[1] Wu W B, Bazan G C, Liu B. Conjugated-Polymer-Amplified Sensing, Imaging, and Therapy[J]. Chem, 2017, 2(6): 760-790.
[2] Gaylord B S, Heeger A J, Bazan G C. DNA Detection using Water-Soluble Conjugated Polymers and Peptide Nucleic Scid Probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(17): 10954-10957.
[3] Feng F D, Tang Y L, Wang S, Li Y L, Zhu D B. Continuous Fluorometric Assays for Acetylcholinesterase Activity and Inhibition with Conjugated Polyelectrolytes[J]. Angewandte Chemie International Edition, 2007, 46(41): 7882-7886.
[4] Pu K Y, Shuhendler A J, Rao J H. Semiconducting Polymer Nanoprobe for In Vivo Imaging of Reactive Oxygen and Nitrogen Species[J]. Angewandte Chemie International Edition, 2013, 52(39): 10325-10329.
[5] Hong G S, Antaris A L, Dai H J. Near-Infrared Fluorophores for Biomedical Imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[6] Antaris A L, Chen H, Cheng K, Sun Y, Hong G S, Qu C R, Diao S, Deng Z X, Hu X M, Zhang B, Zhang X D, Yaghi O K, Alamparambil Z R, Hong X C, Cheng Z, Dai H J. A Small-Molecule Dye for NIR-II Imaging[J]. Nature Materials, 2016, 15(2): 235-242.
[7] Zhang X D, Wang H S, Antaris A L, Li L L, Diao S, Ma R, Nguyen A, Hong G S, Ma Z R, Wang J, Zhu S J, Castellano J M, Wyss-Coray T, Liang Y Y, Luo J, Dai H J. Traumatic Brain Injury Imaging in the Second Near-Infrared Window with a Molecular Fluorophore[J]. Advanced Materials, 2016, 28(32): 6872-6879.
[8] Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, Zhang X, Yang J, Zhang X, Sun H, Liu W, Liang Y, Dai H. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window[J]. Advanced Materials, 2017, 29(12): 1605497.
[9] Yang Q L, Hu Z B, Zhu S J, Ma R, Ma H L, Ma Z R, Wan H, Zhu T, Jiang Z Y, Liu W Q, Jiao L Y, Sun H T, Liang Y Y, Dai H J. Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance[J]. Journal of the American Chemical Society, 2018, 140(5): 1715-1724.
[10] Wan H, Yue J, Zhu S, Uno T, Zhang X, Yang Q, Yu K, Hong G, Wang J, Li L, Ma Z, Gao H, Zhong Y, Su J, Antaris A L, Xia Y, Luo J, Liang Y, Dai H. A Bright Organic NIR-II Nanofluorophore for Three-Dimensional Imaging into Biological Tissues[J]. Nature Communications, 2018, 9: 1171.
[11] Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting Polymer Dots with Dually Enhanced NIR‐IIa Fluorescence for Through‐Skull Mouse Brain Imaging[J]. Angewandte Chemie International Edition, 2020, 59(9): 3691-3698.
[12] Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew W H, Yao K, Jiang J, Liu C, Zheng H, Liu B. Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors[J]. Advanced Materials, 2018, 30(29): 1800766.
[13] Liu Y, Liu J F, Chen D D, Wang X S, Zhang Z, Yang Y C, Jiang L H, Qi W Z, Ye Z Y, He S Q, Liu Q Y, Xi L, Zou Y P, Wu C F. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging[J]. Angewandte Chemie International Edition, 2020, 59(47): 21049-21057.
[14] Zhen X, Tao Y, An Z F, Chen P, Xu C J, Chen R F, Huang W, Pu K Y. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging[J]. Advanced Materials, 2017, 29(33): 1606665.
[15] Miao Q Q, Xie C, Zhen X, Lyu Y, Duan H W, Liu X G, Jokerst J V, Pu K Y. Molecular Afterglow Imaging with Bright, Biodegradable Polymer Nanoparticles[J]. Nature Biotechnology, 2017, 35(11): 1102-1110.
[16] Xie C, Zhen X, Miao Q Q, Lyu Y, Pu K Y. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors[J]. Advanced Materials, 2018, 30(21): 1801331.
[17] Zhen X, Xie C, Pu K Y. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy[J]. Angewandte Chemie International Edition, 2018, 57(15): 3938-3942.
[18] Li J C, Pu K Y. Development of Organic Semiconducting Materials for Deep-Tissue Optical Imaging, Phototherapy and Photoactivation[J]. Chemical Society Reviews, 2019, 48(1): 38-71.
[19] Shuhendler A J, Pu K Y, Cui L, Uetrecht J P, Rao J H. Real-time Imaging of Oxidative and Nitrosative Stress in the Liver of Live Animals for Drug-Toxicity Testing[J]. Nature Biotechnology, 2014, 32(4): 373-380.
[20] Zhen X, Zhang C W, Xie C, Miao Q Q, Lim K L, Pu K Y. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species[J]. ACS Nano, 2016, 10(6): 6400-6409.
[21] Mao D, Wu W B, Ji S L, Chen C, Hu F, Kong D L, Ding D, Liu B. Chemiluminescence-Guided Cancer Therapy Using a Chemiexcited Photosensitizer[J]. Chem, 2017, 3(6): 991-1007.
[22] Li P, Liu L, Xiao H B, Zhang W, Wang L L, Tang B. A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice[J]. Journal of the American Chemical Society, 2016, 138(9): 2893-2896.
[23] Bruemmer K J, Green O, Su T A, Shabat D, Chang C J. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice[J]. Angewandte Chemie International Edition, 2018, 57(25): 7508-7512.
[24] Green O, Eilon T, Hananya N, Gutkin S, Bauer C R, Shabat D. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes[J]. ACS Central Science, 2017, 3(4): 349-358.
[25] Cao J, Lopez R, Thacker J M, Moon J Y, Jiang C, Morris S N S, Bauer J H, Tao P, Mason R P, Lippert A R. Chemiluminescent Probes for Imaging H2S in Living Animals[J]. Chemical Science, 2015, 6(3): 1979-1985.
[26] Cao J, Campbell J, Liu L, Mason R P, Lippert A R. In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation[J]. Analytical Chemistry, 2016, 88(9): 4995-5002.
[27] Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. Near-Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode[J]. Journal of the American Chemical Society, 2017, 139(37): 13243-13248.
[28] Roth-Konforti M E, Bauer C R, Shabat D. Unprecedented Sensitivity in a Probe for Monitoring CathepsinB: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme[J]. Angewandte Chemie International Edition, 2017, 56(49): 15633-15638.
[29] Seeman N C. Nucleic-Acid Junctions and Lattices[J]. Journal of Theoretical Biology, 1982, 99(2): 237-247.
[30] Ellington A D, Szostak J W. In Vitro Selection of RNA Molecules That Bind Specific Ligands[J]. Nature, 1990, 346(6287): 818-822.
[31] Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J. Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin[J]. Nature, 1992, 355(6360): 564-566.
[32] Winfree E, Liu F R, Wenzler L A, Seeman N C. Design and Self-Assembly of Two-Dimensional DNA Crystals[J]. Nature, 1998, 394(6693): 539-544.
[33] Liu D, Wang M S, Deng Z X, Walulu R, Mao C D. Tensegrity: Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions[J]. Journal of the American Chemical Society, 2004, 126(8): 2324-2325.
[34] Zheng J P, Birktoft J J, Chen Y, Wang T, Sha R J, Constantinou P E, Ginell S L, Mao C D, Seeman N C. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal[J]. Nature, 2009, 461(7260): 74-77.
[35] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication[J]. Science, 2005, 310(5754): 1661-1665.
[36] Chen J H, Seeman N C. Synthesis from DNA of a Molecule with the Connectivity of a Cube[J]. Nature, 1991, 350(6319): 631-633.
[37] Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires[J]. Science, 2003, 301(5641): 1882-1884.
[38] Shih W M, Quispe J D, Joyce G F. A 1.7-kilobase Single-Stranded DNA that Folds into a Nanoscale Octahedron[J]. Nature, 2004, 427(6975): 618-621.
[39] Rothemund P W K. Folding DNA to Create Nanoscale Shapes and Patterns[J]. Nature, 2006, 440(7082): 297-302.
[40] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes[J]. Nature, 2009, 459(7245): 414-418.
[41] Dietz H, Douglas S M, Shih W M. Folding DNA into Twisted and Curved Nanoscale Shapes[J]. Science, 2009, 325(5941): 725-730.
[42] Han D R, Pal S, Liu Y, Yan H. Folding and Cutting DNA into Reconfigurable Topological Nanostructures[J]. Nature Nanotechnology, 2010, 5(10): 712-717.
[43] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials[J]. Nature, 1996, 382(6592): 607-609.
[44] Wang L, Deng Y, Wei J, Huang Y, Wang Z, Li G. Spherical Nucleic Acids-based Cascade Signal Amplification for Highly Sensitive Detection of Exosomes[J]. Biosensors and Bioelectronics, 2021, 191(1): 113465.
[45] Zhu L J, Guo Y Y, Qian Q H, Yan D Y, Li Y H, Zhu X Y, Zhang C. Carrier-Free Delivery of Precise Drug-Chemogene Conjugates for Synergistic Treatment of Drug-Resistant Cancer[J]. Angewandte Chemie International Edition, 2020, 59(41): 17944-17950.
[46] Fang Y, Lu X G, Wang D L, Cai J S, Wang Y Y, Chen P R, Ren M Q, Lu H, Union J, Zhang L, Sun Y H, Jia F, Kang X, Tan X Y, Zhang K. Spherical Nucleic Acids for Topical Treatment of Hyperpigmentation[J]. Journal of the American Chemical Society, 2021, 143(3): 1296-1300.
[47] Li H, Zhang B H, Lu X G, Tan X Y, Jia F, Xiao Y, Cheng Z H, Li Y, Silva D O, Schrekker H S, Zhang K, Mirkin C A. Molecular Spherical Nucleic Acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4340-4344.
[48] Mokhtarzadeh A, Vahidnezhad H, Youssefian L, Mosafer J, Baradaran B, Uitto J. Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems[J]. Trends in Molecular Medicine, 2019, 25(12): 1066-1079.
[49] Kapadia C H, Melamed J R, Day E S. Spherical Nucleic Acid Nanoparticles: Therapeutic Potential[J]. Biodrugs, 2018, 32(4): 297-309.
[50] Cutler J I, Auyeung E, Mirkin C A. Spherical Nucleic Acids[J]. Journal of the American Chemical Society, 2012, 134(3): 1376-1391.
[51] Tokareva I, Hutter E. Hybridization of Oligonucleotide-Modified Silver and Gold Nanoparticles in Aqueous Dispersions and on Gold Films[J]. Journal of the American Chemical Society, 2004, 126(48): 15784-15789.
[52] Lu J X, Sun J H, Li F Y, Wang J, Liu J N, Kim D, Fan C H, Hyeon T, Ling D S. Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies[J]. Journal of the American Chemical Society, 2018, 140(32): 10071-10074.
[53] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A. Semiconductor Nanocrystals as Fluorescent Biological Probes[J]. Science, 1998, 281(5385): 2013-2016.
[54] Banga R J, Chernyak N, Narayan S P, Nguyen S T, Mirkin C A. Liposomal Spherical Nucleic Acids[J]. Journal of the American Chemical Society, 2014, 136(28): 9866-9869.
[55] Brodin J D, Sprangers A J, McMillan J R, Mirkin C A. DNA-Mediated Cellular Delivery of Functional Enzymes[J]. Journal of the American Chemical Society, 2015, 137(47): 14838-14841.
[56] Lee S H, Mok H, Lee Y, Park T G. Self-Assembled siRNA-PLGA Conjugate Micelles for Gene Silencing[J]. Journal of Controlled Release, 2011, 152(1): 152-158.
[57] Ferrer J R, Sinegra A J, Ivancic D, Yeap X Y, Qiu L H, Wang J J, Zhang Z J, Wertheim J A, Mirkin C A. Structure-Dependent Biodistribution of Liposomal Spherical Nucleic Acids[J]. ACS Nano, 2020, 14(2): 1682-1693.
[58] Callmann C E, Kusmierz C D, Dittmar J W, Broger L, Mirkin C A. Impact of Liposomal Spherical Nucleic Acid Structure on Immunotherapeutic Function[J]. ACS Central Science, 2021, 7(5): 892-899.
[59] Meckes B, Banga R J, Nguyen S B T, Mirkin C A. Enhancing the Stability and Immunomodulatory Activity of Liposomal Spherical Nucleic Acids through Lipid-Tail DNA Modifications[J]. Small, 2017, 14(5): 1702909.
[60] Li Z, Zhang Y, Fullhart P, Mirkin C A. Reversible and Chemically Programmable Micelle Assembly with DNA Block-Copolymer Amphiphiles[J]. Nano Letters, 2004, 4(6): 1055-1058.
[61] Zhang C, Hao L L, Calabrese C M, Zhou Y, Choi C H J, Xing H, Mirkin C A. Biodegradable DNA-Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation[J]. Small, 2015, 11(40): 5360-5368.
[62] Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA Moiety of Ribonuclease P is the Catalytic Subunit of the Enzyme[J]. Cell, 1983, 35(3): 849-857.
[63] Cho E J, Yang L, Levy M, Ellington A D. Using a Deoxyribozyme Ligase and Rolling Circle Amplification to Detect a Non-Nucleic Acid Analyte, ATP[J]. Journal of the American Chemical Society, 2005, 127(7): 2022-2023.
[64] Zhang H, Lin L, Zeng X, Ruan Y, Wu Y, Lin M, He Y, Fu F. Magnetic Beads-based DNAzyme Recognition and AuNPs-based Enzymatic Catalysis Amplification for Visual Detection of Trace Uranyl Ion in Aqueous Environment[J]. Biosensors and Bioelectronics, 2016, 78(15): 73-79.
[65] Li F, Wang C, Guo W. Multifunctional Poly‐N‐isopropylacrylamide/DNAzyme Microgels as Highly Efficient and Recyclable Catalysts for Biosensing[J]. Advanced Functional Materials, 2018, 28(10): 1705876.
[66] Lee K, Povlich L K, Kim J. Label-Free and Self-Signal Amplifying Molecular DNA Sensors Based on Bioconjugated Polyelectrolytes[J]. Advanced Functional Materials, 2007, 17(14): 2580-2587.
[67] Sowwan M, Faroun M, Mentovich E, Ibrahim I, Haboush S, Alemdaroglu F E, Kwak M, Richter S, Herrmann A. Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy[J]. Macromolecular Rapid Communications, 2010, 31(14): 1242-1246.
[68] Ni Q Q, Zhang F W, Zhang Y L, Zhu G Z, Wang Z, Teng Z G, Wang C Y, Yung B C, Niu G, Lu G M, Zhang L J, Chen X Y. In Situ shRNA Synthesis on DNA-Polylactide Nanoparticles to Treat Multidrug Resistant Breast Cancer[J]. Advanced Materials, 2018, 30(10): 1705737.
[69] Wang D, Lu X, Jia F, Tan X, Sun X, Cao X, Wai F, Zhang C, Zhang K. Precision Tuning of DNA- and Poly (Ethylene Glycol)- based Nanoparticles via Coassembly for Effective Antisense Gene Regulation[J]. Chemistry of Materials, 2017, 29(23): 9882-9886.
[70] Liu K, Zheng L F, Liu Q, de Vries J W, Gerasimov J Y, Herrmann A. Nucleic Acid Chemistry in the Organic Phase: From Functionalized Oligonucleotides to DNA Side Chain Polymers[J]. Journal of the American Chemical Society, 2014, 136(40): 14255-14262.
[71] Ding F, Mou Q B, Ma Y, Pan G F, Guo Y Y, Tong G S, Choi C H J, Zhu X Y, Zhang C. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy[J]. Angewandte Chemie International Edition, 2018, 57(12): 3064-3068.
[72] Kwak M, Gao J, Prusty D K, Musser A J, Markov V A, Tombros N, Stuart M C A, Browne W R, Boekema E J, ten Brinke G, Jonkman H T, van Wees B J, Loi M A, Herrmann A. DNA Block Copolymer Doing It All: From Selection to Self-Assembly of Semiconducting Carbon Nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(14): 3206-3210.
[73] Albert S K, Thelu H V P, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-Assembly of DNA-Oligo(p-phenylene-ethynylene) Hybrid Amphiphiles into Surface-Engineered Vesicles with Enhanced Emission[J]. Angewandte Chemie International Edition, 2014, 53(32): 8352-8357.
[74] Luo Q J, Shi Z, Zhang Y T, Chen X J, Han S Y, Baumgart T, Chenoweth D M, Park S J. DNA Island Formation on Binary Block Copolymer Vesicles[J]. Journal of the American Chemical Society, 2016, 138(32): 10157-10162.
[75] Yang C Y J, Pinto M, Schanze K, Tan W H. Direct Synthesis of an Oligonucleotide-Poly(phenylene ethynylene) Conjugate with a Precise One-to-One Molecular Ratio[J]. Angewandte Chemie International Edition, 2005, 44(17): 2572-2576.
[76] Edwardson T G W, Carneiro K M M, Serpell C J, Sleiman H F. An Efficient and Modular Route to Sequence-Defined Polymers Appended to DNA[J]. Angewandte Chemie International Edition, 2014, 53(18): 4567-4571.
[77] Averick S E, Dey S K, Grahacharya D, Matyjaszewski K, Das S R. Solid-Phase Incorporation of an ATRP Initiator for Polymer-DNA Biohybrids[J]. Angewandte Chemie International Edition, 2014, 53(10): 2739-2744.
[78] Lueckerath T, Strauch T, Koynov K, Barner-Kowollik C, Ng D Y W, Weil T. DNA-Polymer Conjugates by Photoinduced RAFT Polymerization[J]. Biomacromolecules, 2019, 20(1): 212-221.
[79] Cangialosi A, Yoon C, Liu J, Huang Q, Guo J K, Nguyen T D, Gracias D H, Schulman R. DNA Sequence-Directed Shape change of Photopatterned Hydrogels via High-Degree Swelling[J]. Science, 2017, 357(6356): 1126-1129.
[80] Jia F, Lu X G, Tan X Y, Zhang K. Facile synthesis of nucleic acid-polymer amphiphiles and their self-assembly[J]. Chemical Communications, 2015, 51(37): 7843-7846.
[81] Roloff A, Carlini A S, Callmann C E, Gianneschi N C. Micellar Thrombin-Binding Aptamers: Reversible Nanoscale Anticoagulants[J]. Journal of the American Chemical Society, 2017, 139(46): 16442-16445.
[82] Lim M, Xia Y, Bettegowda C, Weller M. Current State of Immunotherapy for Glioblastoma[J]. Nature Reviews Clinical Oncology, 2018, 15(7): 422-442.
[83] Davis M E. Glioblastoma: Overview of Disease and Treatment[J]. Clinical Journal of Oncology Nursing, 2016, 20(5): 2-8.
[84] Langen K-J, Galldiks N, Hattingen E, Shah N J. Advances in Neuro-Oncology Imaging[J]. Nature Reviews Neuroscience, 2017, 13(5): 279.
[85] Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister S M, Nishikawa R, Rosenthal M, Wen P Y, Stupp R, Reifenberger G. Glioma[J]. Nature Reviews Disease Primers, 2015, 1(1): 15017.
[86] Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging Blood–Brain-Barrier-Crossing Nanotechnology for Brain Cancer Theranostics[J]. Chemical Society Reviews, 2019, 48(11): 2967-3014.
[87] Xue J W, Zhao Z K, Zhang L, Xue L J, Shen S Y, Wen Y J, Wei Z Y, Wang L, Kong L Y, Sun H B, Ping Q N, Mo R, Zhang C. Neutrophil-Mediated Anticancer Drug Delivery for Suppression of Postoperative Malignant Glioma Recurrence[J]. Nature Nanotechnology, 2017, 12(7): 692-700.
[88] Kim K R, Kang S J, Lee A Y, Hwang D, Park M, Park H, Kim S, Hur K, Chung H S, Mao C, Ahn D R. Highly Tumor-Specific DNA Nanostructures Discovered by In Vivo Screening of a Nucleic Acid Cage Library and Their Applications in Tumor-Targeted Drug Delivery[J]. Biomaterials, 2019, 195(1): 1-12.
[89] Seeman N C, Sleiman H F. DNA Nnanotechnology[J]. Nature Reviews Materials, 2018, 3(1): 17068.
[90] Li S P, Jiang Q, Liu S L, Zhang Y L, Tian Y H, Song C, Wang J, Zou Y G, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G B, Nie G J, Yan H, Ding B Q, Zhao Y L. A DNA Nanorobot Functions as a Cancer Therapeutic in Response to a Molecular Trigger In Vivo[J]. Nature Biotechnology, 2018, 36(3): 258-264.
[91] Jensen S A, Day E S, Ko C H, Hurley L A, Luciano J P, Kouri F M, Merkel T J, Luthi A J, Patel P C, Cutler J I, Daniel W L, Scott A W, Rotz M W, Meade T J, Giljohann D A, Mirkin C A, Stegh A H. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma[J]. Science Translational Medicine, 2013, 5(209): 152.
[92] Zheng M, Jiang T, Yang W, Zou Y, Wu H G, Liu X H, Zhu F P, Qian R J, Ling D S, McDonald K, Shi J J, Shi B Y. The siRNAsome: A Cation-Free and Versatile Nanostructure for siRNA and Drug Co-delivery[J]. Angewandte Chemie International Edition, 2019, 58(15): 4938-4942.
[93] Guo Y Y, Zhang J, Ding F, Pan G F, Li J, Feng J, Zhu X Y, Zhang C. Stressing the Role of DNA as a Drug Carrier: Synthesis of DNA-Drug Conjugates through Grafting Chemotherapeutics onto Phosphorothioate Oligonucleotides[J]. Advanced Materials, 2019, 31(16): 1807533.
[94] Tan X, Lu X, Jia F, Liu X, Sun Y, Logan J K, Zhang K. Blurring the Role of Oligonucleotides: Spherical Nucleic Acids as a Drug Delivery Vehicle[J]. Journal of the American Chemical Society, 2016, 138(34): 10834-10837.
[95] Rush A M, Nelles D A, Blum A P, Barnhill S A, Tatro E T, Yeo G W, Gianneschi N C. Intracellular mRNA Regulation with Self-Assembled Locked Nucleic Acid Polymer Nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(21): 7615-7618.
[96] Liu H, Moynihan K D, Zheng Y, Szeto G L, Li A V, Huang B, Van Egeren D S, Park C, Irvine D J. Structure-based Programming of Lymph-Node Targeting in Molecular Vaccines[J]. Nature, 2014, 507(7493): 519-522.
[97] Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic Dye Based Nanoparticles for Cancer Phototheranostics[J]. Small, 2018, 14(25): 1704247.
[98] Reisch A, Klymchenko A S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging[J]. Small, 2016, 12(15): 1968-1992.
[99] Ma Z, Wan H, Wang W, Zhang X, Uno T, Yang Q, Yue J, Gao H, Zhong Y, Tian Y, Sun Q, Liang Y, Dai H. A Theranostic Agent for Cancer Therapy and Imaging in the Second Near-Infrared Window[J]. Nano Research, 2019, 12(2): 273-279.
[100] Wu L, Wu I-C, DuFort C C, Carlson M A, Wu X, Chen L, Kuo C-T, Qin Y, Yu J, Hingorani S R, Chiu D T. Photostable Ratiometric Pdot Probe for In Vitro and In Vivo Imaging of Hypochlorous Acid[J]. Journal of the American Chemical Society, 2017, 139(20): 6911-6918.
[101] Randeria P S, Jones M R, Kohlstedt K L, Banga R J, de la Cruz M O, Schatz G C, Mirkin C A. What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids?[J]. Journal of the American Chemical Society, 2015, 137(10): 3486-3489.
[102] Xu P, Gullotti E, Tong L, Highley C B, Errabelli D R, Hasan T, Cheng J-X, Kohane D S, Yeo Y. Intracellular Drug Delivery by Poly (Lactic-co-Glycolic Acid) Nanoparticles, Revisited[J]. Molecular Pharmacology, 2009, 6(1): 190-201.
[103] Zhang H, Xia H, Wang J, Li Y. High Intensity Focused Ultrasound-Responsive Release Behavior of PLA-b-PEG Copolymer Micelles[J]. Journal of Controlled Release, 2009, 139(1): 31-39.
[104] Monaco I, Camorani S, Colecchia D, Locatelli E, Calandro P, Oudin A, Niclou S, Arra C, Chiariello M, Cerchia L, Franchini M C. Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood-Brain Barrier[J]. Journal of Medicinal Chemistry, 2017, 60(10): 4510-4516.
[105] Camorani S, Esposito C L, Rienzo A, Catuogno S, Iaboni M, Condorelli G, de Franciscis V, Cerchia L. Inhibition of Receptor Signaling and of Glioblastoma-Derived Tumor Growth by a Novel PDGFRβ Aptamer[J]. Molecular Therapy, 2014, 22(2): 828-841.
[106] Choi C H, Hao L, Narayan S P, Auyeung E, Mirkin C A. Mechanism for the Endocytosis of Spherical Nucleic Acid Nanoparticle Conjugates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7625-7630.
[107] Furtado D, Björnmalm M, Ayton S, Bush A I, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases[J]. Advanced Materials, 2018, 30(46): 1801362.
[108] Cai X, Bandla A, Mao D, Feng G, Qin W, Liao L D, Thakor N, Tang B Z, Liu B. Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregation-Induced Emission for Evaluation of Blood-Brain Barrier Damage[J]. Advanced Materials, 2016, 28(39): 8760-8765.
[109] Bolliger A, Everds N, Haematology of the Mouse[M]. The Laboratory Mouse. 2nd Ed. 2012: pp 331-347.
[110] Cui D, Xie C, Li J C, Lyu Y, Pu K Y. Semiconducting Photosensitizer-Incorporated Copolymers as Near-Infrared Afterglow Nanoagents for Tumor Imaging[J]. Advanced Healthcare Materials, 2018, 7(18): 1800329.
[111] Wu L Y, Ishigaki Y, Hu Y X, Sugimoto K, Zeng W H, Harimoto T, Sun Y D, He J, Suzuki T, Jiang X Q, Chen H Y, Ye D J. H2S-Activatable Near-Infrared Afterglow Luminescent Probes for Sensitive Molecular Imaging In Vivo[J]. Nature Communications, 2020, 11: 446.
[112] Xie C, Lyu Y, Zhen X, Miao Q Q, Pu K Y. Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols[J]. Acs Applied Bio Materials, 2018, 1(4): 1147-1153.
[113] Xu W T, He W C, Du Z H, Zhu L Y, Huang K L, Lu Y, Luo Y B. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications[J]. Angewandte Chemie International Edition, 2021, 60(13): 6890-6918.
[114] Alvarez-Salas L M. Nucleic Acids as Therapeutic Agents[J]. Current Topics in Medicinal Chemistry, 2008, 8(15): 1379-1404.
[115] Klinman D M, Klaschik S, Sato T, Tross D. CpG Oligonucleotides as Adjuvants for Vaccines Targeting Infectious Diseases[J]. Advanced Drug Delivery Reviews, 2009, 61(3): 248-255.
[116] Li H Y, Fan J L, Buhl E M, Huo S D, Loznik M, Gostl R, Herrmann A. DNA Hybridization as a General Method to Enhance the Cellular Uptake of Nanostructures[J]. Nanoscale, 2020, 12(41): 21299-21305.
[117] Han L, Wang M J, Jia X M, Chen W, Qian H J, He F. Uniform Two-Dimensional Square Assemblies from Conjugated Block Copolymers Driven by pi-pi Interactions with Controllable Sizes[J]. Nature Communications, 2018, 9: 865.
[118] Evanko D. Focus on Fluorescence Imaging[J]. Nature Methods, 2005, 2(12): 901-901.
[119] Wolfbeis O S. An Overview of Nanoparticles Commonly Used in Fluorescent Bioimaging[J]. Chemical Society Reviews, 2015, 44(14): 4743-4768.
[120] Yang Y Q, Fan X X, Li L, Yang Y M, Nuernisha A, Xue D W, He C, Qian J, Hu Q L, Chen H, Liu J, Huang W. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence[J]. ACS Nano, 2020, 14(2): 2509-2521.
[121] Men X, Wang F, Chen H B, Liu Y B, Men X X, Yuan Y, Zhang Z, Gao D Y, Wu C F, Yuan Z. Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy[J]. Advanced Functional Materials, 2020, 30(24): 1909673.
[122] Yang T, Liu L, Deng Y B, Guo Z Q, Zhang G B, Ge Z S, Ke H T, Chen H B. Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for Dually Photoactive Tumor Inhibition[J]. Advanced Materials, 2017, 29(31): 1700487.
[123] Wu C F, Chiu D T. Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine[J]. Angewandte Chemie International Edition, 2013, 52(11): 3086-3109.
[124] MacFarlane L R, Shaikh H, Garcia-Hernandez J D, Vespa M, Fukui T, Manners I. Functional Nanoparticles through pi-Conjugated Polymer Self-Assembly[J]. Nature Reviews Materials, 2021, 6(1): 7-26.
[125] Wu C F, Schneider T, Zeigler M, Yu J B, Schiro P G, Burnham D R, McNeill J D, Chiu D T. Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting[J]. Journal of the American Chemical Society, 2010, 132(43): 15410-15417.
[126] Pu K Y, Liu B. Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing[J]. Advanced Functional Materials, 2009, 19(2): 277-284.
[127] Wang Y X, Li S L, Liu L B, Lv F T, Wang S. Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts[J]. Angewandte Chemie International Edition, 2017, 56(19): 5308-5311.
[128] Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted Semiconducting Polymer Amphiphiles for Multimodal Optical Imaging and Combination Phototherapy[J]. Chemical Science, 2020, 11(39): 10553-10570.
[129] Nolan T, Hands R E, Bustin S A. Quantification of mRNA using Real-Time RT-PCR[J]. Nature Protocols, 2006, 1(3): 1559-1582.
[130] Teles F R R, Fonseca L R. Trends in DNA Biosensors[J]. Talanta, 2008, 77(2): 606-623.
[131] Melnychuk N, Egloff S, Runser A, Reisch A, Klymchenko A S. Light-Harvesting Nanoparticle Probes for FRET-Based Detection of Oligonucleotides with Single-Molecule Sensitivity[J]. Angewandte Chemie International Edition, 2020, 59(17): 6811-6818.
[132] Severi C, Melnychuk N, Klymchenko A S. Smartphone-Assisted Detection of Nucleic Acids by Light-Harvesting FRET-based Nanoprobe[J]. Biosensors and Bioelectronics, 2020, 168(15): 112515.
[133] Melnychuk N, Klymchenko A S. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids[J]. Journal of the American Chemical Society, 2018, 140(34): 10856-10865.
[134] Trofymchuk K, Reisch A, Didier P, Fras F, Gilliot P, Mely Y, Klymchenko A S. Giant Light-Harvesting Nanoantenna for Single-Molecule Detection in Ambient Light[J]. Nature Photonics, 2017, 11(10): 657-663.
[135] Xie C, Zhen X, Lei Q L, Ni R, Pu K Y. Self-Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging[J]. Advanced Functional Materials, 2017, 27(8): 1605397.
[136] Piwonski H, Michinobu T, Habuchi S. Controlling Photophysical Properties of Ultrasmall Conjugated Polymer Nanoparticles Through Polymer Chain Packing[J]. Nature Communications, 2017, 8: 15256.
[137] Vogelsang J, Adachi T, Brazard J, Bout D A V, Barbara P F. Self-Assembly of Highly Ordered Conjugated Polymer Aggregates with Long-Range Energy Transfer[J]. Nature Materials, 2011, 10(12): 942-946.
[138] Pecher J, Mecking S. Nanoparticles of Conjugated Polymers[J]. Chemical Reviews, 2010, 110(10): 6260-6279.
[139] Groff L C I. Picosecond Time-Resolved Studies of Multiple Energy Transfer in Conjugated Polymer Nanoparticles. Clemson University, 2015. pp 117-152.
[140] Krol J, Loedige I, Filipowicz W. The Widespread Regulation of microRNA Biogenesis, Function and Decay[J]. Nature Reviews Genetics, 2010, 11(9): 597-610.
[141] Choi C K K, Li J M, Wei K C, Xu Y J, Ho L W C, Zhu M L, To K K W, Choi C H J, Bian L M. A Gold@Polydopamine Core-Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells[J]. Journal of the American Chemical Society, 2015, 137(23): 7337-7346.
[142] Yu J T, He S H, Shao C, Zhao H R, Li J, Tian L L. A Common Anchor Facilitated GO-DNA Nano-System for Multiplex MicroRNA Analysis in Live Cells[J]. Nanoscale, 2018, 10(15): 7067-7076.
[143] Cheglakov Z, Cronin T M, He C, Weizmann Y. Live Cell MicroRNA Imaging Using Cascade Hybridization Reaction[J]. Journal of the American Chemical Society, 2015, 137(19): 6116-6119.
[144] Wu C C, Cansiz S, Zhang L Q, Teng I T, Qiu L P, Li J, Liu Y, Zhou C S, Hu R, Zhang T, Cui C, Cui L, Tan W H. A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells[J]. Journal of the American Chemical Society, 2015, 137(15): 4900-4903.
[145] Wu Z, Liu G Q, Yang X L, Jiang J H. Electrostatic Nucleic Acid Nanoassembly Enables Hybridization Chain Reaction in Living Cells for Ultrasensitive mRNA Imaging[J]. Journal of the American Chemical Society, 2015, 137(21): 6829-6836.
[146] Liang C P, Ma P Q, Liu H, Guo X G, Yin B C, Ye B C. Rational Engineering of a Dynamic, Entropy-Driven DNA Nanomachine for Intracellular MicroRNA Imaging[J]. Angewandte Chemie International Edition, 2017, 56(31): 9077-9081.
[147] Peng H Y, Li X F, Zhang H Q, Le X C. A MicroRNA-Initiated DNAzyme Motor Operating in Living Cells[J]. Nature Communications, 2017, 8: 14378.
[148] Ying Z M, Wu Z, Tu B, Tan W H, Jiang J H. Genetically Encoded Fluorescent RNA Sensor for Ratiometric Imaging of MicroRNA in Living Tumor Cells[J]. Journal of the American Chemical Society, 2017, 139(29): 9779-9782.
[149] He L, Lu D Q, Liang H, Xie S T, Zhang X B, Liu O L, Yuan Q, Tan W H. mRNA-Initiated, Three-Dimensional DNA Amplifier Able to Function inside Living Cells[J]. Journal of the American Chemical Society, 2018, 140(1): 258-263.
[150] Ge J, Zhang L L, Liu S J, Yu R Q, Chu X. A Highly Sensitive Target-Primed Rolling Circle Amplification (TPRCA) Method for Fluorescent in Situ Hybridization Detection of MicroRNA in Tumor Cells[J]. Analytical Chemistry, 2014, 86(3): 1808-1815.
[151] Deng R J, Zhang K X, Sun Y P, Ren X J, Li J H. Highly Specific Imaging of mRNA in Single Cells by Target RNA-Initiated Rolling Circle Amplification[J]. Chemical Science, 2017, 8(5): 3668-3675.
[152] Meng X D, Zhang K, Dai W H, Cao Y, Yang F, Dong H F, Zhang X J. Multiplex microRNA Imaging in Living Cells using DNA-Capped-Au Assembled Hydrogels[J]. Chemical Science, 2018, 9(37): 7419-7425.
[153] Zhou S Y, Zhang S J, Shen H Y, Chen W, Xu H Z, Chen X, Sun D W, Zhong S L, Zhao J H, Tang J H. Curcumin Inhibits Cancer Progression through Regulating Expression of microRNAs[J]. Tumor Biology, 2017, 39(2): 10.1177/1010428317691680.
Edit Comment