中文版 | English
Title

半金属PtBi2和MoTe2的输运性质研究

Alternative Title
TRANSPORT PROPERTIES OF SEMIMETALS PTBI2 AND MOTE2
Author
Name pinyin
LIN Zeyu
School number
11930662
Degree
硕士
Discipline
070205 凝聚态物理
Subject category of dissertation
07 理学
Supervisor
张立源
Mentor unit
物理系
Publication Years
2022-05-17
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

  作为一类新型拓扑物质,对拓扑半金属的研究一直处于凝聚态物理的前沿。由于其独特的能带结构,拓扑半金属成为了相对论费米子的绝佳观测平台,其所具有的极大的磁阻、手性反常和本征反常霍尔效应等奇特的输运性质引起了诸多研究人员的关注。本论文旨在对两种拓扑半金属候选材料黄铁矿型PtBi21T'MoTe2进行输运性质研究,探测它们的基本电学和电子态拓扑属性,出于研究需要还发展一些二维薄膜的器件制备方法。

  本论文主体分四部分。(1研究背景和意义。2实验设备和测量手段。3)黄铁矿型PtBi2的费米面结构研究。本文分别通过测量黄铁矿型PtBi2的热电效应Shubnikov-de HassSdH)和 de Hass-van AlphendHvA)量子振荡,探测到PtBi2的四个不同的量子振荡基频频率,明确了PtBi2至少具有四个费米口袋。此外,根据立体空间转角的量子振荡频率的变化、有效回旋质量等多个特征参数,进一步确立各个电子费米口袋的空间分布及其电子拓扑结构属性。4)二维薄膜的器件制备方法及1T'MoTe2输运性质研究。本文研究了1T'MoTe2少层薄膜器件的制备方法以及输运性质。由于MoTe2的层间作用力较大并且表面对水氧非常敏感,这给MoTe2少层薄膜的研究带来了很大困难。针对这些困难,本文发展了新的薄膜制备和器件封装方法。最终实现了对少层1T'MoTe2本征材料器件的电学输运性质表征,观测到它的伊辛超导特性。此外,本文还在微纳器件制备过程中意外发现了一个有趣的现象:铟电极与1T'MoTe2接触后会沿着MoTe2薄膜和金膜表面扩散。这些结果为进一步开展同类型材料及其器件制备的研究奠定了良好的基础。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1]KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Phys. Rev. Lett., 1980, 45(6):494.
[2]HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Rev. Mod. Phys., 2010, 82:3045.
[3]CAVA R J, JI HW, FUCCILLO M K, et al. Crystal structure and chemistry of topological insulators[J]. J. Mater. Chem. C., 2013, 1:3176.
[4]YOICHI A. Topological Insulator Materials[J]. J. Phys. Soc. Jpn., 2013, 82:102001.
[5]HE LP, HONG XC, DONG JK, et al. Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2[J]. Phys. Rev. Lett., 2014, 113:246402.
[6]HU J, LIU JY, GRAF D, et al. π Berry phase and Zeeman splitting of Weyl semimetal TaP[J]. Nature, 2016, 6:18674.
[7]TIAN L, GIBSON Q, MAZHAR N A. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2[J]. Nat. Mater., 2015, 14:280.
[8]WAN X, TURNER AM, VISHWANATH A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J]. Phys. Rev. B., 2011, 83:205101.
[9]BIAN G, CHANG TR, SANKAR R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2[J]. Nat. Commun., 2016, 7:10556.
[10]POTTER A C, KIMCHI I, VISHWANATH A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals[J]. Nat. Commun., 2014, 5:5161.
[11]HU J, SU YX, NI N, et al. Transport of Topological Semimetals[J]. Annu. Rev. Mater. Res., 2019, 49:207–52.
[12]GIBSON Q, SCHOOP L M, MUECHLER L, et al. Three-dimensional Dirac semimetals: Design principles and predictions of new materials[J]. Phys. Rev. B., 2015, 91:205128.
[13]GAO WS, HAO NN, ZHENG FW, et al. Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi2[J]. Phys. Rev. Lett., 2017, 118:256601.
[14]CHEN XL, SHAO DX, GU CC, et al. Pressure-induced multiband superconductivity in pyrite PtBi2 with perfect electron-hole compensation[J]. Phys. Rev. Mater., 2018, 2:054203.
[15]ZHAO LX, XU LC, ZUO HK, et al. Fermi surface and carrier compensation of pyrite-type PtBi2 revealed by quantum oscillations[J]. Phys. Rev. B., 2018, 98:085137.
[16]GAO WS, ZHU XD, HU J, et al. De Haas-van Alphen study on three-dimensional topological semimetal pyrite PtBi2[J]. Science Bulletin, 2019, 64:1496-1501.
[17]MAZHAR N A, XIONG J, STEVEN F, et al. Large, non-saturating magnetoresistance in WTe2[J]. Nature, 2014, 514:205.
[18]MAZHAR N A, LESLIE S, XIONG J, et al. Correlation of crystal quality and extreme magnetoresistance of WTe2[J]. Europhys. Lett., 2015,110: 67002.
[19]PAN XC, CHEN XL, LIU HM, et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride[J]. Nat. Commun., 2015, 6: 7805.
[20]KANG, DF, ZHOU YZ, YI W, et al. Superconductivity emerging from suppressed large magnetoresistant state in WTe2[J]. Nat. Commun., 2015, 6: 7804.
[21]ZHU, ZW, LIN X, LIU J, et al. Quantum oscillations, thermoelectric coefficients, and the fermi surface of semimetallic WTe2[J]. Phys. Rev. Lett., 2015, 114: 176601.
[22]SOLUYANOV A, DOMINIK G, WANG ZJ, et al. Type II Weyl semimetals[J]. Nature, 2015, 527: 495.
[23]HUANG LN, TIMOTHY M M, MASAYUKI O, et al. Spectroscopic evidence for type II Weyl semimetal state in MoTe2[J]. Nat. Mater., 2016, 15: 1155.
[24]DENG K, WAN GL, DENG P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2[J]. Nat. Phys., 2016, 12: 1105.
[25]BELOPOLSKI I, XU SY, YUKIAKI I, et al. Unoccupied electronic structure and signatures of topological Fermi arcs in the Weyl semimetal candidate MoxW1-xTe2[J]. Phys. Rev. B., 2016, 94: 085127.
[26]JIANG J, Liu ZK, Sun Y, et al. Signature of type-II Weyl semimetal phase in MoTe2[J]. Nat. Commun., 2017, 8: 13973.
[27]QI YP, PAVEL G N, MAZHAR N A, et al. Superconductivity in Weyl semimetal candidate MoTe2[J]. Nat. Commun., 2016, 7: 11038.
[28]CHEN FC, LUO X, XIAO RC, et al. Superconductivity enhancement in the S-doped Weyl semimetal candidate MoTe2[J]. Appl. Phy. Lett., 2016, 108: 162601.
[29]LUO X, CHEN FC, Zhang JL, et al. Td-MoTe2: A possible topological superconductor[J]. Appl. Phys. Lett., 2016, 108: 162601.
[30]TAKAHASHI H, AKIBA T, IMURA K, et al. Anticorrelation between polar lattice instability and superconductivity in Weyl semimetal candidate MoTe2[J]. Phys. Rev. B., 2017, 95: 100501.
[31]MANASI M, MARIK S, SAJILESH K P, et al. Enhancement of the superconducting transition temperature by Re doping in Weyl semimetal MoTe2[J]. Phys. Rev. Mater., 2018, 2: 094201.
[32]ZHANG HX, AWABAIKELI R, SHEN SC, et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials[J]. Science Bulletin, 2020, 65: 188.
[33]CHO SY, KANG SE, YU HS, et al. Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride[J]. 2D Materials, 2017, 4: 021030.
[34]GUGUCHIA Z, ROHR F, SHERMADINI Z, et al. Signatures of the topological s+- superconducting order parameter in the type-II Weyl semimetal Td-MoTe2[J]. Nat. Commun., 2017, 8: 1082.
[35]COLIN H, LIU IL, TRISTIN M, et al. Mechanical control of crystal symmetry and superconductivity in Weyl semimetal MoTe2[J]. Phys. Rev. Mater., 2018, 2: 074202.
[36]LI YN, GUO QQ, CHEN C, et al. Nontrivial superconductivity in topological MoTe2-xSx crystals[J]. PNAS, 2018, 115: 9503.
[37]YURII N, OKSANA K, DMYTRO B, et al. Surface superconductivity in the Weyl semimetal MoTe2 detected by point contact spectroscopy[J]. 2D Materials, 2018, 5: 045014.
[38]WANG L, TOMAS O R, DORU S. Platform for nodal topological superconductors in monolayer molybdenum dichalcogenides[J]. Phys. Rev. B., 2018, 98: 205411.
[39]LUO JW, LI YN, ZHANG JW, et al. Possible unconventional two-band superconductivity in MoTe2[J]. Phys. Rev. B., 2020, 102: 064502.
[40]ZURAB G, ANTONIO M, FABIAN O, et al. Pressure Induced Topological Quantum Phase Transition in Weyl Semimetal Td-MoTe2[J]. J. Phys. Soc. Jpn., 2020, 89: 094707.
[41]XIA W, ZHANG J, HUANG GQ, et al. The superconducting properties of a Pb/MoTe2/Pb heterostructure: First-principles calculations within the anisotropic Migdal–Eliashberg theory[J]. Chin. Phys. B., 2018, 27: 126302.
[42]HUANG GQ, XIA W. Superconductivity in ultrathin Pb/MoTe2 heterostructure[J]. Solid State Commun., 2019, 288: 60.
[43]HU YJ, CHAN YT, LAI KT, et al. Angular dependence of the upper critical field in the high-pressure 1T' phase of MoTe2[J]. Phys. Rev. Mater., 2019, 3: 034201.
[44]CUI J, LI PL, ZHOU JD, et al. Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe2[J]. Nat. Commun., 2019, 10: 2044.
[45]GAN Y, CHO CW, LI AL, et al. Giant enhancement of superconductivity in few layers MoTe2[J]. Chin. Phys. B., 2019, 28: 117401.
[46]DANIEL A R, APOORV J, NOAH F Q, et al. Enhanced Superconductivity in Monolayer TdMoTe2[J]. Nano Lett., 2021, 20: 8469.
[47]WANG WD, STEPHAN K, LIU MH, et al. Evidence for an edge supercurrent in the Weylsuperconductor MoTe2[J]. Science, 2020, 368:534-537.
[48]EISENSTEIN J P, STORMER H L, NARAYANAMURTI V, et al. Density of States and de Haas-van Alphen Effect in Two-Dimensional Electron Systems[J]. Phys. Rev. Lett., 1985, 55(8):875-878.
[49]LANDAU L D. Paramagnetism of Metals[J]. Z. Phys., 1930, 64:629-637.
[50]傅斌昊. 德哈斯-范•阿尔芬效应的测量装置及其在关联电子材料中的应用[D]. 浙江大学, 2013:1-25.
[51]GABOR Z M, JANOS P, GERGELY D, et al. Exfoliation of large-area transition metal chalcogenide single layers[J]. Sci. Rep., 2015, 5:14714.
[52]HUANG Y, PAN YH, YANG R, et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nat. commun., 2020, 11:2453.
[53]SHIM JW, BAE SH, KONG W, et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials[J]. Science, 2018, 362:665–670.
[54]DENG YJ, YU YJ, SONG YC, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature, 2018, 563:94.
[55]CAI XK, LUO YT, LIU BL,et al. Preparation of 2D material dispersions and their applications[J]. Chem. Soc. Rev., 2018, 47:6224.
[56]SASAKI T, MA R. Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites[J]. Adv. Mater., 2010, 22:5082–5104.
[57]WANG Q, DERMOT O. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets[J]. Chem. Rev., 2012, 112:4124–4155.
[58]BABAK A, MARIA R L, YURY G. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat. Rev. Mater., 2017, 2:16098.
[59]WANG L, MERIC I, HUANG PY, et al. One-Dimensional Electrical Contact to a Two-Dimensional Material[J]. Science, 2013, 342:614.
[60]DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nat. Nano., 2010, 5:722.
[61]FLETCHER R. On the Amplitude of the Quantum Oscillations in the Thermopower of Metals[J]. Journal of Low Temperature Physics, 1981, 43:363.
[62]KAREL A N D, LI Y, EVAN J R. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers[J]. Nat. commun., 2014, 5:4214.
[63]THOMAS A E, ZHOU Y, VELVETH K, et al. Chemical Vapor Deposition Growth of FewLayer MoTe2 in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe2 Films[J]. ACS Nano., 2017, 11:900−905.
[64]LU JM, ZHELIUK O, LEERMAKERS I, et al. Evidence for two-dimensional Ising superconductivity in gated MoS2[J]. Science, 2015, 350:1353.
[65]YU ST, YASUHARU N, MOHAMMAD S B, et al. Superconductivity protected by spin–valley locking in ion-gated MoS2[J]. Nat. Phys., 2015, 12:144.
[66]XI XX, WANG ZF, ZHAO WW, et al. Ising pairing in superconducting NbSe2 atomic layers[J]. Nat. Phys., 2016, 12:139.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O469
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343138
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
林泽裕. 半金属PtBi2和MoTe2的输运性质研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930662-林泽裕-物理系.pdf(6373KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[林泽裕]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[林泽裕]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[林泽裕]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.