : 345-52.
[9] MYATT S S, LAM E W. The emerging roles of forkhead box (Fox) proteins in cancer [J].Nature reviews Cancer, 2007, 7(11) : 847-59.
[10] FRIEDMAN J R, KAESTNER K H. The Foxa family of transcription factors in developmentand metabolism [J]. Cellular and molecular life sciences : CMLS, 2006, 63(19-20) : 2317-28.
[11] SEO S, FUJITA H, NAKANO A, et al. The forkhead transcription factors, Foxc1 and Foxc2,are required for arterial specification and lymphatic sprouting during vascular development [J].Developmental biology, 2006, 294(2) : 458-70.
[12] HUANG H, TINDALL D J. Dynamic FoxO transcription factors [J]. Journal of cell science,2007, 120(Pt 15) : 2479-87.
[13] FLESKENS V, VAN BOXTEL R. Forkhead Box P family members at the crossroad betweentolerance and immunity: a balancing act [J]. International reviews of immunology, 2014, 33(2) :94-109.
[14] LAISSUE P. The forkhead-box family of transcription factors: key molecular players incolorectal cancer pathogenesis [J]. Molecular cancer, 2019, 18(1) : 5.
[15] BENAYOUN B A, CABURET S, VEITIA R A. Forkhead transcription factors: key players inhealth and disease [J]. Trends in genetics : TIG, 2011, 27(6) : 224-32.
[16] WESTENDORF J M, RAO P N, GERACE L. Cloning of cDNAs for M-phase phosphoproteinsrecognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope [J].Proc Natl Acad Sci U S A, 1994, 91(2) : 714-8.
[17] YAO K M, SHA M, LU Z, et al. Molecular analysis of a novel winged helix protein, WIN.Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain[J]. The Journal of biological chemistry, 1997, 272(32) : 19827-36.
[18] YE H, KELLY T F, SAMADANI U, et al. Hepatocyte nuclear factor 3/fork head homolog 11 isexpressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues [J].Molecular and cellular biology, 1997, 17(3) : 1626-41.
[19] KORVER W, ROOSE J, HEINEN K, et al. The human TRIDENT/HFH-11/FKHL16 gene:structure, localization, and promoter characterization [J]. Genomics, 1997, 46(3) : 435-42.
[20] KORVER W, ROOSE J, CLEVERS H. The winged-helix transcription factor Trident isexpressed in cycling cells [J]. Nucleic acids research, 1997, 25(9) : 1715-9.
[21] LAOUKILI J, STAHL M, MEDEMA R H. FoxM1: at the crossroads of ageing and cancer [J].Biochimica et biophysica acta, 2007, 1775(1) : 92-102.
[22] LIAO G B, LI X Z, ZENG S, et al. Regulation of the master regulator FOXM1 in cancer [J].Cell communication and signaling : CCS, 2018, 16(1) : 57.
[23] BARGER C J, BRANICK C, CHEE L, et al. Pan-Cancer Analyses Reveal Genomic Features ofFOXM1 Overexpression in Cancer [J]. Cancers (Basel) , 2019, 11(2) :
[24] ZHANG X, ZHANG L, DU Y, et al. A novel FOXM1 isoform, FOXM1D, promotes epithelialmesenchymal transition and metastasis through ROCKs activation in colorectal cancer [J]. Oncogene,2017, 36(6) : 807-19.
[25] GARTEL A L. FOXM1 in Cancer: Interactions and Vulnerabilities [J]. Cancer research, 2017,77(12) : 3135-9.
[26] KORVER W, ROOSE J, WILSON A, et al. The winged-helix transcription factor Trident isexpressed in actively dividing lymphocytes [J]. Immunobiology, 1997, 198(1-3) : 157-61.
[27] AHN J I, LEE K H, SHIN D M, et al. Temporal expression changes during differentiation ofneural stem cells derived from mouse embryonic stem cell [J]. Journal of cellular biochemistry, 2004,93(3) : 563-78.
[28] KRUPCZAK-HOLLIS K, WANG X, KALINICHENKO V V, et al. The mouse Forkhead Boxm1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ductsand vessels during liver morphogenesis [J]. Developmental biology, 2004, 276(1) : 74-88.
[29] KIM I M, RAMAKRISHNA S, GUSAROVA G A, et al. The forkhead box m1 transcriptionfactor is essential for embryonic development of pulmonary vasculature [J]. The Journal of biologicalchemistry, 2005, 280(23) : 22278-86.
[30] RAMAKRISHNA S, KIM I M, PETROVIC V, et al. Myocardium defects and ventricularhypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor [J]. Developmentaldynamics : an official publication of the American Association of Anatomists, 2007, 236(4) : 1000-13.
[31] KALINICHENKO V V, LIM L, SHIN B, et al. Differential expression of forkhead boxtranscription factors following butylated hydroxytoluene lung injury [J]. American journal ofphysiology Lung cellular and molecular physiology, 2001, 280(4) : L695-704.
[32] ZU G, GUO J, ZHOU T, et al. The transcription factor FoxM1 activates Nurr1 to promoteintestinal regeneration after ischemia/reperfusion injury [J]. Experimental & molecular medicine,2019, 51(11) : 1-12.
[33] CHANG-PANESSO M, KADYROV F F, LALLI M, et al. FOXM1 drives proximal tubuleproliferation during repair from acute ischemic kidney injury [J]. The Journal of clinical investigation,2019, 129(12) : 5501-17.
[34] CHEN Z, LI L, XU S, et al. A Cdh1-FoxM1-Apc axis controls muscle development andregeneration [J]. Cell death & disease, 2020, 11(3) : 180.
[35] LITTLER D R, ALVAREZ-FERNáNDEZ M, STEIN A, et al. Structure of the FoxM1 DNArecognition domain bound to a promoter sequence [J]. Nucleic acids research, 2010, 38(13) : 4527-38.
[36] PARK H J, WANG Z, COSTA R H, et al. An N-terminal inhibitory domain modulates activityof FoxM1 during cell cycle [J]. Oncogene, 2008, 27(12) : 1696-704.
[37] GOLSON M L, KAESTNER K H. Fox transcription factors: from development to disease [J].Development (Cambridge, England) , 2016, 143(24) : 4558-70.
[38] CHEN X, MüLLER G A, QUAAS M, et al. The forkhead transcription factor FOXM1 controlscell cycle-dependent gene expression through an atypical chromatin binding mechanism [J].Molecular and cellular biology, 2013, 33(2) : 227-36.
[39] INESS A N, LITOVCHICK L. MuvB: A Key to Cell Cycle Control in Ovarian Cancer [J].Frontiers in oncology, 2018, 8(223.
[40] SANDERS D A, GORMALLY M V, MARSICO G, et al. FOXM1 binds directly to nonconsensus sequences in the human genome [J]. Genome biology, 2015, 16(1) : 130.
[41] KANG K, CHOI Y, KIM H H, et al. Predicting FOXM1-Mediated Gene Regulation through theAnalysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines [J]. International journal of molecular sciences, 2020, 21(17) :
[42] MULLEN D J, YAN C, KANG D S, et al. TENET 2.0: Identification of key transcriptionalregulators and enhancers in lung adenocarcinoma [J]. PLoS genetics, 2020, 16(9) : e1009023.
[43] YE H, HOLTERMAN A X, YOO K W, et al. Premature expression of the winged helixtranscription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase[J]. Molecular and cellular biology, 1999, 19(12) : 8570-80.
[44] WANG X, ARCECI A, BIRD K, et al. VprBP/DCAF1 Regulates the Degradation andNonproteolytic Activation of the Cell Cycle Transcription Factor FoxM1 [J]. Molecular and cellularbiology, 2017, 37(13) :
[45] JEFFERY J M, KALIMUTHO M, JOHANSSON P, et al. FBXO31 protects against genomicinstability by capping FOXM1 levels at the G2/M transition [J]. Oncogene, 2017, 36(7) : 1012-22.
[46] ANDERS L, KE N, HYDBRING P, et al. A systematic screen for CDK4/6 substrates linksFOXM1 phosphorylation to senescence suppression in cancer cells [J]. Cancer cell, 2011, 20(5) :620-34.
[47] LüSCHER-FIRZLAFF J M, LILISCHKIS R, LüSCHER B. Regulation of the transcriptionfactor FOXM1c by Cyclin E/CDK2 [J]. FEBS letters, 2006, 580(7) : 1716-22.
[48] CHEN Y J, DOMINGUEZ-BRAUER C, WANG Z, et al. A conserved phosphorylation sitewithin the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1 [J]. The Journalof biological chemistry, 2009, 284(44) : 30695-707.
[49] MAJOR M L, LEPE R, COSTA R H. Forkhead box M1B transcriptional activity requiresbinding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBPcoactivators [J]. Molecular and cellular biology, 2004, 24(7) : 2649-61.
[50] ALVAREZ-FERNáNDEZ M, HALIM V A, APRELIA M, et al. Protein phosphatase 2A (B55α ) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclinA/cyclin-dependent kinase-mediated phosphorylation [J]. The Journal of biological chemistry, 2011,286(38) : 33029-36.
[51] LAOUKILI J, ALVAREZ M, MEIJER L A, et al. Activation of FoxM1 during G2 requirescyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain [J]. Molecular andcellular biology, 2008, 28(9) : 3076-87.
[52] TAN Y, RAYCHAUDHURI P, COSTA R H. Chk2 mediates stabilization of the FoxM1transcription factor to stimulate expression of DNA repair genes [J]. Molecular and cellular biology,2007, 27(3) : 1007-16.
[53] MA R Y, TONG T H, CHEUNG A M, et al. Raf/MEK/MAPK signaling stimulates the nucleartranslocation and transactivating activity of FOXM1c [J]. Journal of cell science, 2005, 118(Pt 4) :795-806.
[54] FU Z, MALUREANU L, HUANG J, et al. Plk1-dependent phosphorylation of FoxM1 regulatesa transcriptional programme required for mitotic progression [J]. Nat Cell Biol, 2008, 10(9) : 1076-82.
[55] PARK H J, COSTA R H, LAU L F, et al. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into Sphase [J]. Molecular and cellular biology, 2008, 28(17) : 5162-71.
[56] MARCEAU A H, BRISON C M, NERLI S, et al. An order-to-disorder structural switchactivates the FoxM1 transcription factor [J]. Elife, 2019, 8(e46131.
[57] WANG I C, CHEN Y-J, HUGHES D, et al. Forkhead box M1 regulates the transcriptionalnetwork of genes essential for mitotic progression and genes encoding the SCF ( Skp2-Cks1)ubiquitin ligase [J]. Molecular and cellular biology, 2005, 25(24) : 10875-94.
[58] LAOUKILI J, KOOISTRA M R, BRáS A, et al. FoxM1 is required for execution of the mitoticprogramme and chromosome stability [J]. Nat Cell Biol, 2005, 7(2) : 126-36.
[59] WONSEY D R, FOLLETTIE M T. Loss of the forkhead transcription factor FoxM1 causescentrosome amplification and mitotic catastrophe [J]. Cancer research, 2005, 65(12) : 5181-9.
[60] SCHIMMEL J, EIFLER K, SIGURðSSON J O, et al. Uncovering SUMOylation dynamicsduring cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein [J]. Molecular cell,2014, 53(6) : 1053-66.
[61] WANG C M, LIU R, WANG L, et al. SUMOylation of FOXM1B alters its transcriptionalactivity on regulation of MiR-200 family and JNK1 in MCF7 human breast cancer cells [J].International journal of molecular sciences, 2014, 15(6) : 10233-51.
[62] MYATT S S, KONGSEMA M, MAN C W, et al. SUMOylation inhibits FOXM1 activity anddelays mitotic transition [J]. Oncogene, 2014, 33(34) : 4316-29.
[63] JAISWAL N, JOHN R, CHAND V, et al. Oncogenic Human Papillomavirus 16E7 modulatesSUMOylation of FoxM1b [J]. The international journal of biochemistry & cell biology, 2015, 58(28-36.
[64] ZHANG J, YUAN C, WU J, et al. Polo-like kinase 1-mediated phosphorylation of Forkhead boxprotein M1b antagonizes its SUMOylation and facilitates its mitotic function [J]. The Journal ofbiological chemistry, 2015, 290(6) : 3708-19.
[65] LV C, ZHAO G, SUN X, et al. Acetylation of FOXM1 is essential for its transactivation andtumor growth stimulation [J]. Oncotarget, 2016, 7(37) : 60366-82.
[66] COHN O, FELDMAN M, WEIL L, et al. Chromatin associated SETD3 negatively regulatesVEGF expression [J]. Scientific reports, 2016, 6(37115.
[67] THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell linesderived from human blastocysts [J]. Science (New York, NY) , 1998, 282(5391) : 1145-7.
[68] YOUNG R A. Control of the embryonic stem cell state [J]. Cell, 2011, 144(6) : 940-54.
[69] BECKER K A, GHULE P N, THERRIEN J A, et al. Self-renewal of human embryonic stemcells is supported by a shortened G1 cell cycle phase [J]. Journal of cellular physiology, 2006, 209(3) : 883-93.
[70] CHAMBERS I, COLBY D, ROBERTSON M, et al. Functional expression cloning of Nanog, apluripotency sustaining factor in embryonic stem cells [J]. Cell, 2003, 113(5) : 643-55.
[71] HEINS N, ENGLUND M C, SJöBLOM C, et al. Derivation, characterization, and differentiationof human embryonic stem cells [J]. Stem cells (Dayton, Ohio) , 2004, 22(3) : 367-76.
[72] NICHOLS J, ZEVNIK B, ANASTASSIADIS K, et al. Formation of pluripotent stem cells inthe mammalian embryo depends on the POU transcription factor Oct4 [J]. Cell, 1998, 95(3) : 379-91.
[73] DRAPER J S, SMITH K, GOKHALE P, et al. Recurrent gain of chromosomes 17q and 12 incultured human embryonic stem cells [J]. Nat Biotechnol, 2004, 22(1) : 53-4.
[74] SHI G, JIN Y. Role of Oct4 in maintaining and regaining stem cell pluripotency [J]. Stem cellresearch & therapy, 2010, 1(5) : 39.
[75] ZEINEDDINE D, HAMMOUD A A, MORTADA M, et al. The Oct4 protein: more than a magicstemness marker [J]. American journal of stem cells, 2014, 3(2) : 74-82.
[76] WANG Z, ORON E, NELSON B, et al. Distinct lineage specification roles for NANOG, OCT4,and SOX2 in human embryonic stem cells [J]. Cell stem cell, 2012, 10(4) : 440-54.
[77] BOYER L A, LEE T I, COLE M F, et al. Core Transcriptional Regulatory Circuitry in HumanEmbryonic Stem Cells [J]. Cell, 2005, 122(6) : 947-56.
[78] YOUNG RICHARD A. Control of the Embryonic Stem Cell State [J]. Cell, 2011, 144(6) :940-54.
[79] KWOK C T D, LEUNG M H, QIN J, et al. The Forkhead box transcription factor FOXM1 isrequired for the maintenance of cell proliferation and protection against oxidative stress in humanembryonic stem cells [J]. Stem Cell Research, 2016, 16(3) : 651-61.
[80] An integrated encyclopedia of DNA elements in the human genome [J]. Nature, 2012, 489(7414) : 57-74.
[81] JOHNSON D S, MORTAZAVI A, MYERS R M, et al. Genome-wide mapping of in vivoprotein-DNA interactions [J]. Science (New York, NY) , 2007, 316(5830) : 1497-502.
[82] LANDT S G, MARINOV G K, KUNDAJE A, et al. ChIP-seq guidelines and practices of theENCODE and modENCODE consortia [J]. Genome research, 2012, 22(9) : 1813-31.
[83] SAVIC D, PARTRIDGE E C, NEWBERRY K M, et al. CETCh-seq: CRISPR epitope taggingChIP-seq of DNA-binding proteins [J]. Genome research, 2015, 25(10) : 1581-9.
[84] SZYMCZAK A L, WORKMAN C J, WANG Y, et al. Correction of multi-gene deficiency invivo using a single 'self-cleaving' 2A peptide-based retroviral vector [J]. Nat Biotechnol, 2004, 22(5) : 589-94.
[85] KIM J H, LEE S R, LI L H, et al. High cleavage efficiency of a 2A peptide derived from porcineteschovirus-1 in human cell lines, zebrafish and mice [J]. PloS one, 2011, 6(4) : e18556.
[86] KOONIN E V, WOLF Y I. Evolution of the CRISPR-Cas adaptive immunity systems inprokaryotes: models and observations on virus-host coevolution [J]. Molecular bioSystems, 2015, 11(1) : 20-7.
[87] FONFARA I, RICHTER H, BRATOVIČ M, et al. The CRISPR-associated DNA-cleavingenzyme Cpf1 also processes precursor CRISPR RNA [J]. Nature, 2016, 532(7600) : 517-21.
[88] NISHIMASU H, CONG L, YAN W X, et al. Crystal Structure of Staphylococcus aureus Cas9[J]. Cell, 2015, 162(5) : 1113-26.
[89] XIE Z, TAN G, DING M, et al. Foxm1 transcription factor is required for maintenance ofpluripotency of P19 embryonal carcinoma cells [J]. Nucleic acids research, 2010, 38(22) : 8027-38.
[90] CHEN Y, MENG L, YU Q, et al. The miR-134 attenuates the expression of transcription factorFOXM1 during pluripotent NT2/D1 embryonal carcinoma cell differentiation [J]. Experimental cellresearch, 2015, 330(2) : 442-50.
[91] UT Southwestern Medical Center. ChIP-seq [OL]. ( 2022-4-22 )
[92] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memoryrequirements [J]. Nature methods, 2015, 12(4) : 357-60.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
张倩. FOXM1 在人胚胎干细胞基因组中的结合位点研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930125-张倩-生物系.pdf(4588KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张倩]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张倩]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张倩]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.