[1]HUSSAIN S M, NADEEM F, AFTAB M A, et al. The emerging energy internet: Architecture, benefits, challenges, and future prospects[J]. Electronics, 2019, 8(9): 1037.
[2]MA Y, WANG X, ZHOU X, et al. An overview of energy routers[C]//2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017: 4104-4108.
[3]YU H, NIU S, ZHANG Y, et al. An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings[J]. Applied Energy, 2020, 263: 114610.
[4]ZHENG Y, SHAO Z, LEI X, et al. The economic analysis of electric vehicle aggregators participating in energy and regulation markets considering battery degradation[J]. Journal of Energy Storage, 2022, 45: 103770.
[5]MAO M, JIN P, HATZIARGYRIOU N D, et al. Multiagent-based hybrid energy management system for microgrids[J]. IEEE Transactions on Sustainable Energy, 2014, 5(3): 938-946.
[6]SALAH W A, ALSAYID B, ALBREEM M A M, et al. Electric vehicle technology impacts on energy[J]. International Journal of Power Electronics and Drive Systems, 2019, 10(1): 1-9.
[7]WILLIAMS G . Rare earths outlook 2019: EV production to drive demand[J]. 中国稀土信息:英文版, 2019, 25(2):5.
[8]ZHENG Y, SHAO Z, ZHANG Y, et al. A systematic methodology for mid-and-long term electric vehicle charging load forecasting: The case study of Shenzhen, China[J]. Sustainable Cities and Society, 2020, 56: 102084.
[9]SHANG Y, LIU M, SHAO Z, et al. Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids[J]. Applied Energy, 2020, 278: 115640.
[10]GAO K, WANG T, HAN C, et al. A review of optimization of microgrid operation[J]. Energies, 2021, 14(10): 2842.
[11]KONG X Q, WANG R Z, HUANG X H. Energy optimization model for a CCHP system with available gas turbines[J]. Applied Thermal Engineering, 2005, 25(2-3): 377-391.
[12]ZHOU K, WEI S, YANG S. Time-of-use pricing model based on power supply chain for user-side microgrid[J]. Applied Energy, 2019, 248: 35-43.
[13]JIANG Y C, WANG Z G, YANG C Y, et al. Multi-objective optimization strategy of controllable load in microgrid[J]. Power System Technology, 2013, 37(10): 2875-2880.
[14]MOHSENZADEH A, PANG C, HAGHIFAM M R. Determining optimal forming of flexible microgrids in the presence of demand response in smart distribution systems[J]. IEEE Systems Journal, 2017, 12(4): 3315-3323.
[15] LU X, ZHOU K, YANG S, et al. Multi-objective optimal load dispatch of microgrid with stochastic access of electric vehicles[J]. Journal of Cleaner Production, 2018, 195: 187-199.
[16]YAN Z, HU J. Energy internet in the Yangtze River Delta: opportunities, challenges, and suggestions[J]. Frontiers in Energy, 2018, 12(4): 484-492.
[17]ZHENG Y, LUO Y, SHI Y, et al. Design of energy internet based on information internet[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2017: 1-5.
[18]SADEEQ M A M, ZEEBAREE S. Energy management for internet of things via distributed systems[J]. Journal of Applied Science and Technology Trends, 2021, 2(02): 59-71.
[19]WANG K, YU J, YU Y, et al. A survey on energy internet: Architecture, approach, and emerging technologies[J]. IEEE Systems Journal, 2017, 12(3): 2403-2416.
[20]KESHTKAR A, ARZANPOUR S, KESHTKAR F, et al. Smart residential load reduction via fuzzy logic, wireless sensors, and smart grid incentives[J]. Energy and Buildings, 2015, 104: 165-180.
[21]RAGHAVAN B, MA J. The energy and energy of the internet[C]//Proceedings of The 10th ACM Workshop on Hot Topics in Networks. 2011: 1-6.
[22]LIN C C, DENG D J, LIU W Y, et al. Peak load shifting in the internet of energy with energy trading among end-users[J]. IEEE Access, 2017, 5: 1967-1976.
[23]HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: the energy internet[J]. Proceedings of the IEEE, 2010, 99(1): 133-148.
[24]XIAO X, LEANEY W S. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves[J]. Geophysics, 2010, 75(2): S35-S49.
[25]KUROHANE K, SENJYU T, YONA A, et al. A Hybrid Smart AC/DC Power System[J]. IEEE Transactions on Smart Grid, 2010, 1(2): 199-204.
[26]LIN C C, DENG D J, LIU W Y, et al. Peak load shifting in the internet of energy with energy trading among end-users[J]. IEEE Access, 2017, 5: 1967-1976.
[27]JIN C, WANG J, WANG P. Coordinated secondary control for autonomous hybrid three-port AC/DC/DS microgrid[J]. CSEE Journal of Power and Energy Systems, 2018, 4(1): 1-10.
[28]张超.多端口能量路由器协调控制方法研究[D].哈尔滨:哈尔滨工业大学,2019.
[29]MCMURRAY W. Power converter circuits having a high frequency link: U.S. Patent 3,517,300[P]. 1970-6-23.
[30]SHE X, HUANG A Q, BURGOS R. Review of solid-state transformer technologies and their application in power distribution systems[J]. IEEE journal of emerging and selected topics in power electronics, 2013, 1(3): 186-198.
[31]GUO H, WANG F, LUO J, et al. Review of energy routers applied for the energy internet integrating renewable energy[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). IEEE, 2016: 1997-2003.
[32]WU H, ZHANG J, XING Y. A family of multiport buck–boost converters based on DC-link-inductors (DLIs)[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 735-746.
[33]孙林峰.多端口直流能量路由器调控策略研究[D].扬州:扬州大学,2021.
[34]TATCHO P, LI H, JIANG Y, et al. A novel hierarchical section protection based on the solid state transformer for the future renewable electric energy delivery and management (FREEDM) system[J]. IEEE Transactions on Smart Grid, 2012, 4(2): 1096-1104.
[35]TAKUNO T, KOYAMA M, HIKIHARA T. In-home power distribution systems by circuit switching and power packet dispatching[C]//2010 First IEEE International Conference on Smart Grid Communications. IEEE, 2010: 427-430.
[36]MARYAMA V, ZENI V, PICA C Q, et al. Unified hybrid (AC/DC) active distribution networks droop-based load-sharing strategy[C]//IEEE PES Innovative Smart Grid Technologies, Europe. IEEE, 2014: 1-6.
[37]EGHTEDARPOUR N, FARJAH E. Power control and management in a hybrid AC/DC microgrid[J]. IEEE Transactions on Smart Grid, 2014, 5(3): 1494-1505.
[38]MALIK S M, SUN Y, HUANG W, et al. A generalized droop strategy for interlinking converter in a standalone hybrid microgrid[J]. Applied Energy, 2018, 226: 1056-1063.
[39]DRAGIČEVIĆ T, LU X, VASQUEZ J C, et al. DC microgrids—Part I: A review of control strategies and stabilization techniques[J]. IEEE Transactions on Power Electronics, 2015, 31(7): 4876-4891.
[40]BURGIO A, MENNITI D, SORRENTINO N, et al. A compact nanogrid for home applications with a behaviour-tree-based central controller[J]. Applied Energy, 2018, 225: 14-26.
[41]DIAZ N L, LUNA A C, VASQUEZ J C, et al. Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded AC microgrids[J]. IEEE Transactions on Power Electronics, 2016, 32(7): 5202-5213.
[42]SHANG Y, LIU M, SHAO Z, et al. A centralized vehicle to grid scheme with distributed computing capacity engaging internet of smart charging points: Case study[J]. International Journal of Energy Research, 2021, 45(1): 841-863.
[43]MOHAMED A A, ELSAYED A T, YOUSSEF T A, et al. Hierarchical control for DC microgrid clusters with high penetration of distributed energy resources[J]. Electric Power Systems Research, 2017, 148: 210-219.
[44]MI Y, CHEN X, JI H, et al. The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication[J]. Applied Energy, 2019, 252: 113465.
[45]OTA Y, TANIGUCHI H, NAKAJIMA T, et al. Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging[J]. IEEE Transactions on Smart Grid, 2011, 3(1): 559-564.
[46]KEMPTON W, TOMIĆ J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy[J]. Journal of Power Sources, 2005, 144(1): 280-294.
[47]RASSAEI F, SOH W S, CHUA K C. Distributed scalable autonomous market-based demand response via residential plug-in electric vehicles in smart grids[J]. IEEE Transactions on Smart Grid, 2016, 9(4): 3281-3290.
[48]FATHABADI H. Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)[J]. Applied Energy, 2020, 260: 114194.
[49]ZHENG Y, SHANG Y, SHAO Z, et al. A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid[J]. Applied Energy, 2018, 217: 1-13.
[50]CARDONA J E, LÓPEZ J C, RIDER M J. Decentralized electric vehicles charging coordination using only local voltage magnitude measurements[J]. Electric Power Systems Research, 2018, 161: 139-151.
[51]YUCEL F, AKKAYA K, BULUT E. Efficient and privacy preserving supplier matching for electric vehicle charging[J]. Ad Hoc Networks, 2019, 90: 101730.
[52]ZHAO J, WAN C, XU Z, et al. Spinning reserve requirement optimization considering integration of plug-in electric vehicles[J]. IEEE Transactions on Smart Grid, 2016, 8(4): 2009-2021.
[53]MERCAN M C, KAYALICA M Ö, KAYAKUTLU G, et al. Economic model for an electric vehicle charging station with vehicle to grid functionality[J]. International Journal of Energy Research, 2020, 44(8): 6697-6708.
[54]HOEHNE C G, CHESTER M V. Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon emissions[J]. Energy, 2016, 115: 646-657.
[55]MARTINENAS S, PEDERSEN A B, MARINELLI M, et al. Electric vehicle smart charging using dynamic price signal[C]//2014 IEEE International Electric Vehicle Conference (IEVC). IEEE, 2014: 1-6.
[56]MA Z, ZOU S, RAN L, et al. Efficient decentralized coordination of large-scale plug-in electric vehicle charging[J]. Automatica, 2016, 69: 35-47.
[57]JIAN L, ZHU X, SHAO Z, et al. A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within regional smart grids[J]. Energy Conversion and Management, 2014, 78: 508-517.
[58]NIU L, ZHANG P, WANG X. Hierarchical power control strategy on small-scale electric vehicle fast charging station[J]. Journal of Cleaner Production,
[59]2018, 199: 1043-1049.
[60]HOSSAIN M A, POTA H R, HOSSAIN M J, et al. Evolution of microgrids with converter-interfaced generations: Challenges and opportunities[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 160-186.
[61]CHE L, SHAHIDEHPOUR M, ALABDULWAHAB A, et al. Hierarchical coordination of a community microgrid with AC and DC microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 3042-3051.
[62]TON D T, SMITH M A. The US department of energy's microgrid initiative[J]. The Electricity Journal, 2012, 25(8): 84-94.
[63]王德志.电力市场下需求响应参与辅助调峰调频的建模与优化研究[D].广州:华南理工大学,2019.
[64]MOREIRA C L, RESENDE F O, LOPES J A P. Using low voltage microgrids for service restoration[J]. IEEE Transactions on Power Systems, 2007, 22(1): 395-403.
[65]USTUN T S, OZANSOY C, ZAYEGH A. Recent developments in microgrids and example cases around the world—A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4030-4041.
[66]BARRA P H A, COURY D V, FERNANDES R A S. A survey on adaptive protection of microgrids and distribution systems with distributed generators [J]. Renewable and Sustainable Energy Reviews, 2020, 118: 109524.
[67]MCDERMOTT T E, DUGAN R C. Distributed generation impact on reliability and power quality indices[C]//2002 Rural Electric Power Conference. Papers Presented at the 46th Annual Conference(Cat. No. 02CH37360). IEEE, 2002: D3-1.
[68]STRUNZ K. Developing benchmark models for studying the integration of distributed energy resources[C]//2006 IEEE Power Engineering Society General Meeting. IEEE, 2006: 2 pp.
[69]PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636.
[70]刘畅,陈启卷,陈桂月,等.光伏-燃料电池混合发电系统建模与仿真[J].太阳能学报,2018,39(11):7.
[71]LASHEEN M, ABDEL-SALAM M. Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: A review and a novel hybrid approach[J]. Energy Conversion and Management, 2018, 171: 1002-1019.
[72]SSEKULIMA E B, AL HINAI A. Coordinated voltage control of solar PV with MPPT and battery storage in grid-connected and microgrid modes[C]//2016 18th Mediterranean Electrotechnical Conference (MELECON). IEEE, 2016: 1-6.
[73]GAVANIDOUS E S, BAKIRTZIS A G. Design of a stand alone system with renewable energy sources using trade off methods[J]. IEEE Transactions on Energy Conversion, 1992, 7(1): 42-48.
[74]SERA D, KEREKES T, TEODORESCU R, et al. Improved MPPT algorithms for rapidly changing environmental conditions[C]//2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006: 1614-1619.
[75]HUSSEIN K H, MUTA I, HOSHINO T, et al. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions[J]. IEE Proceedings-Generation, Transmission and Distribution, 1995, 142(1): 59-64.
[76]WEI L. Research and implementation of photovoltaic charging system with maximum power point tracking[C]//2008 3rd IEEE Conference on Industrial Electronics and Applications. IEEE, 2008: 619-624.
[77]COPETTI J B, LORENZO E, CHENLO F. A general battery model for PV system simulation[J]. Progress in Photovoltaics: Research and Applications, 1993, 1(4): 283-292.
[78]YU Y, NDUKA O S, PAL B C. Smart control of an electric vehicle for ancillary service in DC microgrid[J]. IEEE Access, 2020, 8: 197222-197235.
[79]王建.电动汽车充电对电网的影响及有序充电研究[D].济南:山东大学,2013.
[80]王露.城市纯电动汽车快速充电设施的布局选址优化模型研究[D].北京:北京交通大学,2016.
[81]刘子文.复杂运行状态下交直流微电网运行特性分析及控制方法研究[D].武汉:华中科技大学,2019.
[82]王睿驰.能量—信息一体化的电能路由器关键技术研究[D].杭州:浙江大学,2019.
[83]JIN C, WANG P, XIAO J, et al. Implementation of hierarchical control in DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2013, 61(8): 4032-4042.
[84]FARHADI M, MOHAMMED O. Adaptive energy management in redundant hybrid DC microgrid for pulse load mitigation[J]. IEEE Transactions on Smart Grid, 2014, 6(1): 54-62.
[85]HIRSCH A, PARAG Y, GUERRERO J. Microgrids: A review of technologies, key drivers, and outstanding issues[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 402-411.
[86]ALEGRIA E, BROWN T, MINEAR E, et al. CERTS microgrid demonstration with large-scale energy storage and renewable generation[J]. IEEE Transactions on Smart Grid, 2013, 5(2): 937-943.
[87]ABU-SHARKH S, ARNOLD R J, KOHLER J, et al. Can microgrids make a major contribution to UK energy supply?[J]. Renewable and Sustainable Energy Reviews, 2006, 10(2): 78-127.
[88]CHE L, SHAHIDEHPOUR M. DC microgrids: Economic operation and enhancement of resilience by hierarchical control[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2517-2526.
[89]王成山,许洪华.微电网技术及应用[M].科学出版社,2016.
[90]BLAABJERG F, TEODORESCU R, LISERRE M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1398-1409.
[91]POURBEHZADI M, NIKNAM T, AGHAEI J, et al. Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 139-159.
[92]ZHENG Y, SHANG Y, SHAO Z, et al. A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid[J]. Applied Energy, 2018, 217: 1-13.
[93]高轶泽.多源微电网的协调控制研究[D].天津:河北工业大学,2019.
[94]于海,孙亮,岳云凯,等.基于微型燃气轮机的多微源直流微网主从协调控制[J].江苏电机工程,2019,038(006):107-114.
[95]张庆海,彭楚武,陈燕东,等.一种微电网多逆变器并联运行控制策略[J].中国电机工程学报,2012,32(25):7.
[96]GUERRERO J M, VASQUEZ J C, MATAS J, et al. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization[J]. IEEE Transactions on Industrial Electronics, 2010, 58(1): 158-172.
[97]周稳,戴瑜兴,毕大强,等.交直流混合微电网协同控制策略[J].电力自动化设备,2015,35(10):7.
[98]HANIF M, KHADKIKAR V, XIAO W, et al. Two degrees of freedom active damping technique for LCL filter-based grid connected PV systems[J]. IEEE Transactions on Industrial Electronics, 2013, 61(6): 2795-2803.
[99]丁晓通.交直流混合微电网中互联变流器的控制策略研究[D].合肥:合肥工业大学,2020.
[100]鲁文,杜红卫,丁恰,等.智能配电网优化调度设计及关键技术[J].电力系统自动化,2017,41(3):1-6.
[101]LUND H, KEMPTON W. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy policy, 2008, 36(9): 3578-3587.
[102]刘建涛,曹雷,马杰,等.基于储能系统的用户光伏并网发电系统经济性分析[J].太阳能学报,2012,33(11):1887-1892.
[103]UDDIN K, GOUGH R, RADCLIFFE J, et al. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom[J]. Applied Energy, 2017, 206: 12-21.
[104]刘春阳,王秀丽,刘世民,等.计及蓄电池使用寿命的微电网经济调度模型[J].电力自动化设备,2015,35(10):29-36.
[105]CHEN Q, LIU N, HU C, et al. Autonomous energy management strategy for solid-state transformer to integrate PV-assisted EV charging station participating in ancillary service[J]. IEEE Transactions on Industrial Informatics, 2016, 13(1): 258-269.
[106]乔辰.多目标规划及其在电力市场功率分配问题上的应用[D].保定:华北电力大学,2012.
[107]LAM L, BAUER P. Practical capacity fading model for Li-ion battery cells in electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 28(12): 5910-5918.
[108]ROGOZHIN A, GALLAHER M, HELFAND G, et al. Using indirect cost multipliers to estimate the total cost of adding new technology in the automobile industry[J]. International Journal of Production Economics, 2010, 124(2): 360-368.
[109]LU X, ZHOU K, YANG S, et al. Multi-objective optimal load dispatch of microgrid with stochastic access of electric vehicles[J]. Journal of Cleaner Production, 2018, 195: 187-199.
[110]DELLEPIANE S G, ANGIATI E. A new method for cross-normalization and multitemporal visualization of SAR images for the detection of flooded areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2765-2779.
Edit Comment