[1] WATTANAPIROMSAKUL C, FORSTER P I, WATERMAN P G. Alkaloids and limonoids form Bouchardatia neurococca: systematic significance[J]. Phytochemistry, 2003, 64: 609-615.
[2] MA Z -Z, HANO Y, NOMURA T, et al. Alkaloids and phenylpropanoids from Peganum nigellastrum[J]. Heterocycles, 1997, 46: 541-546.
[3] DENG YH, XU RS, YE Y. A new quinazolone alkaloid from leaves of Dichroa febrifuga[J]. J. Chin. Pharm. Sci., 2000, 9: 116-118.
[4] MHASKE S B, ARGADE N P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids[J]. Tetrahedron, 2006, 62: 9787-9826.
[5] KUYPER L F, BACCANARI D P, JONES M L, et al. High-affinity inhibitors of dihydrofolate reductase: antimicrobial and anticancer activities of 7,8-dialkyl-1,3-diaminopyrrolo
[3,2-f]quinazolines with small molecular size[J]. J. Med. Chem., 1996, 39: 892-903.
[6] MAGGIO B, DAIDONE G, RAFFA D, et al. Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates[J]. Eur. J. Med. Chem., 2001, 36: 737-742.
[7] GROVER G, KINI S G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents[J]. Eur. J. Med. Chem., 2006, 41: 256-262.
[8] VERHAEGHE P, AZAS N, GASQUET M, et al. Synthesis and antiplasmodial activity of new 4-aryl-2-trichloromethylquinazolines[J]. Bioorg. Med. Chem., 2008, 18: 396-401.
[9] ALAGARSAMY V, SOLOMON V R, SHEOREY R V, et al. Synthesis of 3-(3-ethylphenyl)-2-substituted amino-3H-quinazolin-4-ones as novel class of analgesic and anti-inflammatory agents[J]. Chem. Biol. Drug Des., 2009, 73: 471-479.
[10] SMITS R A, ADAMI M, ISTYASTONO E P, et al. Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H4 receptor inverse agonists[J]. J. Med. Chem., 2010, 53: 2390-2400.
[11] KUMAR A, RAJPUT C S, BHATI S K. Sythesis of 3-
[4’-(p-chlorophenyl)-thiazol-2-yl]-2-[(substituted azetidinonethiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent[J]. Bioorg. Med. Chem., 2007, 15: 3089-3096.
[12] ALAGARSAMY V, SOLOMON R, MURUGAN M, et al. Design and synthesis of 3-(4-ethylphenyl)-2-substituted amino-3H-quinazolin-4-ones as a novel class of analgesic and anti-inflammatory agents[J]. J. Enzym. Inhib. Med. Chem., 2008, 23: 839-847.
[13] PANDEY S K, SINGH A, NIZAMUDDIN. Antimicrobial studies of some novel quinazolinones fused with
[1,2,4]-triazole,
[1,2,4]-triazine and
[1,2,4,5]-tetrazine rings[J]. Eur. J. Med. Chem., 2009, 44: 1188-1197.
[14] GEORGEY H, ABDEL-GAWAD N, ABBAS S. Synthesis and anticonvulsant activity of some quinazolin-4-(3H)-one derivatives[J]. Molecules, 2008, 13: 2557-2569.
[15] ARCHANA SRIVASTAVA V K, KUMAR A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents[J]. Eur. J. Med. Chem., 2002, 37: 873-882.
[16] ZAPPALÁ M, GRASSO S, MICALE N, et al. 1-Aryl-6,7-methylenedioxy-3H-quinazolin-4-ones as anticonvulsant agents[J]. Bioorg. Med. Chem. Lett., 2003, 13: 4427-4433.
[17] JATAV V, MISHRA P, KASHAW S, et al. CNS depressant and anticonvulsant activities of some novel 3-
[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones[J]. Eur. J. Med. Chem., 2008, 43: 1945-1954.
[18] KASHAW S K, KASHAW V, MISHRA P, et al. CNS depressant and anticonvulsant activities of some new bioactive 1-(4-substituted phenyl)-3-(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea[J]. Eur. J. Med. Chem., 2009, 44: 4335-4343.
[19] MALAMA M S, MILLEN J. Quinazoline acetic acids and related analogues as aldose reductase inhibitors[J]. J. Med. Chem., 1991, 34: 1492-1503.
[20] DECKER M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine[J]. Eur. J. Med. Chem., 2005, 40: 305-313.
[21] ROSOWSKY A, WRIGHT J E, VAIDYA C M, et al. The effect of side-chain, para-aminobenzoyl region, and B-ring modifications on dihydrofolate reductase binding, influx via the reduced folate carrier, and cytotoxicity of the potent nonpolyglutamatable antifolate N(alpha)-(4-amino-4-deoxyperoyl)-N(delta)-hemiphthaloyl-L-ornithine[J]. Pharmacol. Ther., 2000, 85: 191-205.
[22] GANGJEE A, KOTHARE M, KISLIUK R L. The synthesis of novel nonclassical reversed bridge quinazoline antifolates as inhibitors of thymidylate synthase[J]. Heterocycl. Chem., 2000, 37: 1097-1102.
[23] LEVITZKY A. Protein kinase inhibitors as a therapeutic modality[J]. Acc. Chem. Res., 2003, 36: 462-469.
[24] GAROFALO A, GOOSSENS L, LEMOINE A, et al.
[4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl] carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors[J]. Med. Chem. Commun., 2011, 2: 65-72.
[25] NAKAMURA H, HORIKOSHI R, USUI T, et al. Selective inhibition of EGFR and VEGFR2 tyrosine kinases controlled by a boronic acid substituent on 4-anilinoquinazolines[J]. Med. Chem. Commun., 2010, 1: 282-286.
[26] LI RD, ZHANG X, LI QY, et al. Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines[J]. Bioorg. Med. Chem. Lett., 2011, 21: 3637-3640.
[27] CRUZ-LÓPEZ O, CONEJO-GARCÍA A, NÚÑEZ M C, et al. Novel substituted quinazolines for potent EGFR tyrosine kinase inhibitors[J]. Curr. Med. Chem., 2011, 18: 943-963.
[28] FRY D W, KRAKER A J, MCMICHAEL A, et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase[J]. Science, 1994, 265: 1093-1095.
[29] LEWERENZ A, HENTSCHEL S, VISSIENNON Z, et al. A3 receptors in cortical neurons: pharmacological aspects and neuroprotection during hypoxia[J]. Drug Dev. Res., 2003, 58: 420-427.
[30] MALECKI N, CARATO P, RIGO G, et al. Synthesis of condensed quinolines and quinazolines as DNA ligands[J]. Bioorg. Med. Chem., 2004, 12: 641-647.
[31] ABDEL GAWAD N M, GEORGEY H H, YOUSSEF R M, et al. Synthesis and antitumor activity of some 2,3-disubstituted quinazolin-4(3H)-ones and 4,6-disubstituted-1,2,3,4-tetrahydroquinazolin-2H-ones. Eur. J. Med. Chem., 2010, 45: 6058-6067.
[32] ISMAIL M A H, BARKER S, ABAU EL ELLA D A, et al. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl quinazoline derivatives as angiotensin ii AT1 receptor antagonists[J]. Med. Chem., 2006, 49: 1526-1535.
[33] JAIN K S, BARIWAL J B, KATHIRAVAN M K, et al. Recent advances in selective alpha1-adrenoreceptor antagonists as antihypertensive agents[J]. Bioorg. Med. Chem., 2008, 16: 4759-4800.
[34] ALAGARSAMY V, PATHAK U S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-
[1,2,4]triazolo
[5,1-b]quinazolin-9-ones[J]. Bioorg. Med. Chem., 2007, 15: 3457-3462.
[35] CUNNINGHAM D, ZALCBERG J, MAROUN J, et al. Efficacy, tolerability and management of raltitrexed(TomudexTM)monotherapy in patients with advanced colorectal cancer: A review of phase Ⅱ/Ⅲ trials[J]. Eur. J. Cancer, 2002, 38: 478-486.
[36] CHAVAN S P, SIVAPPA R. A short and efficient general synthesis of luotonin A, B and E[J]. Tetrahedron. Lett., 2004, 60: 9931-9935.
[37] JIANG SP, ZENG Q, GETTAYACAMIN M, et al. Antimalarial activities and therapeutic properties of febrifugine analogs[J]. Antimicrob. Agents. Chemother., 2005, 49: 1169-1176.
[38] An CY, Li XM, Li CS, et al. Triazoles and other N-containing metabolites from the marine-derived endophytic fungus penicillium chrysogenum EN-118[J]. HCA., 2013, 96: 682-687.
[39] JIAO RH, XU S, LIU JY, et al. Chaetominie, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015[J]. Org. Lett, 2006, 8: 5709-5712.
[40] NUMATA A, TAKAHASHI C, MATSUSHITA T, et al. Fumiquinazolines, novel metabolites of a fungus isolated from a saltfish[J]. Tetrahedron. Lett., 1992, 33: 1621-1624.
[41] BOYD M R. Status of the NCI preclinical antitumor drug discovery screen[J]. Princ. Pract. Oncol., 1989, 3(1): 1-12.
[42] RAMLI Y, MOUSSAIF A, KARROUCHI K, et al. Pharmacological profile of quinoxalinone[J]. J. Chem., 2014, 2014: 1-21.
[43] PEREIRA J A, PESSOA A M, CORDEIRO M N, et al. Quinoxaline, its derivatives and applications: a state of the art review[J]. Eur. J. Med. Chem., 2015, 97: 664-672.
[44] SHI LL, HU W, WU JF, et al. Quinoxalinone as a privileged platform in drug development[J]. Mini Rev. Med. Chem., 2018, 18: 392-413.
[45] ALSAIF N A, DAHAB M A, ALANAZI M M, et al. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: design, molecular modeling, and synthesis[J]. Bioorg. Chem., 2021, 110: 104807.
[46] KHATTAB S N, ABEDL MONEIM S A H, BEKHIT A A, et al. Exploring new selective 3-benzylquinoxaline-based MAO-A inhibitors: desigh, synthesis, biological evaluation and docking studies[J]. Eur. J. Med. Chem., 2015, 93: 308-320.
[47] AJANI O O, OBAFEMI C A, IKPO C O, et al. Microwave-assisted synthesis and antibacterial activity of some pyrazol-1-ylquinoxalin(1H)-one derivatives[J]. Chem. Heterocycl. Compd., 2009, 45: 1370-1378.
[48] FABIAN L, TAVERNA PORRO M, GOMEZ N, et al. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme[J]. Eur. J. Med. Chem., 2020, 188: 111987.
[49] SHEN QK, GONG GH, LI G, et al. Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-
[1,2,4]triazolo
[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents[J]. J. Enzym. Inhib. Med. Chem., 2020, 35: 85-95.
[50] WILLARDSEN J A, DUDLEY D A, CODY W L, et al. Design, synthesis, and biological activity of potent and selective inhibitors of blood coagulation factor Xa[J]. J. Med. Chem., 2004, 47: 4089-4099.
[51] KOLBE H. Zersetzung der valeriansäure durch den elektrischen strom[J]. Ann. Chem. Pharm., 1848, 64: 339-341.
[52] HOFMANN A W. Zur kenntniss des piperidins und pyridins[J]. Ber. Dtsch. Chem. Ges., 1879, 12(1): 984-990.
[53] LÖFFLER K, FREYTAG C. Über eine neue bildungsweise von N-alkylierten pyrrolidinen[J]. Ber. Dtsch. Chem. Ges., 1909, 42(3): 3427-3431.
[54] WOLFF M E. Cyclization of N-halogenated amines (The Holfmann-Löffler Reaction)[J]. Chem. Rev., 1963, 63(1): 55-64.
[55] GOMBERG M. An instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem. Soc., 1900, 22(11): 757-771.
[56] KHARASCH M S, MAYO F R. The peroxide effect in the addition of reagents to unsaturated compounds. I. The addition of hydrogen bromide to allyl bromide[J]. J. Am. Chem. Soc., 1933, 55: 2468-2496.
[57]
[47] KHARASCH M S, ENGELMANN H, MAYO F R. The peroxide effect in the addition of reagents to unsaturated compounds XV. The addition of hydrogen bromide to 1-and 2-bromo- and chloropropenes[J]. J. Org. Chem., 1937, 2(3): 288-302.
[58] KHARASCH M S, JENSEN E V, URRY W H. Addition of carbon tetrachloride and chloroform to olefins[J]. Science, 1945, 102(2640): 128-128.
[59] BACHMANN W E, WISELOGLE F Y. The relative stability of pentaarylethanes. iii.1 the reversible dissociation of pentaarylethanes*[J]. J. Org. Chem., 1936, 1(4): 354-382.
[60] HEY D H, PERKINS M J, WILLIAM G H. Mechanisms of free-radical aromatic substitution[J]. Tetrahedron Lett., 1963, 4(7): 445-452.
[61] FISCHER H. J. Unusual selectivities of radical reactions by internal suppression of fast modes[J]. J. Am. Chem. Soc., 1986, 108(14): 3925-3927.
[62] DAIKH B E, FINKE R G. The persistent radical effect: a prototype example of extreme, 105 to 1, product selectivity in a free-radical reaction involving persistent .cntdot.CoII[macrocycle] and alkyl free radicals[J]. J. Am. Chem. Soc., 1992, 114(8): 2938-2943.
[63] ARENDS I W C E, INGOLD K U, WAYNER D D M. A mechanistic probe for oxygen activation by metal complexes and hydroperoxides and its application to alkane functionalization by [FeIIICl2tris(2-pyridinylmethyl)amine]+BF4-[J]. J. Am. Chem. Soc., 1995, 117(16): 4710-4711.
[64] FISCHER H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations[J]. Chem. Rev., 2001, 101: 3581-3610.
[65] STUDER A. The persistent radical effect in organic synthesis[J]. Chem. -Eur. J., 2001, 7(6): 1159-1164.
[66] GRILLER D, INGOLD K U. Persistent carbon-centered radical[J]. Acc. Chem. Res., 1976, 9(1): 13-19.
[67] BELL F A, LEDWITH A, SHERRINGTON D C. Cation-radicals: tris-(p-bromophenyl)amminium perchlorate and hexachloroantimonate[J]. J. Chem. Soc. C., 1969, 2719-2720.
[68] LEDWITH A. Cation radicals in electron-transfer reactions[J]. Acc. Chem. Res., 1972, 5(4): 133-139.
[69] MINISCI F, BERNARDI R, BERTINI F, et al. Nucleophilic character of alkyl radicals—VI: A new convenient selective alkylation of heteroaromatic bases[J]. Tetrahedron, 1971, 27(15): 3575-3579.
[70] MINISCI F, VISMARA E, FONTANA F, et al. polar effects in free-radical reactions - rate constants in phenylation and new methods of selective alkylation of heteroaromatic bases[J]. J. Org. Chem., 1986, 51(23): 4411-4416.
[71] KOCHI J K. Electron-transfer mechanisms for organometallic intermediates in catalytic reactions[J]. Acc. Chem. Res., 1974, 7: 351-360.
[72] STUDER A, CURRAN D P. Catalysis of radical reactions: A radical chemistry perspective[J]. Angew. Chem. Int. Ed., 2016, 55(1): 58-102.
[73] WU J H, RADINOV R, PORTER N A. Enantioselective free radical carbon carbon bond-forming reactions: chiral lewis acid promoted acyclic additions[J]. J. Am. Chem. Soc., 1995, 117(44): 11029-11030.
[74] SIBI M P, JI J, WU JH, et al. Chiral lewis acid catalysis in radical reactions: enantioselective conjugate radical additions[J]. J. Am. Chem. Soc., 1996, 118(38): 9200-9201.
[75] SIBI M P, PORTER N A. Enantioselective free radical reactions[J]. Acc. Chem. Res., 1999, 32(2): 163-171.
[76] SIBI M P, MANYEM S, ZIMMERMAN J. Enantioselective radical processes[J]. Chem. Rev., 2003, 103(8): 3263-3296.
[77] ZIMMERMAN J, SIBI M P. Enantioselective radical reactions[J]. Top. Curr. Chem., 2006, 263: 107-162.
[78] AECHTNER T, DRESSEL M, BACH T. Hydrogen bond mediated enantioselectivity of radical reactions[J]. Angew. Chem. Int. Ed., 2004, 43(43): 5849-5851.
[79] BAUER A, WESTKAMPER F, GRIMME S, et al. Catalytic enantioselective reactions driven by photoinduced electron transfer[J]. Nature, 2005, 436: 1139-1140.
[80] MULLER C, BAUER A, BACH, T. Light-driven enantioselective organocatalysis[J]. Angew. Chem. Int. Ed., 2009, 48(36): 6640-6642.
[81] BEESON T D, MASTRACCHIO A, HONG J B, et al. Enantioselective organocatalysis using SOMO activation[J]. Science, 2007, 316(5824): 582-585.
[82] JANG HY, HONG JB, MACMILLAN D W C. Enantioselective organocatalytic singly occupied molecular orbital activation: the enantioselective α-enolation of aldehydes[J]. J. Am. Chem. Soc., 2007, 129(22): 7004-7005.
[83] SIBI M P, HASEGAWA M. Organocatalysis in radical chemistry. Enantioselective α-oxyamination of aldehydes[J]. J. Am. Chem. Soc., 2007, 129(14): 4124-4125.
[84] WAN K, KONG W. Recent advances in transition metal-catalyzed asymmetric radical reactions[J]. Chin. J. Chem., 2018, 36(3): 247-256.
[85] NICEWICZ D A, MACMILLAN D W C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes[J]. Science, 2008, 322(5898): 77-80.
[86] NAGIB D A, SCOTT M E, MACMILLAN D W C. Enantioselective alpha-trifluoromethylation of aldehydes via photoredox organocatalysis[J]. J. Am. Chem. Soc., 2009, 131(31): 10875-10877.
[87] 宋小侠,卢燕玲,翁廷松,等.马来酸麦角新碱、卡贝缩宫素及卡前列素氨丁三醇预防和治疗宫缩乏力性产后出血效果的比较[J].广东医学,2017,38(18):2850-2852.
[88] KO W W, DAI S. Plasma, cardiac tissue and brain morphine concentration in acute and chronic morphine treated rats[J].Clin Exp Pharmacol Physicol., 1989, 16(2): 117-120.
[89] 姚金铭,宋秀玲,王焕君,等.黄连素(小檗碱)治疗糖尿病肾病疗效和安全性的系统评价[J].中华临床医师杂志(电子版),2015,9(23):110-114.
[90] 王鑫喆,沈梦婷,闫鹏举,等.黄连生物碱类活性成分与肠道菌群相互作用的研究进展[J].中国药房,2021,32(1):109-115.
[91] 张春蕾,王婷,廉超,等.联合毛果芸香碱滴眼液治疗眼外伤房角后退继发性青光眼[J].临床眼科杂志,2013,21(2):120-123.
[92] 程文虹,张震宇.常山酮的抗球虫效果[J].饲料研究,2005,06(012):35-37.
[93] 卢懿,侯世祥,陈彤.长春花抗癌成分长春新碱研究的进展[J].中国中药杂志,2003,28(11):1006-1009.
[94] TERRETT J A, CUTHBERTSON J D, SHURTLEFF V W. Switching on elusive organometallic mechanisms with photoredox catalysis[J]. Nature, 2015, 524(7565): 330-334.
[95] VENTRE S, PETRONIGEVIC F R, MACMILLAN D W C. Decarboxylative fluorination of aliphatic carboxylic acids via photoredox catalysis[J]. J. Am. Chem. Soc., 2015, 46(17): 5654-5657.
[96] YUE H, ZHU C, RUEPING M. Cross-coupling of sodium sulfinates with aryl, heteroaryl, and vinyl halides by nickel/photoredox dual catalysis[J]. Angew. Chem. Int. Ed., 2018, 57(5): 1371-1375.
[97] ZHANG G, LIU C, YI H, et al. External oxidant-free oxidative cross-coupling: a Photoredox cobalt-catalyzed aromatic C-H thiolation for constructing C-S bonds[J]. J. Am. Chem. Soc, 2015, 137: 9273-9280.
[98] XUAN J, ZENG T T, CHEN J R, et al. Room temperature C−P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis[J]. Chem. Eur. J., 2015, 21: 4962-4965.
[99] ZHOU A X, MAO L L, WANG G W, et al. A unique copper-catalyzed cross-coupling reaction by hydrogen(H2) removal for the stereoselective synthesis of 3-phosphoindoles[J]. Chem. Commun., 2014, 50: 8529-8532.
[100] DU J, SKUBI K L, SCHULTZ D M, et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning[J]. Science, 2014, 344(6182): 386-392.
[101] CISMESIA M A, YOON T P. Characterizing chain processes in visible light photoredox catalysis[J]. Chem. Sci., 2015, 6: 5426-5434.
[102] NICEWICA D A, MACMILLAN D W C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes[J]. Science, 2008, 322(5898): 77-80.
[103] CHU LL, OHTA C, ZUO ZW, et al. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-Pregabalin[J]. J. Am. Chem. Soc., 2014, 136(31): 10886-10889.
[104] HUO HH, SHEN XD, WANG CY, et al. Asymmetric photoredox transition-metal catalysis activated by visible light[J]. Nature, 2014, 515(7525): 100-103.
[105] MURPHY J J, BASTIDA D, PARIA S, et al. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radical[J]. Nature, 2016, 532(7598): 218-222.
[106] GARZA-SANCHEZ R A, TLAHUEXT-ACA A, TAVAKOLI G, et al. Visible light-mediated derict decarboxylative C-H functionalization of heteroarenes[J]. ACS Catal., 2017, 7(6): 4057-4061.
[107] CANDISH L, FREITAG M, GENSCH T, et al. Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals[J]. Chem. Sci., 2017, 8(5): 3618-3622.
[108] FU M C, SHANG R, ZHAO B, et al. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide[J]. Science, 2019, 363(6434): 1429-1434.
[109] WANG ZZ, LIU Q, JI XC, et al. Bromide-promoted visible light-induced reductive menisci reaction with aldehydes[J]. ACS Catal., 2020, 10(1): 154-159.
[110] ZHENG S, CHEN Z, HU Y, et al. Selective 1,2-aryl-aminoalkylation of alkenes enabled by metallaphotoredox catalysis[J]. Angew. Chem. Int. Ed., 2020, 132(41): 18066-18072.
[111] ZHANG Y, JIN Y, WANG L, et al. Selective C(sp3)-H activation of simple alkanes: visible light-induced metal-free synthesis of phenanthridines with H2O2 as a sustainable oxidant[J]. Green Chem., 2021, 23: 6926-6930.
[112] LIN L, BAI X, YE X, et al. Organocatalytic enantioselective protonation for photoreduction of activated ketones and ketimines induced by visible light[J]. Angew. Chem. Int. Ed., 2017, 129(44): 13842-13846.
[113] LI J, KONG M, QIAO B, et al. Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling[J]. Nat. Commun., 2018, 9(1): 2445-2453.
[114] LIU Y, LIU X, LI J, et al. Catalytic enantioselective radical coupling of activated ketones with N-aryl glycines[J]. Chem. Sci., 2018, 9(42): 8094-8098.
[115] SHAO T, YIN Y, LEE R, et al. Sequential photoredox catalysis for cascade aerobic decarboxylative povarov and oxidative dehydrogenation reactions of N-aryl α-amino acids[J]. Adv. Synth. Catal., 2018, 360: 1754-1760.
[116] BU L, LI J, YIN Y, et al. Organocatalytic asymmetric cascade aerobic oxidation and semipinacol rearrangement reaction: a visible light-induced approach to access chiral 2,2-disubstituted indolin-3-ones[J]. Chem. Asian J., 2018, 13: 2382-2387.
[117] CAO K, TAN SM, LEE R, et al. Catalytic enantioselective addition of prochiral radicals to vinylpyridines[J]. J. Am. Chem. Soc., 2019, 141: 5437-5443.
[118] CHAI XP, HU XH, ZHAO XW, et al. Asymmetric hydroaminoalkylation of alkenylazaarenes via cooperative photoredox and chiral hydrogen-bonding catalysis[J]. Angew. Chem. Int. Ed., 2022, 61(10): e202115110.
[119] MAITY S, ZHENG N. A visible-light-mediated oxidative C-N bond formation/aromatization cascade: photocatalytic preparation of N-arylindoles[J]. Angew. Chem. Int. Ed., 2012, 51(38): 9562-9566.
[120] CECERE G, KÖNIG C M, ALLEVA J L, et al. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling[J]. J. Am. Chem. Soc., 2013, 135(31): 11521-11524.
[121] SHEN X, HARMS K, MARSCH M, et al. A rhodium catalyst superior to iridium congeners for enantioselective radical amination activated by visible light[J]. Chem. Eur. J. 2016, 22(27): 9102–9105.
[122] KAINZ Q M, MATIER C D, BARTOSZEWICZ A, et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light[J]. Science, 2016, 351(6274): 681-684.
[123] MUSACCHIO A J, LAINHART B C, ZHANG X, et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines[J]. Science, 2017, 355(6326): 727-730.
[124] MILLER D C, GANLEY J M, MUSACCHIO A J, et al. Anti-markovnikov hydroamination of unactivated alkenes with primary alkyl amines[J]. J. Am. Chem. Soc., 2019, 141: 16590−16594.
[125] RÖSSLER S L, JELIER B J, TRIPET P F, et al. Pyridyl radical cation for C−H amination of arenes[J]. Angew. Chem. Int. Ed., 2019, 58: 526–531.
[126] HAM W S, HILLENBRAND J, JACQ J, et al. Divergent late-stage (hetero)aryl C−H amination by the pyridinium radical Cation[J]. Angew. Chem. Int. Ed., 2019, 58: 532–536.
[127] DU YD, CHEN BH, SHU W. Direct access to primary amines from alkenes by selective metal-free hydroamination[J]. Angew. Chem. Int. Ed., 2021, 60: 9875 –9880.
[128] LIU MS, SHU W. Catalytic, metal-free amide synthesis from aldehydes and imines enabled by a dual-catalyzed umpolung strategy under redox-neutral conditions[J]. ACS Catal., 2020, 10: 12960−12966.
[129] CHO H, SUEMATSU H, OYALA P H, et al. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism[J]. J. Am. Chem. Soc., 2022, 144(10): 4550−4558.
[130] MA C, LI Y, NIU S, et al. N-hydroxypyridones, phenylhydrazones, and a quinazolinone from isaria farinose[J]. J. Nat. Prod., 2011, 74(1): 32-37.
[131] WANG S. A novel and other bioactive secondary metabolites from a marine fungus penicillium oxalicum 0312F(1)[J]. Nat. Prod. Res., 2013, 27(24): 2286-2291.
[132] SOMANADHAN B, LEONG C, WHITTON S R, et al. Identification of a naturally occurring quinazolin-4(3H)-one firefly luciferase inhibitor[J]. J. Nat. Prod., 2011, 74(6): 1500.
[133] AN CY, LI XM, LI CS, et al. Aniquinazolines A-D, four new quinazolinone alkaloids from marine-derived endophytic fungus aspergillus nidulans[J]. Mar. Drugs, 2013, 11(7): 2682-2694.
[134] ZHANG DH, YANG XD, KANG J S, et al. Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus exophiala[J]. J. Antibiot., 2008, 61: 40-42.
[135] CUI CM, LI XM, LI CS, et al. Benzodiazepine alkaloids from marine-derived endophytic fungus aspergillus ochraceus[J]. Helv. Chim. Acta, 2009, 92(7): 1366-1370.
[136] PENG J, LIN T, WANG W, et al. Antiviral alkaloids produced by the man grove-derived fungus Cladosporium sp. PJX-41[J]. J. Nat. Prod., 2013, 76(6): 1133-1140.
[137] ZHU YP, FEI Z, LIU MC, et al. Direct one-pot synthesis of luotonin F and analogues via rational logical design[J]. Org. Lett., 2013, 15(2): 378-381.
[138] PUNTHASEE P, VANITCHA A, WACHARASINDHU S. Mukaiyama’s reagent promoted C-N bond formation: a new method to synthesize 3-alkylquinazolin-4-ones[J]. Tetrahedron Lett., 2010, 51(13): 1713-1716.
[139] LECA D, GAGGINI F, CASSAYRE J, et al. Acid-catalyzed aza-diels-alder reactions for the tital synthesis of (±)-lapatin B[J]. J. Org. Chem., 2007, 72(11): 4284-4287.
[140] WALKER S J, HART D J. Synthesis of (-)-lapatin B[J]. Tetrahedron Lett., 2007, 48(35): 6214-6216.
[141] HUANG PQ, WANG Y, LUO SP, et al. Procedure—economical enantioselective total syntheses of asperlicins C and E[J]. Tetrahedron Lett., 2015, 56(10): 1255-1258.
[142] MAO ZY, GENG H, ZHANG TT, et al. Stereodivergent and enantioselective total syntheses of isochaetominines A-C and four pairs of isochaetominine C enantiomers: a six-step approach[J]. Org. Chem. Front., 2016, 3: 24-37.
[143] HUANG PQ, MAO ZY, GENG H. E Nnantioselective total synthesis and structural revision of (-)-isochaetominine[J]. Chin. J. Org. Chem., 2016, 36(2): 315-324.
[144] GENG H, HUANG PQ. Rapid generation of molecular complexity by chemical synthesis: highly efficient total synthesis of hexacyclic alkaloid (-)-chaetominine and its biosynthetic implications[J]. Chem. Rec., 2019, 19: 523-533.
[145] WU JF, HUANG PQ. Concise, enantioselective total syntheses of both proposed and revised structures of (-)-versiquinazoline H[J]. Chin. Chem, Lett., 2020, 31: 61-63.
[146] PROCTOR R S J, CHUENTRAGOOL P, COLGAN A C, et al. Hydrogen atom transfer-driven enantioselective Minisci reaction of amides[J]. J. Am. Chem. Soc., 2021, 143(13): 4928-4934.
[147] LIU JL, XIA HG, KIM M, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13[J]. Cell, 2011, 147(1): 223-234.
[148] LEPRI S, CECCARELLI M, MILANI N, et al. Structure-metabolism relationships in human-AOX: chemical insights from a large database of aza-aromatic and amide compounds[J]. Proc. Natl. Acad. Sci., 2017, 114(16): E3178-E3187.
[149] PELAGALLI R, CHIAROTTO I, FEROCI M, et al. Isopropenyl acetate, a remarkable, cheap and acylating agent of amines under solvent- and catalyst-free conditions: a systematic investigation[J]. Green Chem., 2012, 14(8): 2251-2255.
[150] PAPAICANNOU N, FRAY M J, RENNHACK A, et al. Regioselective amidomethylation of 4-chloro-3-fluoropyridine by metalation and Minisci-type reactions[J]. J. Org. Chem., 2020, 85(19): 12067-12079.
[151] JI YP, CHEN X, CHEN H, et al. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors[J]. Bioorg. Med. Chem., 2019, 27: 1658-1669.
[152] TAKANO Y, SHIGA F, ASANO J, et al. Synthesis and AMPA receptor antagonistic activity of a novel 7-imidazolyl-6-trifluoromethyl quinoxalinecarboxylic acid with a substituted phenyl group and improved its good physicochemical properties by introduced CF3 group[J]. Bioorg. Med. Chem., 2004, 14: 5107-5111.
[153] LIU XH, YU W, MIN LJ, et al. Synthesis and pesticidal activities of new quinoxalines[J]. J. Agric. Food Chem., 2020, 68: 7324-7332.
[154] LOVE B, MUSSER J H, BROWN R E, et al. 1,2,4-Triazolo
[4,3-a]quinoxaline-1,4-diones as antiallergic agents[J]. J. Med. Chem., 1985, 28: 363-366.
[155] AGER L R, BARNES A C, DANSWAN G W, et al. Synthesis and oral antiallergic activity of carboxylic acids derived from imidazo
[2,1-c]
[1,4]benzoxazines, imidazo
[1,2-a]quinolines, imidazo
[1,2-a]quinoxalines, imidazo
[1,2-a]quinoxalinones, pyrrolo
[1,2-a]quinoxalinones, pyrrolo
[2,3-a]quinoxalinones, and imidazo
[2,1-b]benzothiazoles[J]. J. Med. Chem., 1988, 31: 1098-1115.
[156] BRIGUGLIO I, LODDO R, LAURINI E, et al. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo
[4,5-g]quinoline and pyrido
[2,3-g]quinoxalinone derivatives[J]. Eur. J. Med. Chem., 2015, 105: 63-79.
[157] DAVEY D D, ERHARDT P W, CANTOR E H, et al. Novel compounds possessing potent cAMP and cGMP phosphodiesterase inhibitory activity. Synthesis and cardiovascular effects of a series of imidazo
[1,2-a]quinoxalinones and imidazo
[1,5-a]quinoxalinones and their aza analogues[J]. J. Med. Chem., 1991, 34: 2671-2677.
[158] UTEPOVA I A, TRESTSOVA M A, CHUPAKHIN O N, et al. Aerobic oxidative C-H/C-H coupling of azaaromatics with indoles and pyrroles in the presence if TiO2 as a photocatalyst[J]. Green Chem., 2015, 17: 4401-4410.
[159] WEI W, WANG LL, BAO PL, et al. Metal-free C(sp2)-H/N-H cross-dehydrogenative coupling of quinoxalinones with aliphatic amines under visible-light photoredox catalysis[J]. Org. Lett., 2018, 20(22): 7125-7130.
[160] XIE LY, LIU YS, DING HR, et al. C(sp2)-H/O-H cross-dehydrogenative coupling of quinoxaline-2(1H)-ones with alcohols under visible-light photoredox catalysis[J]. Chinese J. Catal., 2020, 41(8): 1168-1173.
[161] XU J, ZHANG HD, ZHAO JM, et al. Photocatalyst-, metal- and additive-free, direct C-H arylation of quinoxaline-2(1H)-ones with aryl acyl peroxides induced by visible light[J]. Org. Chem. Front., 2020, 7: 4031-4042.
[162] XU J, HUANG L, HE L, et al. A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxaline-2(1H)-ones with ketones in water: a green and efficient route to (Z)-enaminones[J]. Green Chem., 2021, 23: 2123-2129.
[163] GHOSH P, KWON N Y, KIM S, et al. C-H methylation of iminoamido heterocycles with sulfur ylides[J]. Angew. Chem. Int. Ed., 2021, 60(1): 191-196.
[164] ZHANG HD, XU J, ZHOU M, et al. The visible-light-triggered regioselective alkylation of quinoxaline-2(1H)-ones via decarboxylation coupling[J]. Org. Biomol. Chem., 2019, 17: 10201-10208.
Edit Comment