中文版 | English
Title

等离子弧增材制造钛合金热质传递行为数值模拟研究

Alternative Title
NUMERICAL SIMULATION OF HEAT AND MASS TRANSFER BEHAVIOUR IN PLASMA ARC ADDITIVE MANUFACTURING OF TITANIUM ALLOYS
Author
Name pinyin
WU Ximing
School number
12032283
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
黄逸凡
Mentor unit
中国科学院深圳理工大学(筹)
Publication Years
2022-05-10
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

增材制造技术(Additive ManufacturingAM),又被普遍称为3D打印(3D printing),是一种基于离散-堆积原理,利用计算机辅助加工的新型制造技术。增材制造技术面向航空航天、汽车、微电子、生物医疗等领域,具有应用面广、技术灵活和一体化成型等特点。金属增材制造受到了更加广泛的青睐和应用,与传统的铸造、锻造和焊接等传统工艺相比,金属增材制造技术具有成形速度快、制造复杂结构材料一体化、自动化程度高、节约材料等优势。金属增材制造主要是分为粉床式增材制造和送丝式增材制造,粉床式增材制造的热源主要是激光和电子束,送丝式增材制造的热源绝大部分是电弧。基于电弧堆焊的理论基础和成熟工艺,电弧增材制造已经发展了多种电弧增材制造的技术手段,相对于钨极氩弧焊、热喷涂等金属成型技术,等离子弧增材制造具备沉积效率高、可打印大型部件、能量密度高等优点,在多层打印过程中熔池形貌、小孔演变、熔池流动形态和热场演变仍然未能系统性的探究和揭示,未能揭示复杂打印路径的熔池的具体形貌、流动方向的机制。在利用红外热成像对熔池进行测量,未能反映熔池的温度峰值和温度演变,采用高速摄像机对熔池的轮廓进行拍摄,未能检测到熔池的流动方向和流动速度以及小孔的形貌。因此,有必要利用数值模拟技术对等离子弧增材制造的熔池形貌演变、流动方式、小孔尺寸和热场进行系统性地探究,数值模拟的结果可有效支撑实际实验的数据和验证在不同工况的金属成形。

深入分析等离子弧增材制造熔池内液态金属的流动行为、热变换和质量传输,建立起完善的等离子弧增材制造在热力作用下的熔池和小孔演变数值分析模型。综合考虑电磁力、浮力、电弧剪切力、电弧压力和自由界面对流散热和辐射等问题,将不定期的熔滴下落设置为周期性的熔滴过渡模式。对Fluent流体软件进行二次开发,以能量源项、动量源项、质量源项的形式对增材制造过程中的热力行为进行描述,使其符合等离子弧增材制造的加工过程。通过对等离子弧增材的单道多层打印的研究,能够发现熔池形态、小孔演变和熔池温度变化的机制。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1]刘勇,任香会,常云龙,等.金属增材制造技术的研究现状[J].热加工工艺, 2018, 47(19): 15-9,24.
[2]张敏,王星程,产玉飞,等.直接能量沉积增材制造过程气孔在线监测技术的研究进展[J].航空制造技术, 2020, 63(19): 47-55.
[3]蒲以松,王宝奇,张连贵.金属3D打印技术的研究[J].表面技术, 2018, 47(3): 78-84.
[4]杨璐,李笑林, 黄雅.3D打印金属结构研究进展与展望[C].中国钢结构协会结构稳定与疲劳分会第17届(ISSF-2021)学术交流会暨教学研讨会论文集. 西安. 2021: 162-166
[5]Geng, Haibin, Jinglong Li, Jiangtao Xiong, et al.Optimization of wire feed for GTAW based additive manufacturing[J].Journal of Materials Processing Technology, 2017, 243: 40-47.
[6]Liu, Zu Ming, Shuanglin Cui, Zhen Luo, et al. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling[J].Journal of Manufacturing Processes, 2016, 23: 315-327.
[7]温斌和. 薄壁构件等离子弧增材制造成形特性及尺寸控制[D].江苏:南京理工大学, 2016.
[8]Wu, C. S., L.Wang, W. J. Ren, et al. Plasma arc welding: Process, sensing, control and modeling[J].Journal of Manufacturing Processes, 2014, 16(1): 74-85.
[9]Xu, Bin, Fan Jiang, Shujun Chen, et al. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole[J].Chinese Physics B,2018, 27(3):034701
[10]王海燕, 陈强, 王耀文,等.等离子焊接小孔效应的电弧电压信号检测[J].清华大学学报(自然科学版), 2001, 41(8): 1-4.
[11]江淑园,谢美蓉, 陈焕明.穿孔等离子弧焊熔池形成过程的仿真[J].航空制造技术, 2003(7): 28-30
[12]黄健康,杨茂鸿,余淑荣,等.旁路耦合微束等离子弧堆垛与熔池动态行为数值模拟[J].机械工程学报, 2018, 54(2): 70-76.
[13]董春林,吴林,邵亦陈.穿孔等离子弧焊发展历史与现状[J].中国机械工程, 2000, 11(5): 577-581.
[14]乔琛嵘.基于Fluent的铝合金变极性等离子弧焊接数值模拟[D].呼和浩特:内蒙古工业大学, 2018.
[15]Martina, F., J. Mehnen, S. W. Williams, et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology, 2012, 212(6): 1377-1386.
[16]Taminger, K. M., R. A. Hafley. Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing[R].NATO UNCLASSIFIED, 2006,1-16.
[17]Martina, F. Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale Wire+Arc Additive Manufacturing [D].CRANFIELD UNIVERSITY, 2014.
[18]Wang, Chong, Wojciech Suder, Jialuo Ding, et al. The effect of wire size on high deposition rate wire and plasma arc additive manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology, 2021, 288:116842
[19]Bai, Xingwang, Paul Colegrove, Jialuo Ding, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504-516.
[20]潘家敬.铝合金非熔化极变极性焊接电弧与熔池特性数值分析[D].天津:天津大学, 2016.
[21]Chen, Shujun, Bin Xu, Fan Jiang. Blasting type penetrating characteristic in variable polarity plasma arc welding of aluminum alloy of type5A06[J].International Journal of Heat and Mass Transfer, 2018, 118: 1293-1306.
[22] Wu, Dongsheng, Shinichi Tashiro, Xueming Hua, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J].International Journal of Heat and Mass Transfer, 2019, 141: 604-614.
[23]李岩,冯妍卉,张欣欣,等.等离子弧焊接穿孔、传热与流动的耦合过程[J].工程热物理学报, 2014, 35(5): 939-943.
[24]王小杰.等离子弧焊接小孔界面的Level-Set法追踪[D].济南:山东大学, 2010.
[25]Li, T. Q., C. S. Wu. Numerical simulation of plasma arc welding with keyhole-dependent heat source and arc pressure distribution[J].The International Journal of Advanced Manufacturing Technology, 2014, 78(1-4): 593-602.
[26]Jian, Xiaoxia, Chuansong Wu, Guokai Zhang, et al. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding[J]. Journal of Physics D: Applied Physics, 2015, 48(46):465504.
[27]Traidia, A., F. Roger, E. Guyot, et al. Hybrid 2D–3D modelling of GTA welding with filler wire addition[J].International Journal of Heat and Mass Transfer, 2012, 55(15-16): 3946-3963.
[28] Ogino, Y., S. Asai, Y. Hirata. Numerical simulation of WAAM process by a GMAW weld pool model[J]. Welding in the World, 2018, 62(2): 393-401.
[29] Zhou, Xiangman, Haiou Zhang, Guilan Wang, et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2016, 103: 521-537.
[30]Ke, W. C., J. P. Oliveira, B. Q. Cong, et al. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys[J].Additive Manufacturing, 2022, 50:102513.
[31]Hejripour, Fatemeh, Daniel T. Valentine, Daryush K. Aidun.Study of mass transport in cold wire deposition for Wire Arc Additive Manufacturing[J].International Journal of Heat and Mass Transfer, 2018, 125: 471-484.
[32]Cadiou, S., M. Courtois, M. Carin, et al.3D heat transfer,fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam)[J].Additive Manufacturing, 2020, 36:101541.
[33]张天雷, 徐刚, 沈艳涛,等.基于MIG的电弧增材制造熔池行为的数值模拟[J].智能计算机与应用, 2020, 10(5): 251-256.
[34]Lee, Y. S., D. F. Farson. Surface tension-powered build dimension control in laser additive manufacturing process[J].The International Journal of Advanced Manufacturing Technology, 2015, 85(5-8): 1035-1044.
[35] Dai, Donghua, Dongdong Gu. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science, 2015, 355: 310-319.
[36]Wang, Hongze, Yu Zou. Microscale interaction between laser and metal powder in powder-bed additive manufacturing:Conduction mode versus keyhole mode[J].International Journal of Heat and Mass Transfer, 2019, 142:118473.
[37]Cao, Liu. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation[J].International Journal of Heat and Mass Transfer, 2019, 141: 1036-1048.
[38]王泽坤, 刘谋斌.基于半解析VOF-DEM的激光直接沉积多尺度过程模拟[J].力学学报, 2021, 53(12): 3228-3239.
[39] Gan, Zhengtao, Gang Yu, Xiuli He, et al.Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel [J].International Journal of Heat and Mass Transfer, 2017, 104: 28-38.
[40]Kumar S, Chattopadhyay K, Singh V. Tensile Behavior of Ti-6Al-4V alloy at Elevated Temperatures[C].Proceeding of the International Conference on Multifunctional Materials, Structures and Applications,2014:115-118.
[41]胡宝.TC4钛合金薄壁件激光焊接数值模拟研究[D].天津:天津大学, 2013.
[42]Yang, Mingxuan, Zhou Yang, Bojin Qi.Effect of fluid in molten pool on the welds with Ti-6Al-4V during pulsed arc welding[J].The International Journal of Advanced Manufacturing Technology, 2015, 81(5-8): 1007-1016.
[43] Chen, Jicheng, Zipeng Ouyang, Xinwei Du, et al.Weld pool dynamics and joining mechanism in pulse wave laser beam welding of Ti-6Al-4V titanium alloy sheets assembled in butt joint with an air gap[J].Optics & Laser Technology, 2022, 146:107558.
[44]Mooli, Harish,Srinivasa Rao Seeram, Satyanarayana Goteti et al.Numerical Simulations and Experimental Validation on LBW Bead Profiles of Ti-6Al-4V Alloy[J]. Pertanika Journal of Science and Technology, 2021, 29(3):1609-1625.
[45]C. W. Hirt, B. D. Nichols. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics,1979,39:201-225.
[46]王如云,陈萍萍,班长英.矩形网格上VOF运动界面重构的流体体积分数保持法[J].计算物理, 2008, 25(4): 431-436.
[47]于陆军,侯松梁,马宇明,等.基于流体体积函数模型的横板型稳压罐内气液两相流场仿真研究[J].计量学报, 2019, 40(6): 1050-1056.
[48] 陈曦.TC4钛合金添加铝夹层激光焊接温度场仿真及试验研究[D].长沙:湖南大学, 2013.
[49]V. R. Voller, C. Prakash. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J].International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.
[50]Boivineau, M., C. Cagran, D. Doytier, et al.Thermophysical Properties of Solid and Liquid Ti-6Al-4V(TA6V) Alloy[J].International Journal of Thermophysics, 2006, 27(2): 507-529.
[51]Panwisawas,Chinnapat,BamaPerumal,R.Marquard,et al.Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling[J].Acta Materialia, 2017, 126: 251-263.
[52]Egry, I., D. Holland-Moritz, R. Novakovic, et al. Thermophysical Properties of Liquid AlTi-Based Alloys[J]. International Journal of Thermophysics, 2010, 31(4-5): 949-65.
[53]陈昭.Ti-6Al-4V薄壁制件的电子束快速成形模拟研究[D].合肥:中国科学技术大学, 2018.
[54]John Goldak, Aditya Chakravarti, Malcolm Bibby. A New Finite Element Model for Welding Heat Sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
[55]吴 甦,赵海燕,王煜.高能束焊接数值模拟中的新型热源模型[J].焊接学报, 2004, 25(1): 91-94.
[56]霍玉双.基于力平衡条件的等离子弧焊小孔形状分析[D].济南:山东大学, 2010.
[57]Yu Shuang Huo, Chuansong Wu. Modeling the keyhole shape and dimension in plasma arc welding [J].CHINA WELDING, 2009, 18(2): 17-20.
[58]E Siewert, J Schein,G Forster. Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon-iron[J].Journal of Physics D-Applied Physics,2013,46(22): 345-351.
[59]Meng, Xiangmeng, Guoliang Qin, Zengda Zou. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling[J].Materials & Design, 2016, 94: 69-78.
[60]D.J. Phares, G.T. Smedley, R.C. Flagan. The wall shear stress produced by the normal impingement of a jet on a flat surface[J].Journal of Fluid Mechanics, 2000, 418: 351-375.
[61]J.Ubrackbilld, Bkotheczemach. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[62]K. C. Tsao, C. S. Wu. Fluid Flow and Heat Transfer in GMA Weld Pools[J].Welding Journal, 1988, 67(3): 70-75.
[63] Li, Tian Qing, Lu Chen, Yu Zhang, et al. Metal flow of weld pool and keyhole evolution in gas focusing plasma arc welding[J].International Journal of Heat and Mass Transfer, 2020, 150:119296.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TG444
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343137
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
吴息明. 等离子弧增材制造钛合金热质传递行为数值模拟研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032283-吴息明-中国科学院深圳(26819KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[吴息明]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[吴息明]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[吴息明]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.