中文版 | English
Title

高稳定性 CsPbBr3 纳米晶的合成与应用

Alternative Title
SYNTHESES AND APPLICATIONS OF ULTRASTABLE CsPbBr3 NANOCRYSTALS
Author
Name pinyin
CHEN Xi
School number
12032287
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
喻学锋
Mentor unit
中国科学院深圳理工大学(筹)
Publication Years
2022-05-10
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

钙钛矿纳米晶具有优异的光电性能,已在光伏、发光二极管、光催化等领域得到了广泛的关注,也取得了越来越多令人瞩目的成果。尽管如此,钙钛矿材料的稳定性问题仍然突出,其对外部环境的高度敏感性依然是钙钛矿材料商业化应用的最大障碍。因此,解决稳定性问题仍然是现阶段钙钛矿材料研究的重点科学问题之一。本文以提升CsPbBr3钙钛矿纳米晶的环境稳定性为目标,从惰性基体封装的角度出发,设计了两种不同的钙钛矿纳米晶合成方案,制备了稳定的CsPbBr3钙钛矿复合材料,并将合成的钙钛矿材料应用于光致发光二极管和水相光催化。

设计了一种气相模板法,原位合成了CsPbBr3-ZSM-5复合材料,产物具有较高的光致发光量子效率,同时表现出极高的环境稳定性。PbBr2蒸汽对ZSM-5分子筛孔道的刻蚀作用导致了分子筛结构的崩溃,实现了对纳米晶的有效限域和封装,并提高了钙钛矿材料在恶劣条件下的稳定性。此外,合成的CsPbBr3-ZSM-5结构具有卤素交换必需的通道,可以调节钙钛矿中的卤素比例,并将大量合成的多色复合材料用于制备白光LED。

开发了一种新型的原位微封装技术,在CsPbBr3纳米晶表面生长一层很薄的SiO2网络结构,可以兼顾钙钛矿纳米晶的水相稳定性和电荷传输性能。并说明了钙钛矿纳米晶表面动态平衡状态对后合成钝化的重要意义以及反应体系精细调控对封装效果的影响。将合成的钙钛矿复合材料成功应用于水相降解罗丹明B,说明了其催化活性。

Other Abstract

Perovskite nanocrystals have attracted extensive attention in the solar cells, light-emitting diodes, photocatalysis and other fields for their excellent photoelectric properties. Even though remarkable progress has been made in recent years, it is still challengeable to use CsPbBr3 nanocrystals as commercial materials because of the instability of perovskite materials and the high sensitivity to external environment. Therefore, addressing the stability issue is still one of the key scientific topics in the research of perovskite materials at this stage. In order to improve the environmental stability of CsPbBr3 nanocrystals, two different synthesis strategies of perovskite nanocrystals were designed to prepare stable CsPbBr3 perovskite composites from the perspective of inert matrix encapsulation, and the synthesized perovskite materials were applied in photoluminescence diodes and aqueous photocatalysis.

A vapor-phase template method was designed to synthesize CsPbBr3-ZSM-5 composite in situ, and the product possessed both high PL intensity and high environmental stability. The key chemical reaction between PbBr2 vapor and Si-O network in ZSM-5 led to the collapse of initial zeolite structure, realizing effective confinement and encapsulation of CsPbBr3 nanocrystals, and boosting the stability of the nanocrystals under harsh conditions. At the same time, the acquired encapsulation structure possessed the necessary channels for halogen exchange to regulate the halide ratios of CsPbX3-ZSM-5 composites. And the CsPbX3-ZSM-5 composites synthesized on a large scale were applied in white light-emitting diodes (WLEDs).

A novel in-situ post synthetic microencapsulation technology was developed. A thin layer of SiO2 network was grown on the surface of CsPbBr3 nanocrystals, which could take into account both the stability and charge transfer performance of perovskite nanocrystals in water. It was explained that the significance of the surface dynamic equilibrium state of perovskite nanocrystals for post synthesis passivation and the influence of fine regulation of the reaction system on the encapsulation effect. The synthesized perovskite composites were used to degrade Rhodamine B in aqueous phase, which showed the catalytic activity.

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07
References List

[1] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals [J]. Science, 2015, 347(6221): 519-22.
[2] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals [J]. Science, 2015, 347(6225): 967-70.
[3] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites [J]. Advanced Materials, 2014, 26(10): 1584-9.
[4] ZHANG F, ZHONG H, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology [J]. ACS Nano, 2015, 9(4): 4533-42.
[5] DE ROO J, IBáñEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2): 2071-81.
[6] TAN Z-K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687-92.
[7] MIYATA A, MITIOGLU A, PLOCHOCKA P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites [J]. Nature Physics, 2015, 11(7): 582-7.
[8] SONG J, LI J, LI X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Advanced Materials, 2015, 27(44): 7162-7.
[9] WANG X, BAO Z, CHANG Y-C, et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes [J]. ACS Energy Letters, 2020, 5(11): 3374-96.
[10] WANG J, LIU H, ZHAO Y, et al. Perovskite-based tandem solar cells gallop ahead [J]. Joule, 2022, 6(3): 509-11.
[11] SHAMSI J, RAINò G, KOVALENKO M V, et al. To nano or not to nano for bright halide perovskite emitters [J]. Nature Nanotechnology, 2021, 16(11): 1164-8.
[12] LIU F, WU R, WEI J, et al. Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy [J]. ACS Energy Letters, 2022, 7(3): 1066-85.
[13] DONG H, ZHANG C, LIU X, et al. Materials chemistry and engineering in metal halide perovskite lasers [J]. Chemical Society Reviews, 2020, 49(3): 951-82.
[14] LIAN H, LI Y, SARAVANAKUMAR S, et al. Metal halide perovskite quantum dots for amphiprotic bio-imaging [J]. Coordination Chemistry Reviews, 2022, 452: 214313.
[15] MAI H, CHEN D, TACHIBANA Y, et al. Developing sustainable, high-performance perovskites in photocatalysis: Design strategies and applications [J]. Chemical Society Reviews, 2021, 50(24): 13692-729.
[16] SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties [J]. Chemical Reviews, 2019, 119(5): 3296-348.
[17] JI L-J, SUN S-J, QIN Y, et al. Mechanical properties of hybrid organic-inorganic perovskites [J]. Coordination Chemistry Reviews, 2019, 391: 15-29.
[18] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-1.
[19] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-50.
[20] KIM Y-H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nature Photonics, 2021, 15(2): 148-55.
[21] CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Advanced Energy Materials, 2015, 5(15): 1500477.
[22] LIN Y, CHEN B, FANG Y, et al. Excess charge-carrier induced instability of hybrid perovskites [J]. Nature Communications, 2018, 9(1): 4981.
[23] BAI Y, HAO M, DING S, et al. Surface chemistry engineering of perovskite quantum dots: Strategies, applications, and perspectives [J]. Advanced Materials, 2022, 34(4): 2105958.
[24] WEI Y, CHENG Z, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs [J]. Chemical Society Reviews, 2019, 48(1): 310-50.
[25] XIANG W, LIU S, TRESS W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells [J]. Energy & Environmental Science, 2021, 14(4): 2090-113.
[26] CHENG Y, DING L. Pushing commercialization of perovskite solar cells by improving their intrinsic stability [J]. Energy & Environmental Science, 2021, 14(6): 3233-55.
[27] KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017, 358(6364): 745-50.
[28] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites [J]. Chemical Reviews, 2016, 116(21): 12956-3008.
[29] DUNLAP-SHOHL W A, ZHOU Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films [J]. Chemical Reviews, 2019, 119(5): 3193-295.
[30] PRADHAN N. Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals [J]. ACS Energy Letters, 2019, 4(7): 1634-8.
[31] CHEN J, JIA D, JOHANSSON E M J, et al. Emerging perovskite quantum dot solar cells: Feasible approaches to boost performance [J]. Energy & Environmental Science, 2021, 14(1): 224-61.
[32] SUN S, LU M, GAO X, et al. 0D perovskites: Unique properties, synthesis, and their applications [J]. Advanced Science, 2021, 8(24): 2102689.
[33] PAN S, LI J, WEN Z, et al. Halide perovskite materials for photo(electro)chemical applications: Dimensionality, heterojunction, and performance [J]. Advanced Energy Materials, 2022, 12(4): 2004002.
[34] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters, 2015, 15(6): 3692-6.
[35] VYBORNYI O, YAKUNIN S, KOVALENKO M V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals [J]. Nanoscale, 2016, 8(12): 6278-83.
[36] PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the “red wall” of colloidal perovskites: Highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals [J]. ACS Nano, 2017, 11(3): 3119-34.
[37] ZENG P, WEI L, ZHAO H, et al. Crystalline phase-controlled synthesis of regular and stable endotaxial cesium lead halide nanocrystals [J]. Journal of Materials Chemistry C, 2020, 8(27): 9358-65.
[38] BEKENSTEIN Y, KOSCHER B A, EATON S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies [J]. Journal of the American Chemical Society, 2015, 137(51): 16008-11.
[39] ZHANG D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires [J]. Journal of the American Chemical Society, 2015, 137(29): 9230-3.
[40] YANG D, ZOU Y, LI P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes [J]. Nano Energy, 2018, 47: 235-42.
[41] PAN A, HE B, FAN X, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors [J]. ACS Nano, 2016, 10(8): 7943-54.
[42] ALMEIDA G, GOLDONI L, AKKERMAN Q, et al. Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals [J]. ACS Nano, 2018, 12(2): 1704-11.
[43] SCHMIDT L C, PERTEGáS A, GONZáLEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(3): 850-3.
[44] LI X, WU Y, ZHANG S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Advanced Functional Materials, 2016, 26(15): 2435-45.
[45] SUN S, YUAN D, XU Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature [J]. ACS Nano, 2016, 10(3): 3648-57.
[46] LEVCHUK I, OSVET A, TANG X, et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals [J]. Nano Letters, 2017, 17(5): 2765-70.
[47] HUANG H, LI Y, TONG Y, et al. Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: A versatile approach for their shape-controlled synthesis [J]. Angewandte Chemie International Edition, 2019, 58(46): 16558-62.
[48] DIRIN D N, PROTESESCU L, TRUMMER D, et al. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes [J]. Nano Letters, 2016, 16(9): 5866-74.
[49] HUANG H, ZHAO F, LIU L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28128-33.
[50] AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J]. Journal of the American Chemical Society, 2015, 137(32): 10276-81.
[51] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) [J]. Nano Letters, 2015, 15(8): 5635-40.
[52] GUHRENZ C, BENAD A, ZIEGLER C, et al. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals [J]. Chemistry of Materials, 2016, 28(24): 9033-40.
[53] ZHU Z-Y, YANG Q-Q, GAO L-F, et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots [J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1610-4.
[54] JODLOWSKI A D, YéPEZ A, LUQUE R, et al. Benign-by-design solventless mechanochemical synthesis of three-, two-, and one-dimensional hybrid perovskites [J]. Angewandte Chemie International Edition, 2016, 55(48): 14972-7.
[55] IM J-H, JANG I-H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells [J]. Nature Nanotechnology, 2014, 9(11): 927-32.
[56] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells [J]. Nature Energy, 2018, 3(8): 682-9.
[57] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth [J]. Chemical Communications, 2015, 51(100): 17658-61.
[58] CHOUHAN L, GHIMIRE S, SUBRAHMANYAM C, et al. Synthesis, optoelectronic properties and applications of halide perovskites [J]. Chemical Society Reviews, 2020, 49(10): 2869-85.
[59] LANG L, YANG J-H, LIU H-R, et al. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites [J]. Physics Letters A, 2014, 378(3): 290-3.
[60] MILOT R L, EPERON G E, SNAITH H J, et al. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films [J]. Advanced Functional Materials, 2015, 25(39): 6218-27.
[61] HUANG L-Y, LAMBRECHT W R L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 [J]. Physical Review B, 2013, 88(16): 165203.
[62] AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting [J]. Nano Letters, 2014, 14(6): 3608-16.
[63] MALGRAS V, TOMINAKA S, RYAN J W, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica [J]. Journal of the American Chemical Society, 2016, 138(42): 13874-81.
[64] DONG Y, QIAO T, KIM D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium [J]. Nano Letters, 2018, 18(6): 3716-22.
[65] WANG L, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide [J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556-62.
[66] LUO D, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells [J]. Nature Reviews Materials, 2020, 5(1): 44-60.
[67] EL-BALLOULI A A O, BAKR O M, MOHAMMED O F. Compositional, processing, and interfacial engineering of nanocrystal- and quantum-dot-based perovskite solar cells [J]. Chemistry of Materials, 2019, 31(17): 6387-411.
[68] AL-ASHOURI A, KöHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J]. Science, 2020, 370(6522): 1300-9.
[69] KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites [J]. Science, 2020, 368(6487): 155-60.
[70] CAO M, XU Y, LI P, et al. Recent advances and perspectives on light emitting diodes fabricated from halide metal perovskite nanocrystals [J]. Journal of Materials Chemistry C, 2019, 7(46): 14412-40.
[71] PARK S, CHANG W J, LEE C W, et al. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution [J]. Nature Energy, 2016, 2(1): 16185.
[72] WU Y, WANG P, ZHU X, et al. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution [J]. Advanced Materials, 2018, 30(7): 1704342.
[73] XU Y-F, YANG M-Z, CHEN B-X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction [J]. Journal of the American Chemical Society, 2017, 139(16): 5660-3.
[74] TANG C, CHEN C, XU W, et al. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst [J]. Journal of Materials Chemistry A, 2019, 7(12): 6911-9.
[75] GAO G, XI Q, ZHOU H, et al. Novel inorganic perovskite quantum dots for photocatalysis [J]. Nanoscale, 2017, 9(33): 12032-8.
[76] CARDENAS-MORCOSO D, GUALDRóN-REYES A F, FERREIRA VITORETI A B, et al. Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots [J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 630-6.
[77] HUANG H, YUAN H, JANSSEN K P F, et al. Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials [J]. ACS Energy Letters, 2018, 3(4): 755-9.
[78] CHEN K, DENG X, DODEKATOS G, et al. Photocatalytic polymerization of 3,4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots [J]. Journal of the American Chemical Society, 2017, 139(35): 12267-73.
[79] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nature Communications, 2015, 6(1): 8056.
[80] SHI Z-F, SUN X-G, WU D, et al. Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film [J]. Journal of Materials Chemistry C, 2016, 4(36): 8373-9.
[81] TANG B, DONG H, SUN L, et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres [J]. ACS Nano, 2017, 11(11): 10681-8.
[82] YUAN F, WU Z, DONG H, et al. High stability and ultralow threshold amplified spontaneous emission from formamidinium lead halide perovskite films [J]. The Journal of Physical Chemistry C, 2017, 121(28): 15318-25.
[83] HUANG H, CHEN B, WANG Z, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices [J]. Chemical Science, 2016, 7(9): 5699-703.
[84] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties [J]. Inorganic Chemistry, 2013, 52(15): 9019-38.
[85] BECHTEL J S, VAN DER VEN A. Octahedral tilting instabilities in inorganic halide perovskites [J]. Physical Review Materials, 2018, 2(2): 025401.
[86] BELISLE R A, BUSH K A, BERTOLUZZI L, et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites [J]. ACS Energy Letters, 2018, 3(11): 2694-700.
[87] CHENG S, ZHONG H. What happens when halide perovskites meet with water? [J]. The Journal of Physical Chemistry Letters, 2022, 13(10): 2281-90.
[88] LEE J-W, PARK N-G. Chemical approaches for stabilizing perovskite solar cells [J]. Advanced Energy Materials, 2020, 10(1): 1903249.
[89] ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells [J]. Nature Communications, 2017, 8(1): 15218.
[90] CHEN J, LIU D, AL-MARRI M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application [J]. Science China Materials, 2016, 59(9): 719-27.
[91] HEO J H, IM S H, NOH J H, et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nature Photonics, 2013, 7(6): 486-91.
[92] YANG J, LIU X, ZHANG Y, et al. Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell [J]. Nano Energy, 2018, 54: 218-26.
[93] JUAREZ-PEREZ E J, ONO L K, MAEDA M, et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability [J]. Journal of Materials Chemistry A, 2018, 6(20): 9604-12.
[94] DIROLL B T, NEDELCU G, KOVALENKO M V, et al. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals [J]. Advanced Functional Materials, 2017, 27(21): 1606750.
[95] NAGABHUSHANA G P, SHIVARAMAIAH R, NAVROTSKY A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites [J]. Proceedings of the National Academy of Sciences, 2016, 113(28): 7717-21.
[96] ZHANG Y-Y, CHEN S, XU P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3 [J]. Chinese Physics Letters, 2018, 35(03): 57-62.
[97] ARISTIDOU N, SANCHEZ-MOLINA I, CHOTCHUANGCHUTCHAVAL T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers [J]. Angewandte Chemie International Edition, 2015, 54(28): 8208-12.
[98] YANG D, MING W, SHI H, et al. Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3 [J]. Chemistry of Materials, 2016, 28(12): 4349-57.
[99] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability [J]. Accounts of Chemical Research, 2016, 49(2): 286-93.
[100] MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J]. Science, 2016, 351(6269): 151-5.
[101] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance [J]. Science, 2016, 354(6309): 206-9.
[102] AMGAR D, BINYAMIN T, UVAROV V, et al. Near ultra-violet to mid-visible band gap tuning of mixed cation RbxCs1−xPbX3 (X = Cl or Br) perovskite nanoparticles [J]. Nanoscale, 2018, 10(13): 6060-8.
[103] SWARNKAR A, MIR W J, NAG A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (x = cl, br, i) perovskites? [J]. ACS Energy Letters, 2018, 3(2): 286-9.
[104] LIU H, WU Z, SHAO J, et al. CsPbxMn1–xCl3 perovskite quantum dots with high mn substitution ratio [J]. ACS Nano, 2017, 11(2): 2239-47.
[105] CHEN W, CHEN H, XU G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells [J]. Joule, 2019, 3(1): 191-204.
[106] WANG P, ZHANG X, ZHOU Y, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells [J]. Nature Communications, 2018, 9(1): 2225.
[107] GAO Y, DONG Y, HUANG K, et al. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing [J]. ACS Photonics, 2018, 5(10): 4104-10.
[108] MA Q, HUANG S, WEN X, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation [J]. Advanced Energy Materials, 2016, 6(7): 1502202.
[109] YIN J, YANG H, GUTIERREZ-ARZALUZ L, et al. Luminescence and stability enhancement of inorganic perovskite nanocrystals via selective surface ligand binding [J]. ACS Nano, 2021.
[110] PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors [J]. ACS Nano, 2016, 10(11): 9776-86.
[111] JAGIELSKI J, KUMAR S, YU W-Y, et al. Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics [J]. Journal of Materials Chemistry C, 2017, 5(23): 5610-27.
[112] QUAN L N, YUAN M, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites [J]. Journal of the American Chemical Society, 2016, 138(8): 2649-55.
[113] YUAN Z, SHU Y, XIN Y, et al. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions [J]. Chemical Communications, 2016, 52(20): 3887-90.
[114] BODNARCHUK M I, BOEHME S C, TEN BRINCK S, et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals [J]. ACS Energy Letters, 2019, 4(1): 63-74.
[115] HILLS-KIMBALL K, YANG H, CAI T, et al. Recent advances in ligand design and engineering in lead halide perovskite nanocrystals [J]. Advanced Science, 2021, 8(12): 2100214.
[116] UDAYABHASKARARAO T, KAZES M, HOUBEN L, et al. Nucleation, growth, and structural transformations of perovskite nanocrystals [J]. Chemistry of Materials, 2017, 29(3): 1302-8.
[117] YOO D, WOO J Y, KIM Y, et al. Origin of the stability and transition from anionic to cationic surface ligand passivation of all-inorganic cesium lead halide perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 652-8.
[118] SONG J, LI J, XU L, et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs [J]. Advanced Materials, 2018, 30(30): 1800764.
[119] SHYNKARENKO Y, BODNARCHUK M I, BERNASCONI C, et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes [J]. ACS Energy Letters, 2019, 4(11): 2703-11.
[120] WU L, ZHONG Q, YANG D, et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand [J]. Langmuir, 2017, 33(44): 12689-96.
[121] TONG Y, EHRAT F, VANDERLINDEN W, et al. Dilution-induced formation of hybrid perovskite nanoplatelets [J]. ACS Nano, 2016, 10(12): 10936-44.
[122] KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment [J]. Journal of the American Chemical Society, 2017, 139(19): 6566-9.
[123] BOHN B J, TONG Y, GRAMLICH M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair [J]. Nano Letters, 2018, 18(8): 5231-8.
[124] BROWN A A M, HOOPER T J N, VELDHUIS S A, et al. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes [J]. Nanoscale, 2019, 11(25): 12370-80.
[125] SATO D, ISO Y, ISOBE T. Effective stabilization of perovskite cesium lead bromide nanocrystals through facile surface modification by perfluorocarbon acid [J]. ACS Omega, 2020, 5(2): 1178-87.
[126] LV W, LI L, XU M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation [J]. Advanced Materials, 2019, 31(28): 1900682.
[127] YOON H C, LEE S, SONG J K, et al. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix [J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11756-67.
[128] FANG S, LI G, LI H, et al. Organic titanates: A model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives [J]. Chemical Communications, 2018, 54(31): 3863-6.
[129] XUAN T, HUANG J, LIU H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes [J]. Chemistry of Materials, 2019, 31(3): 1042-7.
[130] YE S, SUN J-Y, HAN Y-H, et al. Confining Mn2+-doped lead halide perovskite in Zeolite-Y as ultrastable orange-red phosphor composites for white light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24656-64.
[131] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72(11): 4847-54.
[132] WANG H-C, LIN S-Y, TANG A-C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display [J]. Angewandte Chemie International Edition, 2016, 55(28): 7924-9.
[133] XIN Y, ZHAO H, ZHANG J. Highly stable and luminescent perovskite–polymer composites from a convenient and universal strategy [J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4971-80.
[134] BENAD A, GUHRENZ C, BAUER C, et al. Cold flow as versatile approach for stable and highly luminescent quantum dot–salt composites [J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21570-5.
[135] WANG Y, HE J, CHEN H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films [J]. Advanced Materials, 2016, 28(48): 10710-7.
[136] SMOCK S R, CHEN Y, ROSSINI A J, et al. The surface chemistry and structure of colloidal lead halide perovskite nanocrystals [J]. Accounts of Chemical Research, 2021, 54(3): 707-18.
[137] TEN BRINCK S, ZACCARIA F, INFANTE I. Defects in lead halide perovskite nanocrystals: Analogies and (many) differences with the bulk [J]. ACS Energy Letters, 2019, 4(11): 2739-47.
[138] HERZ L M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits [J]. ACS Energy Letters, 2017, 2(7): 1539-48.
[139] WANG T, DAIBER B, FROST J M, et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite [J]. Energy & Environmental Science, 2017, 10(2): 509-15.
[140] YU J, LIU G, CHEN C, et al. Perovskite CsPbBr3 crystals: Growth and applications [J]. Journal of Materials Chemistry C, 2020, 8(19): 6326-41.
[141] YANG B, ZHANG F, CHEN J, et al. Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion [J]. Advanced Materials, 2017, 29(40): 1703758.
[142] CHU Z, YE Q, ZHAO Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation [J]. Advanced Materials, 2021, 33(18): 2007169.
[143] YANG B, ZHANG F, CHEN J, et al. Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion [J]. Advanced Materials, 2017, 29(40).
[144] CHU S, CHEN W, FANG Z, et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating [J]. Nature Communications, 2021, 12(1): 147.
[145] XIE Q, WU D, WANG X, et al. Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots [J]. Journal of Materials Chemistry C, 2019, 7(36): 11251-7.
[146] YU X, WU L, YANG D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting [J]. Angewandte Chemie International Edition, 2020, 59(34): 14527-32.
[147] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites [J]. Chemical Reviews, 2019, 119(5): 3104-39.
[148] HAYDOUS F, GARDNER J M, CAPPEL U B. The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals [J]. Journal of Materials Chemistry A, 2021, 9(41): 23419-43.
[149] STELMAKH A, AEBLI M, BAUMKETNER A, et al. On the mechanism of alkylammonium ligands binding to the surface of CsPbBr3 nanocrystals [J]. Chemistry of Materials, 2021, 33(15): 5962-73.
[150] SADIGHIAN J C, WONG C Y. Just scratching the surface: In situ and surface-specific characterization of perovskite nanocrystal growth [J]. The Journal of Physical Chemistry C, 2021, 125(38): 20772-82.
[151] ZHANG S, LIU Z, ZHANG W, et al. Barrier designs in perovskite solar cells for long-term stability [J]. Advanced Energy Materials, 2020, 10(35): 2001610.
[152] TONG Y, WANG Q, MEI E, et al. One-pot synthesis of CsPbX3 (X = Cl, Br, I)@Zeolite: A potential material for wide-color-gamut backlit displays and upconversion emission [J]. Advanced Optical Materials, 2021, 9(11): 2100012.
[153] LIN Y, ZHENG X, SHANGGUAN Z B, et al. All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: Toward full-color display applications [J]. Journal of Materials Chemistry C, 2021, 9(36): 12303-13.
[154] ZHANG Q, WANG B, ZHENG W, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates [J]. Nature Communications, 2020, 11(1): 31.
[155] WANG P, WANG B, LIU Y, et al. Ultrastable perovskite–zeolite composite enabled by encapsulation and in situ passivation [J]. Angewandte Chemie International Edition, 2020, 59(51): 23100-6.
[156] SUN J-Y, RABOUW F T, YANG X-F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, I) Zeolite-Y composite phosphors for potential backlight display application [J]. Advanced Functinal Materials, 2017, 27(45): 1704371.
[157] RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability [J]. ACS Energy Letters, 2020, 5(6): 1794-6.
[158] IMRAN M, PENG L, PIANETTI A, et al. Halide perovskite-lead chalcohalide nanocrystal heterostructures [J]. Journal of the American Chemical Society, 2021, 143(3): 1435-46.
[159] WANG Z, FU R, LI F, et al. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance [J]. Advanced Functinal Materials, 2021, 31(22): 2010009.
[160] YANG W, GAO F, QIU Y, et al. CsPbBr3-quantum-dots/polystyrene@Silica hybrid microsphere structures with significantly improved stability for white LEDs [J]. Advanced Optical Materials, 2019, 7(13): 1900546.
[161] QIAO G-Y, GUAN D, YUAN S, et al. Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials [J]. Journal of the American Chemical Society, 2021, 143(35): 14253-60.
[162] WAN S, OU M, ZHONG Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction [J]. Chemical Engineering Journal, 2019, 358: 1287-95.
[163] HOU J, CHEN P, SHUKLA A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses [J]. Science, 2021, 374(6567): 621-5.
[164] JANG J, KIM Y-H, PARK S, et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years [J]. Advanced Materials, 2021, 33(3): 2005255.
[165] SINGH A N, KAJAL S, KIM J, et al. Interface engineering driven stabilization of halide perovskites against moisture, heat, and light for optoelectronic applications [J]. Advanced Energy Materials, 2020, 10(30): 2000768.
[166] LI X, YANG X, LIU L, et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells [J]. ACS Catalysis, 2021, 11(12): 7450-9.
[167] WANG H, YU G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication [J]. Advanced Materials, 2016, 28(25): 4956-75.
[168] ZHOU Y, FERNANDO K, WAN J, et al. Millimeter-size all-inorganic perovskite crystalline thin film grown by chemical vapor deposition [J]. Advanced Functinal Materials, 2021, 31(23): 2101058.
[169] ALMUTAIRI S M T, MEZARI B, MAGUSIN P C M M, et al. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic zn complexes [J]. ACS Catalysis, 2012, 2(1): 71-83.
[170] OU X, PILITSIS F, JIAO Y, et al. Hierarchical Fe-ZSM-5/SiC foam catalyst as the foam bed catalytic reactor (FBCR) for catalytic wet peroxide oxidation (CWPO) [J]. Chemical Engineering Journal, 2019, 362: 53-62.
[171] WANG H, YANG X, WU Q, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage [J]. ACS Nano, 2018, 12(4): 3406-16.
[172] FAN X, LIU H, ANANG E, et al. Effects of electronegativity and hydration energy on the selective adsorption of heavy metal ions by synthetic NaX zeolite [J]. Materials, 2021, 14(15): 4066.
[173] SELIM A Q, SELLAOUI L, AHMED S A, et al. Statistical physics-based analysis of the adsorption of Cu2+ and Zn2+ onto synthetic cancrinite in single-compound and binary systems [J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103217.
[174] WEI Y, LI K, CHENG Z, et al. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: A novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability [J]. Advanced Materials, 2019, 31(16): 1807592.
[175] ZHANG D, ZHAO J, LIU Q, et al. Synthesis and luminescence properties of CsPbX3@UiO-67 composites toward stable photoluminescence convertors [J]. Inorganic Chemistry, 2019, 58(2): 1690-6.
[176] LI W, SUN Y-Y, LI L, et al. Control of charge recombination in perovskites by oxidation state of halide vacancy [J]. Journal of the American Chemical Society, 2018, 140(46): 15753-63.
[177] ZHU X, LIN Y, SAN MARTIN J, et al. Lead halide perovskites for photocatalytic organic synthesis [J]. Nature Communications, 2019, 10.
[178] CHEN P, ONG W-J, SHI Z, et al. Pb-based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond [J]. Advanced Functional Materials, 2020, 30(30).
[179] DONG Y, LI K, LUO W, et al. The role of surface termination in halide perovskites for efficient photocatalytic synthesis [J]. Angewandte Chemie-International Edition, 2020, 59(31): 12931-7.
[180] KISCH H. Semiconductor photocatalysis for chemoselective radical coupling reactions [J]. Acc Chem Res, 2017, 50(4): 1002-10.
[181] YUAN Y, ZHU H, HILLS-KIMBALL K, et al. Stereoselective C-C oxidative coupling reactions photocatalyzed by zwitterionic ligand capped CsPbBr3 perovskite quantum dots [J]. Angewandte Chemie-International Edition, 2020, 59(50): 22563-9.
[182] ZHU X, LIN Y, SUN Y, et al. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes [J]. Journal of the American Chemical Society, 2019, 141(2): 733-8.
[183] KIM ANH H, DANG LE TRI N, VAN-HUY N, et al. Halide perovskite photocatalysis: progress and perspectives [J]. Journal of Chemical Technology and Biotechnology, 2020, 95(10): 2579-96.
[184] SCHANZE K S, KAMAT P V, YANG P, et al. Progress in perovskite photocatalysis [J]. ACS Energy Letters, 2020, 5(8): 2602-4.
[185] 代金玉. 两亲性纳米催化剂的设计合成及其性能研究 [D]; 吉林大学, 2019.
[186] HUO X, HE R, FU J, et al. Stereoselective and site-specific allylic alkylation of amino acids and small peptides via a Pd/Cu dual catalysis [J]. Journal of the American Chemical Society, 2017, 139(29): 9819-22.
[187] DAI Y, POIDEVIN C, OCHOA-HERNANDEZ C, et al. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation [J]. Angewandte Chemie-International Edition, 2020, 59(14): 5788-96.
[188] FERRO S M, WOBBEN M, EHRLER B. Rare-earth quantum cutting in metal halide perovskites - a review [J]. Materials Horizons, 2021, 8(4): 1072-83.
[189] XU L, YUAN S, ZENG H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes [J]. Materials Today Nano, 2019, 6.
[190] CHEN Y, LIU Y, HONG M. Cation-doping matters in caesium lead halide perovskite nanocrystals: from physicochemical fundamentals to optoelectronic applications [J]. Nanoscale, 2020, 12(23): 12228-48.
[191] LV W, LI L, XU M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation [J]. Advanced Materials, 2019, 31(28).
[192] ZHONG Q, CAO M, ZHANG Q. Encapsulation of lead halide perovskite nanocrystals (NCs) at the single-particle level: Strategies and properties [J]. Nanoscale, 2021, 13(46): 19341-51.
[193] GONZáLEZ-PEDRO V, VELDHUIS S A, BEGUM R, et al. Recovery of shallow charge-trapping defects in CsPbX3 nanocrystals through specific binding and encapsulation with amino-functionalized silanes [J]. ACS Energy Letters, 2018, 3(6): 1409-14.
[194] KANUNGO S, KESHRI K S, VAN HOOF A J F, et al. Silylation enhances the performance of Au/Ti–SiO2 catalysts in direct epoxidation of propene using H2 and O2 [J]. Journal of Catalysis, 2016, 344: 434-44.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TB383
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343136
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
陈曦. 高稳定性 CsPbBr3 纳米晶的合成与应用[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032287-陈曦-中国科学院深圳理(6997KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[陈曦]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[陈曦]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈曦]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.