中文版 | English
Title

时间分辨荧光免疫分析新冠抗原检测

Alternative Title
TIME-RESOLVED FLUORESCENCE IMMUMOASSAY FOR SARS-COV-2 ANTIGENS DETECTION
Author
Name pinyin
YU Xin
School number
12032527
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
Jin Da Yong
Mentor unit
生物医学工程系
Publication Years
2022-05-09
Submission date
2022-06-22
University
南方科技大学
Place of Publication
深圳
Abstract

新冠病毒肆虐全球,做好新冠病毒抗原的检测,对疫情防控具有重要意义。免疫分析法是一类检测抗原的便捷方法,研究和推广应用免疫分析法是提高病毒抗原检测质效的便捷途径。免疫分析法可分为层析法和微孔板法。在诸多的免疫分析检测标记中,镧系金属配合物掺杂的荧光微球有着无可比拟的优势,发射荧光寿命长、不受激发光干扰等。本文通过层析法和微孔板法,对时间分辨免疫分析检测新冠抗原进行了研究。基于产品应用的考虑,以新冠抗原为检测对象,制备了以时间分辨荧光微球偶联新冠抗体为探针的试纸条,从定性和定量两个方面对试纸条检测新冠抗原的性能进行了分析,试纸条检测抗原的检测限为0.86ng/mL。为实现对新冠病毒两种不同抗原的同时检测,在已有的铕微球探针基础上,通过实验验证和对比分析,制备合成了掺杂铽配合物的二氧化硅微球,并实现了表面羧基化。利用合成的铽微球制备成探针,联合已有的铕微球探针使用微孔板作为检测的支撑环境,实现了在同一微孔环境中,用两种时间分辨荧光微球探针同时检测混合有两种抗原的样本。两种探针均采用同样的230nm波长激发光,铽微球探针检测新冠抗原的LOD并未受到铕微球探针的影响,实现了两种抗原在同一条件下独立检测,检测N蛋白抗原和S蛋白抗原的LOD分别为75pg/mL82pg/mL

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1]WU A, PENG Y, HUANG B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China[J]. Cell Host Microbe, 2020, 27(3): 325-328.
[2]TRAN V V, TRAN N H T, HWANG H S, et al. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection[J]. Biosens Bioelectron, 2021, 182: 113192.
[3]QU J, WU C, LI X, et al. Profile of Immunoglobulin G and IgM Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)[J]. Clin Infect Dis, 2020, 71(16): 2255-2258.
[4]CANDEL F J, VINUELA-PRIETO J M, GONZALEZ DEL CASTILLO J, et al. Utility of lateral flow tests in SARS-CoV-2 infection monitorization[J]. Rev Esp Quimioter, 2020, 33(4): 258-266.
[5]CHUNDURI L A A, KURDEKAR A, HALEYURGIRISETTY M K, et al. Femtogram Level Sensitivity achieved by Surface Engineered Silica Nanoparticles in the Early Detection of HIV Infection[J]. Science Reports, 2017, 7(1): 7149.
[6]VASHIST S K, MARION SCHNEIDER E, LAM E, et al. One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics[J]. Sci Rep, 2014, 4: 4407.
[7]VASHIST S K, SARASWAT M, HOLTHŠFER H. Comparative Study of the Developed Chemiluminescent, ELISA and SPR Immunoassay Formats for the Highly Sensitive Detection of Human Albumin[J]. Procedia Chemistry, 2012, 6: 184-193.
[8]LEE K W, KIM K R, CHUN H J, et al. Time-resolved fluorescence resonance energy transfer-based lateral flow immunoassay using a raspberry-type europium particle and a single membrane for the detection of cardiac troponin I[J]. Biosens Bioelectron, 2020, 163: 112284.
[9]SHYAM K U, JEONG H-N, OH M-J, et al. Development of a lateral flow immuno-chromatic strip assay for the detection of nervous necrosis virus (NNV, RGNNV genotype)[J]. Aquaculture, 2020, 520
[10]ELTER A, BOCK T, SPIEHL D, et al. Carbohydrate binding module-fused antibodies improve the performance of cellulose-based lateral flow immunoassays[J]. Science Reports, 2021, 11(1): 7880.
[11]BAYIN Q, HUANG L, REN C, et al. Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system[J]. Talanta, 2021, 227: 122207.
[12]黄池宝,杨斌,康帅,等.用于新型冠状病毒快速诊断的荧光免疫层析试纸条的制备及其细胞成像[J]. 精细化工, 2021.
[13]李红 刘,孙凤萍,高骏,陆娜云,梁洪宇,刘惠莉,易建中. 犬细小病毒时间分辨荧光免疫法的建立及初步应用[J]. 2021.
[14]卢迪莎,王序,杨金易,等. 同时检测玉米中黄曲霉毒素B1和赭曲霉毒素A的时间分辨荧光免疫层析试纸条的研制[J]. 食品科学, 2021.
[15]孙洁,陈雨,吴峰,等.H5亚型禽流感病毒荧光检测试纸条的研制 [J]. 中国兽医杂志,2019,55(6): 32-34.
[16]李妮,钏鸿云,吴晓燕,等.新型冠状病毒S蛋白抗体制及双抗体夹心ELISA抗原检测方法的建立 [J]. 病毒学报,2022,38(1): 14-20.
[17]高原, 陈川, 王晶. 2019新型冠状病毒的抗原抗体检测[J]. 计量学报,2020,41(5): 513-517.
[18]BIN LU M R S R O K. Oriented Immobilization of Antibodies and Its Applications in lmmunoassays and Imnunosensors[J]. Analyst, 1996, 121: 29R-32R.
[19]KOCZULA K M, GALLOTTA A. Lateral flow assays[J]. Essays Biochem, 2016, 60(1): 111-120.
[20]SAATCI E, NATARAJAN S. State-of-the-art colloidal particles and unique interfaces-based SARS-CoV-2 detection methods and COVID-19 diagnosis[J]. Curr Opin Colloid Interface Sci, 2021, 55: 101469.
[21]HAGAN A K, ZUCHNER T. Lanthanide-based time-resolved luminescence immunoassays[J]. Anal Bioanal Chem, 2011, 400(9): 2847-2864.
[22]CAI Y, ZHANG S, DONG C, et al. Lateral flow immunoassay based on gold magnetic nanoparticles for the protein quantitative detection: Prostate-specific antigen[J]. Anal Biochem, 2021, 627: 114265.
[23]JIN D, CONNALLY R, PIPER J. Practical time-gated luminescence flow cytometry. I: concepts[J]. Cytometry A, 2007, 71(10): 783-796.
[24]LI X, WANG J, LIU J, et al. Strong luminescence and sharp heavy metal ion sensitivity of water-soluble hybrid polysaccharide nanoparticles with Eu3+ and Tb3+ inclusions[J]. Applied Nanoscience, 2019, 9(8): 1833-1844.
[25]LIU Y H, MA X G, ZHU L, et al. Preparation and fluorescence characterization of monodisperse core-shell structure SiO2@SiO2: Tb(1,2-BDC)3phen microspheres by a sol-seed method[J]. Luminescence, 2021.
[26]张彦辉,孙波,裴娟等. 铽与苯乙酮酸、2,2'-联吡啶、1,10-菲啰啉、三苯基氧膦铽三元配合物的合成、结构表征及荧光性能[J]. 中国稀土学报, 2005(23):555-559.
[27]NAKAHARA Y, TATSUMI Y, AKIMOTO I, et al. Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water[J]. New Journal of Chemistry, 2015, 39(2): 1452-1458.
[28]YANG CHEN, YUMEI CHI, HONGMEI WEN, et al. Sensitized luminescent Terbium nanoparticles preparation and time-resolved fluorescence assay for DNA[J]. Analytical Chemistry,2007, 79: 960-965.
[29]邓婕, 李海峰, 刘燕, 等. Eu3+,Tb3+掺杂荧光二氧化硅纳米粒子的合成及其结构、成分和荧光性质的调控[J].无机化学学报 35(3), 2019, 393-402.
[30]王莹, 姜兆华, 吕玉光, 等. 铽-环丙沙星纳米稀土配合物合成、表征及发光性质研究[J].稀土34(3), 2013, 50-54.
[31]LI Q F, YUE D, GE G W, et al. Water-soluble Tb(3+) and Eu(3+) complexes based on task-specific ionic liquid ligands and their application in luminescent poly(vinyl alcohol) films[J]. Dalton Trans, 2015, 44(38): 16810-16817.
[32]REN Y-Y, AN B-L, XU Q. Strong luminescence of novel water-soluble lanthanide complexes sensitized by pyridine-2,4,6-tricarboxylic acid[J]. Journal of Alloys and Compounds, 2010, 501(1): 42-46.
[33]KERSTING M, OLEJNIK M, ROSENKRANZ N, et al. Subtoxic cell responses to silica particles with different size and shape[J]. Science Reorts, 2020, 10(1): 21591.
[34]LIAO T, YUAN F, SHI C, et al. Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin[J]. RSC Advances, 2016, 6(105): 103463-103470.
[35]DESBIENS J, BERGERON B, PATRY M, et al. Polystyrene nanoparticles doped with a luminescent europium complex[J]. J Colloid Interface Science, 2012, 376(1): 12-19.
[36]LI Z, LIU Q, LI Y, et al. One-step polymerized lanthanide-based polystyrene microsphere for sensitive lateral flow immunoassay[J]. Journal of Rare Earths, 2021, 39(1): 11-18.
[37]LIBERMAN A, MENDEZ N, TROGLER W C, et al. Synthesis and surface functionalization of silica nanoparticles for nanomedicine[J]. Surface Science Reports, 2014, 69(2-3): 132-158.
[38]BAMRUNGSAP S, APIWAT C, CHANTIMA W, et al. Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles[J]. Microchimica Acta, 2013, 181(1-2): 223-230.
[39]KIM K R, HAN Y D, CHUN H J, et al. Encapsulation-Stabilized, Europium Containing Nanoparticle as a Probe for Time-Resolved luminescence Detection of Cardiac Troponin I[J]. Biosensors (Basel), 2017, 7(4)
[40]TAN H, LI Q, MA C, et al. Lanthanide based dual-emission fluorescent probe for detection of mercury (II) in milk[J]. Biosensors and Bioelectronics, 2015, 63: 566-571.
[41]MOU Y, KANG M, WANG F, et al. Synthesis and luminescent properties of monodisperse SiO2@SiO2:Eu(DBM)3phen microspheres with core-shell structure by sol–gel method[J]. Journal of Sol-Gel Science and Technology, 2017, 83(2): 447-456.
[42]ABARKAN I, DOUSSINEAU T, SMAïHI M. Tailored macro/microstructural properties of colloidal silica nanoparticles via microemulsion preparation[J]. Polyhedron, 2006, 25(8): 1763-1770.
[43]LIU Y-M, WU Y-C. Synthesis of europium-doped silica microspheres using the sol–gel micro encapsulation method[J]. Journal of Sol-Gel Science and Technology, 2012, 63(1): 36-44.

Academic Degree Assessment Sub committee
生物医学工程系
Domestic book classification number
TB383
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343133
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
于鑫. 时间分辨荧光免疫分析新冠抗原检测[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032527-于鑫-生物医学工程系.(2825KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[于鑫]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[于鑫]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[于鑫]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.