[1]刘勇,任香会,常云龙,等.金属增材制造技术的研究现状[J].热加工工艺, 2018, 47(19): 15-9,24.
[2]张敏,王星程,产玉飞,等.直接能量沉积增材制造过程气孔在线监测技术的研究进展[J].航空制造技术, 2020, 63(19): 47-55.
[3]蒲以松,王宝奇,张连贵.金属3D打印技术的研究[J].表面技术, 2018, 47(3): 78-84.
[4]杨璐,李笑林, 黄雅.3D打印金属结构研究进展与展望[C].中国钢结构协会结构稳定与疲劳分会第17届(ISSF-2021)学术交流会暨教学研讨会论文集. 西安. 2021: 162-166
[5]Geng, Haibin, Jinglong Li, Jiangtao Xiong, et al.Optimization of wire feed for GTAW based additive manufacturing[J].Journal of Materials Processing Technology, 2017, 243: 40-47.
[6]Liu, Zu Ming, Shuanglin Cui, Zhen Luo, et al. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling[J].Journal of Manufacturing Processes, 2016, 23: 315-327.
[7]温斌和. 薄壁构件等离子弧增材制造成形特性及尺寸控制[D].江苏:南京理工大学, 2016.
[8]Wu, C. S., L.Wang, W. J. Ren, et al. Plasma arc welding: Process, sensing, control and modeling[J].Journal of Manufacturing Processes, 2014, 16(1): 74-85.
[9]Xu, Bin, Fan Jiang, Shujun Chen, et al. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole[J].Chinese Physics B,2018, 27(3):034701
[10]王海燕, 陈强, 王耀文,等.等离子焊接小孔效应的电弧电压信号检测[J].清华大学学报(自然科学版), 2001, 41(8): 1-4.
[11]江淑园,谢美蓉, 陈焕明.穿孔等离子弧焊熔池形成过程的仿真[J].航空制造技术, 2003(7): 28-30
[12]黄健康,杨茂鸿,余淑荣,等.旁路耦合微束等离子弧堆垛与熔池动态行为数值模拟[J].机械工程学报, 2018, 54(2): 70-76.
[13]董春林,吴林,邵亦陈.穿孔等离子弧焊发展历史与现状[J].中国机械工程, 2000, 11(5): 577-581.
[14]乔琛嵘.基于Fluent的铝合金变极性等离子弧焊接数值模拟[D].呼和浩特:内蒙古工业大学, 2018.
[15]Martina, F., J. Mehnen, S. W. Williams, et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology, 2012, 212(6): 1377-1386.
[16]Taminger, K. M., R. A. Hafley. Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing[R].NATO UNCLASSIFIED, 2006,1-16.
[17]Martina, F. Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale Wire+Arc Additive Manufacturing [D].CRANFIELD UNIVERSITY, 2014.
[18]Wang, Chong, Wojciech Suder, Jialuo Ding, et al. The effect of wire size on high deposition rate wire and plasma arc additive manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology, 2021, 288:116842
[19]Bai, Xingwang, Paul Colegrove, Jialuo Ding, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504-516.
[20]潘家敬.铝合金非熔化极变极性焊接电弧与熔池特性数值分析[D].天津:天津大学, 2016.
[21]Chen, Shujun, Bin Xu, Fan Jiang. Blasting type penetrating characteristic in variable polarity plasma arc welding of aluminum alloy of type5A06[J].International Journal of Heat and Mass Transfer, 2018, 118: 1293-1306.
[22] Wu, Dongsheng, Shinichi Tashiro, Xueming Hua, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J].International Journal of Heat and Mass Transfer, 2019, 141: 604-614.
[23]李岩,冯妍卉,张欣欣,等.等离子弧焊接穿孔、传热与流动的耦合过程[J].工程热物理学报, 2014, 35(5): 939-943.
[24]王小杰.等离子弧焊接小孔界面的Level-Set法追踪[D].济南:山东大学, 2010.
[25]Li, T. Q., C. S. Wu. Numerical simulation of plasma arc welding with keyhole-dependent heat source and arc pressure distribution[J].The International Journal of Advanced Manufacturing Technology, 2014, 78(1-4): 593-602.
[26]Jian, Xiaoxia, Chuansong Wu, Guokai Zhang, et al. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding[J]. Journal of Physics D: Applied Physics, 2015, 48(46):465504.
[27]Traidia, A., F. Roger, E. Guyot, et al. Hybrid 2D–3D modelling of GTA welding with filler wire addition[J].International Journal of Heat and Mass Transfer, 2012, 55(15-16): 3946-3963.
[28] Ogino, Y., S. Asai, Y. Hirata. Numerical simulation of WAAM process by a GMAW weld pool model[J]. Welding in the World, 2018, 62(2): 393-401.
[29] Zhou, Xiangman, Haiou Zhang, Guilan Wang, et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2016, 103: 521-537.
[30]Ke, W. C., J. P. Oliveira, B. Q. Cong, et al. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys[J].Additive Manufacturing, 2022, 50:102513.
[31]Hejripour, Fatemeh, Daniel T. Valentine, Daryush K. Aidun.Study of mass transport in cold wire deposition for Wire Arc Additive Manufacturing[J].International Journal of Heat and Mass Transfer, 2018, 125: 471-484.
[32]Cadiou, S., M. Courtois, M. Carin, et al.3D heat transfer,fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam)[J].Additive Manufacturing, 2020, 36:101541.
[33]张天雷, 徐刚, 沈艳涛,等.基于MIG的电弧增材制造熔池行为的数值模拟[J].智能计算机与应用, 2020, 10(5): 251-256.
[34]Lee, Y. S., D. F. Farson. Surface tension-powered build dimension control in laser additive manufacturing process[J].The International Journal of Advanced Manufacturing Technology, 2015, 85(5-8): 1035-1044.
[35] Dai, Donghua, Dongdong Gu. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science, 2015, 355: 310-319.
[36]Wang, Hongze, Yu Zou. Microscale interaction between laser and metal powder in powder-bed additive manufacturing:Conduction mode versus keyhole mode[J].International Journal of Heat and Mass Transfer, 2019, 142:118473.
[37]Cao, Liu. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation[J].International Journal of Heat and Mass Transfer, 2019, 141: 1036-1048.
[38]王泽坤, 刘谋斌.基于半解析VOF-DEM的激光直接沉积多尺度过程模拟[J].力学学报, 2021, 53(12): 3228-3239.
[39] Gan, Zhengtao, Gang Yu, Xiuli He, et al.Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel [J].International Journal of Heat and Mass Transfer, 2017, 104: 28-38.
[40]Kumar S, Chattopadhyay K, Singh V. Tensile Behavior of Ti-6Al-4V alloy at Elevated Temperatures[C].Proceeding of the International Conference on Multifunctional Materials, Structures and Applications,2014:115-118.
[41]胡宝.TC4钛合金薄壁件激光焊接数值模拟研究[D].天津:天津大学, 2013.
[42]Yang, Mingxuan, Zhou Yang, Bojin Qi.Effect of fluid in molten pool on the welds with Ti-6Al-4V during pulsed arc welding[J].The International Journal of Advanced Manufacturing Technology, 2015, 81(5-8): 1007-1016.
[43] Chen, Jicheng, Zipeng Ouyang, Xinwei Du, et al.Weld pool dynamics and joining mechanism in pulse wave laser beam welding of Ti-6Al-4V titanium alloy sheets assembled in butt joint with an air gap[J].Optics & Laser Technology, 2022, 146:107558.
[44]Mooli, Harish,Srinivasa Rao Seeram, Satyanarayana Goteti et al.Numerical Simulations and Experimental Validation on LBW Bead Profiles of Ti-6Al-4V Alloy[J]. Pertanika Journal of Science and Technology, 2021, 29(3):1609-1625.
[45]C. W. Hirt, B. D. Nichols. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics,1979,39:201-225.
[46]王如云,陈萍萍,班长英.矩形网格上VOF运动界面重构的流体体积分数保持法[J].计算物理, 2008, 25(4): 431-436.
[47]于陆军,侯松梁,马宇明,等.基于流体体积函数模型的横板型稳压罐内气液两相流场仿真研究[J].计量学报, 2019, 40(6): 1050-1056.
[48] 陈曦.TC4钛合金添加铝夹层激光焊接温度场仿真及试验研究[D].长沙:湖南大学, 2013.
[49]V. R. Voller, C. Prakash. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J].International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.
[50]Boivineau, M., C. Cagran, D. Doytier, et al.Thermophysical Properties of Solid and Liquid Ti-6Al-4V(TA6V) Alloy[J].International Journal of Thermophysics, 2006, 27(2): 507-529.
[51]Panwisawas,Chinnapat,BamaPerumal,R.Marquard,et al.Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling[J].Acta Materialia, 2017, 126: 251-263.
[52]Egry, I., D. Holland-Moritz, R. Novakovic, et al. Thermophysical Properties of Liquid AlTi-Based Alloys[J]. International Journal of Thermophysics, 2010, 31(4-5): 949-65.
[53]陈昭.Ti-6Al-4V薄壁制件的电子束快速成形模拟研究[D].合肥:中国科学技术大学, 2018.
[54]John Goldak, Aditya Chakravarti, Malcolm Bibby. A New Finite Element Model for Welding Heat Sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
[55]吴 甦,赵海燕,王煜.高能束焊接数值模拟中的新型热源模型[J].焊接学报, 2004, 25(1): 91-94.
[56]霍玉双.基于力平衡条件的等离子弧焊小孔形状分析[D].济南:山东大学, 2010.
[57]Yu Shuang Huo, Chuansong Wu. Modeling the keyhole shape and dimension in plasma arc welding [J].CHINA WELDING, 2009, 18(2): 17-20.
[58]E Siewert, J Schein,G Forster. Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon-iron[J].Journal of Physics D-Applied Physics,2013,46(22): 345-351.
[59]Meng, Xiangmeng, Guoliang Qin, Zengda Zou. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling[J].Materials & Design, 2016, 94: 69-78.
[60]D.J. Phares, G.T. Smedley, R.C. Flagan. The wall shear stress produced by the normal impingement of a jet on a flat surface[J].Journal of Fluid Mechanics, 2000, 418: 351-375.
[61]J.Ubrackbilld, Bkotheczemach. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[62]K. C. Tsao, C. S. Wu. Fluid Flow and Heat Transfer in GMA Weld Pools[J].Welding Journal, 1988, 67(3): 70-75.
[63] Li, Tian Qing, Lu Chen, Yu Zhang, et al. Metal flow of weld pool and keyhole evolution in gas focusing plasma arc welding[J].International Journal of Heat and Mass Transfer, 2020, 150:119296.
Edit Comment