[1] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals [J]. Science, 2015, 347(6221): 519-22.
[2] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals [J]. Science, 2015, 347(6225): 967-70.
[3] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites [J]. Advanced Materials, 2014, 26(10): 1584-9.
[4] ZHANG F, ZHONG H, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology [J]. ACS Nano, 2015, 9(4): 4533-42.
[5] DE ROO J, IBáñEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2): 2071-81.
[6] TAN Z-K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687-92.
[7] MIYATA A, MITIOGLU A, PLOCHOCKA P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites [J]. Nature Physics, 2015, 11(7): 582-7.
[8] SONG J, LI J, LI X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Advanced Materials, 2015, 27(44): 7162-7.
[9] WANG X, BAO Z, CHANG Y-C, et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes [J]. ACS Energy Letters, 2020, 5(11): 3374-96.
[10] WANG J, LIU H, ZHAO Y, et al. Perovskite-based tandem solar cells gallop ahead [J]. Joule, 2022, 6(3): 509-11.
[11] SHAMSI J, RAINò G, KOVALENKO M V, et al. To nano or not to nano for bright halide perovskite emitters [J]. Nature Nanotechnology, 2021, 16(11): 1164-8.
[12] LIU F, WU R, WEI J, et al. Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy [J]. ACS Energy Letters, 2022, 7(3): 1066-85.
[13] DONG H, ZHANG C, LIU X, et al. Materials chemistry and engineering in metal halide perovskite lasers [J]. Chemical Society Reviews, 2020, 49(3): 951-82.
[14] LIAN H, LI Y, SARAVANAKUMAR S, et al. Metal halide perovskite quantum dots for amphiprotic bio-imaging [J]. Coordination Chemistry Reviews, 2022, 452: 214313.
[15] MAI H, CHEN D, TACHIBANA Y, et al. Developing sustainable, high-performance perovskites in photocatalysis: Design strategies and applications [J]. Chemical Society Reviews, 2021, 50(24): 13692-729.
[16] SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties [J]. Chemical Reviews, 2019, 119(5): 3296-348.
[17] JI L-J, SUN S-J, QIN Y, et al. Mechanical properties of hybrid organic-inorganic perovskites [J]. Coordination Chemistry Reviews, 2019, 391: 15-29.
[18] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-1.
[19] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-50.
[20] KIM Y-H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nature Photonics, 2021, 15(2): 148-55.
[21] CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Advanced Energy Materials, 2015, 5(15): 1500477.
[22] LIN Y, CHEN B, FANG Y, et al. Excess charge-carrier induced instability of hybrid perovskites [J]. Nature Communications, 2018, 9(1): 4981.
[23] BAI Y, HAO M, DING S, et al. Surface chemistry engineering of perovskite quantum dots: Strategies, applications, and perspectives [J]. Advanced Materials, 2022, 34(4): 2105958.
[24] WEI Y, CHENG Z, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs [J]. Chemical Society Reviews, 2019, 48(1): 310-50.
[25] XIANG W, LIU S, TRESS W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells [J]. Energy & Environmental Science, 2021, 14(4): 2090-113.
[26] CHENG Y, DING L. Pushing commercialization of perovskite solar cells by improving their intrinsic stability [J]. Energy & Environmental Science, 2021, 14(6): 3233-55.
[27] KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017, 358(6364): 745-50.
[28] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites [J]. Chemical Reviews, 2016, 116(21): 12956-3008.
[29] DUNLAP-SHOHL W A, ZHOU Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films [J]. Chemical Reviews, 2019, 119(5): 3193-295.
[30] PRADHAN N. Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals [J]. ACS Energy Letters, 2019, 4(7): 1634-8.
[31] CHEN J, JIA D, JOHANSSON E M J, et al. Emerging perovskite quantum dot solar cells: Feasible approaches to boost performance [J]. Energy & Environmental Science, 2021, 14(1): 224-61.
[32] SUN S, LU M, GAO X, et al. 0D perovskites: Unique properties, synthesis, and their applications [J]. Advanced Science, 2021, 8(24): 2102689.
[33] PAN S, LI J, WEN Z, et al. Halide perovskite materials for photo(electro)chemical applications: Dimensionality, heterojunction, and performance [J]. Advanced Energy Materials, 2022, 12(4): 2004002.
[34] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters, 2015, 15(6): 3692-6.
[35] VYBORNYI O, YAKUNIN S, KOVALENKO M V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals [J]. Nanoscale, 2016, 8(12): 6278-83.
[36] PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the “red wall” of colloidal perovskites: Highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals [J]. ACS Nano, 2017, 11(3): 3119-34.
[37] ZENG P, WEI L, ZHAO H, et al. Crystalline phase-controlled synthesis of regular and stable endotaxial cesium lead halide nanocrystals [J]. Journal of Materials Chemistry C, 2020, 8(27): 9358-65.
[38] BEKENSTEIN Y, KOSCHER B A, EATON S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies [J]. Journal of the American Chemical Society, 2015, 137(51): 16008-11.
[39] ZHANG D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires [J]. Journal of the American Chemical Society, 2015, 137(29): 9230-3.
[40] YANG D, ZOU Y, LI P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes [J]. Nano Energy, 2018, 47: 235-42.
[41] PAN A, HE B, FAN X, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors [J]. ACS Nano, 2016, 10(8): 7943-54.
[42] ALMEIDA G, GOLDONI L, AKKERMAN Q, et al. Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals [J]. ACS Nano, 2018, 12(2): 1704-11.
[43] SCHMIDT L C, PERTEGáS A, GONZáLEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(3): 850-3.
[44] LI X, WU Y, ZHANG S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Advanced Functional Materials, 2016, 26(15): 2435-45.
[45] SUN S, YUAN D, XU Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature [J]. ACS Nano, 2016, 10(3): 3648-57.
[46] LEVCHUK I, OSVET A, TANG X, et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals [J]. Nano Letters, 2017, 17(5): 2765-70.
[47] HUANG H, LI Y, TONG Y, et al. Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: A versatile approach for their shape-controlled synthesis [J]. Angewandte Chemie International Edition, 2019, 58(46): 16558-62.
[48] DIRIN D N, PROTESESCU L, TRUMMER D, et al. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes [J]. Nano Letters, 2016, 16(9): 5866-74.
[49] HUANG H, ZHAO F, LIU L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28128-33.
[50] AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J]. Journal of the American Chemical Society, 2015, 137(32): 10276-81.
[51] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) [J]. Nano Letters, 2015, 15(8): 5635-40.
[52] GUHRENZ C, BENAD A, ZIEGLER C, et al. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals [J]. Chemistry of Materials, 2016, 28(24): 9033-40.
[53] ZHU Z-Y, YANG Q-Q, GAO L-F, et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots [J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1610-4.
[54] JODLOWSKI A D, YéPEZ A, LUQUE R, et al. Benign-by-design solventless mechanochemical synthesis of three-, two-, and one-dimensional hybrid perovskites [J]. Angewandte Chemie International Edition, 2016, 55(48): 14972-7.
[55] IM J-H, JANG I-H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells [J]. Nature Nanotechnology, 2014, 9(11): 927-32.
[56] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells [J]. Nature Energy, 2018, 3(8): 682-9.
[57] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth [J]. Chemical Communications, 2015, 51(100): 17658-61.
[58] CHOUHAN L, GHIMIRE S, SUBRAHMANYAM C, et al. Synthesis, optoelectronic properties and applications of halide perovskites [J]. Chemical Society Reviews, 2020, 49(10): 2869-85.
[59] LANG L, YANG J-H, LIU H-R, et al. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites [J]. Physics Letters A, 2014, 378(3): 290-3.
[60] MILOT R L, EPERON G E, SNAITH H J, et al. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films [J]. Advanced Functional Materials, 2015, 25(39): 6218-27.
[61] HUANG L-Y, LAMBRECHT W R L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 [J]. Physical Review B, 2013, 88(16): 165203.
[62] AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting [J]. Nano Letters, 2014, 14(6): 3608-16.
[63] MALGRAS V, TOMINAKA S, RYAN J W, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica [J]. Journal of the American Chemical Society, 2016, 138(42): 13874-81.
[64] DONG Y, QIAO T, KIM D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium [J]. Nano Letters, 2018, 18(6): 3716-22.
[65] WANG L, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide [J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556-62.
[66] LUO D, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells [J]. Nature Reviews Materials, 2020, 5(1): 44-60.
[67] EL-BALLOULI A A O, BAKR O M, MOHAMMED O F. Compositional, processing, and interfacial engineering of nanocrystal- and quantum-dot-based perovskite solar cells [J]. Chemistry of Materials, 2019, 31(17): 6387-411.
[68] AL-ASHOURI A, KöHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J]. Science, 2020, 370(6522): 1300-9.
[69] KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites [J]. Science, 2020, 368(6487): 155-60.
[70] CAO M, XU Y, LI P, et al. Recent advances and perspectives on light emitting diodes fabricated from halide metal perovskite nanocrystals [J]. Journal of Materials Chemistry C, 2019, 7(46): 14412-40.
[71] PARK S, CHANG W J, LEE C W, et al. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution [J]. Nature Energy, 2016, 2(1): 16185.
[72] WU Y, WANG P, ZHU X, et al. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution [J]. Advanced Materials, 2018, 30(7): 1704342.
[73] XU Y-F, YANG M-Z, CHEN B-X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction [J]. Journal of the American Chemical Society, 2017, 139(16): 5660-3.
[74] TANG C, CHEN C, XU W, et al. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst [J]. Journal of Materials Chemistry A, 2019, 7(12): 6911-9.
[75] GAO G, XI Q, ZHOU H, et al. Novel inorganic perovskite quantum dots for photocatalysis [J]. Nanoscale, 2017, 9(33): 12032-8.
[76] CARDENAS-MORCOSO D, GUALDRóN-REYES A F, FERREIRA VITORETI A B, et al. Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots [J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 630-6.
[77] HUANG H, YUAN H, JANSSEN K P F, et al. Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials [J]. ACS Energy Letters, 2018, 3(4): 755-9.
[78] CHEN K, DENG X, DODEKATOS G, et al. Photocatalytic polymerization of 3,4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots [J]. Journal of the American Chemical Society, 2017, 139(35): 12267-73.
[79] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nature Communications, 2015, 6(1): 8056.
[80] SHI Z-F, SUN X-G, WU D, et al. Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film [J]. Journal of Materials Chemistry C, 2016, 4(36): 8373-9.
[81] TANG B, DONG H, SUN L, et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres [J]. ACS Nano, 2017, 11(11): 10681-8.
[82] YUAN F, WU Z, DONG H, et al. High stability and ultralow threshold amplified spontaneous emission from formamidinium lead halide perovskite films [J]. The Journal of Physical Chemistry C, 2017, 121(28): 15318-25.
[83] HUANG H, CHEN B, WANG Z, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices [J]. Chemical Science, 2016, 7(9): 5699-703.
[84] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties [J]. Inorganic Chemistry, 2013, 52(15): 9019-38.
[85] BECHTEL J S, VAN DER VEN A. Octahedral tilting instabilities in inorganic halide perovskites [J]. Physical Review Materials, 2018, 2(2): 025401.
[86] BELISLE R A, BUSH K A, BERTOLUZZI L, et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites [J]. ACS Energy Letters, 2018, 3(11): 2694-700.
[87] CHENG S, ZHONG H. What happens when halide perovskites meet with water? [J]. The Journal of Physical Chemistry Letters, 2022, 13(10): 2281-90.
[88] LEE J-W, PARK N-G. Chemical approaches for stabilizing perovskite solar cells [J]. Advanced Energy Materials, 2020, 10(1): 1903249.
[89] ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells [J]. Nature Communications, 2017, 8(1): 15218.
[90] CHEN J, LIU D, AL-MARRI M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application [J]. Science China Materials, 2016, 59(9): 719-27.
[91] HEO J H, IM S H, NOH J H, et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nature Photonics, 2013, 7(6): 486-91.
[92] YANG J, LIU X, ZHANG Y, et al. Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell [J]. Nano Energy, 2018, 54: 218-26.
[93] JUAREZ-PEREZ E J, ONO L K, MAEDA M, et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability [J]. Journal of Materials Chemistry A, 2018, 6(20): 9604-12.
[94] DIROLL B T, NEDELCU G, KOVALENKO M V, et al. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals [J]. Advanced Functional Materials, 2017, 27(21): 1606750.
[95] NAGABHUSHANA G P, SHIVARAMAIAH R, NAVROTSKY A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites [J]. Proceedings of the National Academy of Sciences, 2016, 113(28): 7717-21.
[96] ZHANG Y-Y, CHEN S, XU P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3 [J]. Chinese Physics Letters, 2018, 35(03): 57-62.
[97] ARISTIDOU N, SANCHEZ-MOLINA I, CHOTCHUANGCHUTCHAVAL T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers [J]. Angewandte Chemie International Edition, 2015, 54(28): 8208-12.
[98] YANG D, MING W, SHI H, et al. Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3 [J]. Chemistry of Materials, 2016, 28(12): 4349-57.
[99] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability [J]. Accounts of Chemical Research, 2016, 49(2): 286-93.
[100] MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J]. Science, 2016, 351(6269): 151-5.
[101] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance [J]. Science, 2016, 354(6309): 206-9.
[102] AMGAR D, BINYAMIN T, UVAROV V, et al. Near ultra-violet to mid-visible band gap tuning of mixed cation RbxCs1−xPbX3 (X = Cl or Br) perovskite nanoparticles [J]. Nanoscale, 2018, 10(13): 6060-8.
[103] SWARNKAR A, MIR W J, NAG A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (x = cl, br, i) perovskites? [J]. ACS Energy Letters, 2018, 3(2): 286-9.
[104] LIU H, WU Z, SHAO J, et al. CsPbxMn1–xCl3 perovskite quantum dots with high mn substitution ratio [J]. ACS Nano, 2017, 11(2): 2239-47.
[105] CHEN W, CHEN H, XU G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells [J]. Joule, 2019, 3(1): 191-204.
[106] WANG P, ZHANG X, ZHOU Y, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells [J]. Nature Communications, 2018, 9(1): 2225.
[107] GAO Y, DONG Y, HUANG K, et al. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing [J]. ACS Photonics, 2018, 5(10): 4104-10.
[108] MA Q, HUANG S, WEN X, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation [J]. Advanced Energy Materials, 2016, 6(7): 1502202.
[109] YIN J, YANG H, GUTIERREZ-ARZALUZ L, et al. Luminescence and stability enhancement of inorganic perovskite nanocrystals via selective surface ligand binding [J]. ACS Nano, 2021.
[110] PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors [J]. ACS Nano, 2016, 10(11): 9776-86.
[111] JAGIELSKI J, KUMAR S, YU W-Y, et al. Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics [J]. Journal of Materials Chemistry C, 2017, 5(23): 5610-27.
[112] QUAN L N, YUAN M, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites [J]. Journal of the American Chemical Society, 2016, 138(8): 2649-55.
[113] YUAN Z, SHU Y, XIN Y, et al. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions [J]. Chemical Communications, 2016, 52(20): 3887-90.
[114] BODNARCHUK M I, BOEHME S C, TEN BRINCK S, et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals [J]. ACS Energy Letters, 2019, 4(1): 63-74.
[115] HILLS-KIMBALL K, YANG H, CAI T, et al. Recent advances in ligand design and engineering in lead halide perovskite nanocrystals [J]. Advanced Science, 2021, 8(12): 2100214.
[116] UDAYABHASKARARAO T, KAZES M, HOUBEN L, et al. Nucleation, growth, and structural transformations of perovskite nanocrystals [J]. Chemistry of Materials, 2017, 29(3): 1302-8.
[117] YOO D, WOO J Y, KIM Y, et al. Origin of the stability and transition from anionic to cationic surface ligand passivation of all-inorganic cesium lead halide perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 652-8.
[118] SONG J, LI J, XU L, et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs [J]. Advanced Materials, 2018, 30(30): 1800764.
[119] SHYNKARENKO Y, BODNARCHUK M I, BERNASCONI C, et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes [J]. ACS Energy Letters, 2019, 4(11): 2703-11.
[120] WU L, ZHONG Q, YANG D, et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand [J]. Langmuir, 2017, 33(44): 12689-96.
[121] TONG Y, EHRAT F, VANDERLINDEN W, et al. Dilution-induced formation of hybrid perovskite nanoplatelets [J]. ACS Nano, 2016, 10(12): 10936-44.
[122] KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment [J]. Journal of the American Chemical Society, 2017, 139(19): 6566-9.
[123] BOHN B J, TONG Y, GRAMLICH M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair [J]. Nano Letters, 2018, 18(8): 5231-8.
[124] BROWN A A M, HOOPER T J N, VELDHUIS S A, et al. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes [J]. Nanoscale, 2019, 11(25): 12370-80.
[125] SATO D, ISO Y, ISOBE T. Effective stabilization of perovskite cesium lead bromide nanocrystals through facile surface modification by perfluorocarbon acid [J]. ACS Omega, 2020, 5(2): 1178-87.
[126] LV W, LI L, XU M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation [J]. Advanced Materials, 2019, 31(28): 1900682.
[127] YOON H C, LEE S, SONG J K, et al. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix [J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11756-67.
[128] FANG S, LI G, LI H, et al. Organic titanates: A model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives [J]. Chemical Communications, 2018, 54(31): 3863-6.
[129] XUAN T, HUANG J, LIU H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes [J]. Chemistry of Materials, 2019, 31(3): 1042-7.
[130] YE S, SUN J-Y, HAN Y-H, et al. Confining Mn2+-doped lead halide perovskite in Zeolite-Y as ultrastable orange-red phosphor composites for white light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24656-64.
[131] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72(11): 4847-54.
[132] WANG H-C, LIN S-Y, TANG A-C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display [J]. Angewandte Chemie International Edition, 2016, 55(28): 7924-9.
[133] XIN Y, ZHAO H, ZHANG J. Highly stable and luminescent perovskite–polymer composites from a convenient and universal strategy [J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4971-80.
[134] BENAD A, GUHRENZ C, BAUER C, et al. Cold flow as versatile approach for stable and highly luminescent quantum dot–salt composites [J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21570-5.
[135] WANG Y, HE J, CHEN H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films [J]. Advanced Materials, 2016, 28(48): 10710-7.
[136] SMOCK S R, CHEN Y, ROSSINI A J, et al. The surface chemistry and structure of colloidal lead halide perovskite nanocrystals [J]. Accounts of Chemical Research, 2021, 54(3): 707-18.
[137] TEN BRINCK S, ZACCARIA F, INFANTE I. Defects in lead halide perovskite nanocrystals: Analogies and (many) differences with the bulk [J]. ACS Energy Letters, 2019, 4(11): 2739-47.
[138] HERZ L M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits [J]. ACS Energy Letters, 2017, 2(7): 1539-48.
[139] WANG T, DAIBER B, FROST J M, et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite [J]. Energy & Environmental Science, 2017, 10(2): 509-15.
[140] YU J, LIU G, CHEN C, et al. Perovskite CsPbBr3 crystals: Growth and applications [J]. Journal of Materials Chemistry C, 2020, 8(19): 6326-41.
[141] YANG B, ZHANG F, CHEN J, et al. Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion [J]. Advanced Materials, 2017, 29(40): 1703758.
[142] CHU Z, YE Q, ZHAO Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation [J]. Advanced Materials, 2021, 33(18): 2007169.
[143] YANG B, ZHANG F, CHEN J, et al. Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion [J]. Advanced Materials, 2017, 29(40).
[144] CHU S, CHEN W, FANG Z, et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating [J]. Nature Communications, 2021, 12(1): 147.
[145] XIE Q, WU D, WANG X, et al. Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots [J]. Journal of Materials Chemistry C, 2019, 7(36): 11251-7.
[146] YU X, WU L, YANG D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting [J]. Angewandte Chemie International Edition, 2020, 59(34): 14527-32.
[147] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites [J]. Chemical Reviews, 2019, 119(5): 3104-39.
[148] HAYDOUS F, GARDNER J M, CAPPEL U B. The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals [J]. Journal of Materials Chemistry A, 2021, 9(41): 23419-43.
[149] STELMAKH A, AEBLI M, BAUMKETNER A, et al. On the mechanism of alkylammonium ligands binding to the surface of CsPbBr3 nanocrystals [J]. Chemistry of Materials, 2021, 33(15): 5962-73.
[150] SADIGHIAN J C, WONG C Y. Just scratching the surface: In situ and surface-specific characterization of perovskite nanocrystal growth [J]. The Journal of Physical Chemistry C, 2021, 125(38): 20772-82.
[151] ZHANG S, LIU Z, ZHANG W, et al. Barrier designs in perovskite solar cells for long-term stability [J]. Advanced Energy Materials, 2020, 10(35): 2001610.
[152] TONG Y, WANG Q, MEI E, et al. One-pot synthesis of CsPbX3 (X = Cl, Br, I)@Zeolite: A potential material for wide-color-gamut backlit displays and upconversion emission [J]. Advanced Optical Materials, 2021, 9(11): 2100012.
[153] LIN Y, ZHENG X, SHANGGUAN Z B, et al. All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: Toward full-color display applications [J]. Journal of Materials Chemistry C, 2021, 9(36): 12303-13.
[154] ZHANG Q, WANG B, ZHENG W, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates [J]. Nature Communications, 2020, 11(1): 31.
[155] WANG P, WANG B, LIU Y, et al. Ultrastable perovskite–zeolite composite enabled by encapsulation and in situ passivation [J]. Angewandte Chemie International Edition, 2020, 59(51): 23100-6.
[156] SUN J-Y, RABOUW F T, YANG X-F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, I) Zeolite-Y composite phosphors for potential backlight display application [J]. Advanced Functinal Materials, 2017, 27(45): 1704371.
[157] RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability [J]. ACS Energy Letters, 2020, 5(6): 1794-6.
[158] IMRAN M, PENG L, PIANETTI A, et al. Halide perovskite-lead chalcohalide nanocrystal heterostructures [J]. Journal of the American Chemical Society, 2021, 143(3): 1435-46.
[159] WANG Z, FU R, LI F, et al. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance [J]. Advanced Functinal Materials, 2021, 31(22): 2010009.
[160] YANG W, GAO F, QIU Y, et al. CsPbBr3-quantum-dots/polystyrene@Silica hybrid microsphere structures with significantly improved stability for white LEDs [J]. Advanced Optical Materials, 2019, 7(13): 1900546.
[161] QIAO G-Y, GUAN D, YUAN S, et al. Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials [J]. Journal of the American Chemical Society, 2021, 143(35): 14253-60.
[162] WAN S, OU M, ZHONG Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction [J]. Chemical Engineering Journal, 2019, 358: 1287-95.
[163] HOU J, CHEN P, SHUKLA A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses [J]. Science, 2021, 374(6567): 621-5.
[164] JANG J, KIM Y-H, PARK S, et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years [J]. Advanced Materials, 2021, 33(3): 2005255.
[165] SINGH A N, KAJAL S, KIM J, et al. Interface engineering driven stabilization of halide perovskites against moisture, heat, and light for optoelectronic applications [J]. Advanced Energy Materials, 2020, 10(30): 2000768.
[166] LI X, YANG X, LIU L, et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells [J]. ACS Catalysis, 2021, 11(12): 7450-9.
[167] WANG H, YU G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication [J]. Advanced Materials, 2016, 28(25): 4956-75.
[168] ZHOU Y, FERNANDO K, WAN J, et al. Millimeter-size all-inorganic perovskite crystalline thin film grown by chemical vapor deposition [J]. Advanced Functinal Materials, 2021, 31(23): 2101058.
[169] ALMUTAIRI S M T, MEZARI B, MAGUSIN P C M M, et al. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic zn complexes [J]. ACS Catalysis, 2012, 2(1): 71-83.
[170] OU X, PILITSIS F, JIAO Y, et al. Hierarchical Fe-ZSM-5/SiC foam catalyst as the foam bed catalytic reactor (FBCR) for catalytic wet peroxide oxidation (CWPO) [J]. Chemical Engineering Journal, 2019, 362: 53-62.
[171] WANG H, YANG X, WU Q, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage [J]. ACS Nano, 2018, 12(4): 3406-16.
[172] FAN X, LIU H, ANANG E, et al. Effects of electronegativity and hydration energy on the selective adsorption of heavy metal ions by synthetic NaX zeolite [J]. Materials, 2021, 14(15): 4066.
[173] SELIM A Q, SELLAOUI L, AHMED S A, et al. Statistical physics-based analysis of the adsorption of Cu2+ and Zn2+ onto synthetic cancrinite in single-compound and binary systems [J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103217.
[174] WEI Y, LI K, CHENG Z, et al. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: A novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability [J]. Advanced Materials, 2019, 31(16): 1807592.
[175] ZHANG D, ZHAO J, LIU Q, et al. Synthesis and luminescence properties of CsPbX3@UiO-67 composites toward stable photoluminescence convertors [J]. Inorganic Chemistry, 2019, 58(2): 1690-6.
[176] LI W, SUN Y-Y, LI L, et al. Control of charge recombination in perovskites by oxidation state of halide vacancy [J]. Journal of the American Chemical Society, 2018, 140(46): 15753-63.
[177] ZHU X, LIN Y, SAN MARTIN J, et al. Lead halide perovskites for photocatalytic organic synthesis [J]. Nature Communications, 2019, 10.
[178] CHEN P, ONG W-J, SHI Z, et al. Pb-based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond [J]. Advanced Functional Materials, 2020, 30(30).
[179] DONG Y, LI K, LUO W, et al. The role of surface termination in halide perovskites for efficient photocatalytic synthesis [J]. Angewandte Chemie-International Edition, 2020, 59(31): 12931-7.
[180] KISCH H. Semiconductor photocatalysis for chemoselective radical coupling reactions [J]. Acc Chem Res, 2017, 50(4): 1002-10.
[181] YUAN Y, ZHU H, HILLS-KIMBALL K, et al. Stereoselective C-C oxidative coupling reactions photocatalyzed by zwitterionic ligand capped CsPbBr3 perovskite quantum dots [J]. Angewandte Chemie-International Edition, 2020, 59(50): 22563-9.
[182] ZHU X, LIN Y, SUN Y, et al. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes [J]. Journal of the American Chemical Society, 2019, 141(2): 733-8.
[183] KIM ANH H, DANG LE TRI N, VAN-HUY N, et al. Halide perovskite photocatalysis: progress and perspectives [J]. Journal of Chemical Technology and Biotechnology, 2020, 95(10): 2579-96.
[184] SCHANZE K S, KAMAT P V, YANG P, et al. Progress in perovskite photocatalysis [J]. ACS Energy Letters, 2020, 5(8): 2602-4.
[185] 代金玉. 两亲性纳米催化剂的设计合成及其性能研究 [D]; 吉林大学, 2019.
[186] HUO X, HE R, FU J, et al. Stereoselective and site-specific allylic alkylation of amino acids and small peptides via a Pd/Cu dual catalysis [J]. Journal of the American Chemical Society, 2017, 139(29): 9819-22.
[187] DAI Y, POIDEVIN C, OCHOA-HERNANDEZ C, et al. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation [J]. Angewandte Chemie-International Edition, 2020, 59(14): 5788-96.
[188] FERRO S M, WOBBEN M, EHRLER B. Rare-earth quantum cutting in metal halide perovskites - a review [J]. Materials Horizons, 2021, 8(4): 1072-83.
[189] XU L, YUAN S, ZENG H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes [J]. Materials Today Nano, 2019, 6.
[190] CHEN Y, LIU Y, HONG M. Cation-doping matters in caesium lead halide perovskite nanocrystals: from physicochemical fundamentals to optoelectronic applications [J]. Nanoscale, 2020, 12(23): 12228-48.
[191] LV W, LI L, XU M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation [J]. Advanced Materials, 2019, 31(28).
[192] ZHONG Q, CAO M, ZHANG Q. Encapsulation of lead halide perovskite nanocrystals (NCs) at the single-particle level: Strategies and properties [J]. Nanoscale, 2021, 13(46): 19341-51.
[193] GONZáLEZ-PEDRO V, VELDHUIS S A, BEGUM R, et al. Recovery of shallow charge-trapping defects in CsPbX3 nanocrystals through specific binding and encapsulation with amino-functionalized silanes [J]. ACS Energy Letters, 2018, 3(6): 1409-14.
[194] KANUNGO S, KESHRI K S, VAN HOOF A J F, et al. Silylation enhances the performance of Au/Ti–SiO2 catalysts in direct epoxidation of propene using H2 and O2 [J]. Journal of Catalysis, 2016, 344: 434-44.
Edit Comment