中文版 | English
Title

核酸-有机发光杂化材料的合成及其生物成像和传感应用

Alternative Title
SYNTHESIS OF NUCLEIC ACID-ORGANIC LUMINESCENT HYBRID MATERIALS AND THEIR APPLICATIONS IN BIOIMAGING AND BIOSENSING
Author
Name pinyin
XIAO Fan
School number
11749225
Degree
博士
Discipline
0805 材料科学与工程
Subject category of dissertation
08 工学
Supervisor
田雷蕾
Mentor unit
材料科学与工程系
Publication Years
2022-05-18
Submission date
2022-06-29
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

基于光学信号的传感和成像技术具有灵敏度高、特异性好、响应速度快、成本较低、能够实现非侵入性成像等特点,已成为生物医学领域中的重要工具。与无机发光材料相比,有机发光材料具有更高的光捕获能力、更高的亮度、更好的生物相容性、性能连续可调等特点。然而,当前的有机发光材料在生物成像和传感应用中仍然缺乏对生物标志物特异性的识别能力,极大限制了其临床转化和商业应用。

研究人员已经开发出了生物分子偶联策略来解决上述问题,例如寡肽偶联、酶偶联和抗体偶联。核酸分子具有独特的分子识别和组装能力、丰富的生物功能性,在纳米制造和生物医学领域受到广泛关注,尤其在基于信号动态变化的生物传感器设计和药物分子的靶向递送中显现出不可替代的地位。然而,很少有报道利用功能核酸改善有机发光材料的生物医学应用,这主要是受到合成和制备技术的限制,无法将亲水性的核酸与高度疏水的有机发光材料结合起来。因此,本论文系统性地研究了将核酸高效可控地修饰到有机发光材料上的方法,开发了一系列核酸-有机发光杂化材料,详细研究了它们的光学性质和生物学性质,拓展了它们在生物成像和生物传感中的应用。主要研究内容和结果总结如下:

克服血脑屏障的阻碍是实现近红外二区(NIR-II)纳米荧光团靶向成像脑肿瘤的重要前提。本论文开发了一种有机球形核酸,其通过疏水相互作用包覆NIR-II发光染料。这种有机球形核酸由新型的两亲性DNA嵌段共聚物——聚苯乙烯-b-DNA(PS-b-DNA)在水溶液中自组装形成的。研究发现,基于PS-b-DNA的发光杂化材料可以通过清道夫受体介导的转胞吞途径高效地跨越血脑屏障。通过表面DNA的链杂交,可以进一步修饰靶向脑肿瘤的核酸适配体,增强成像剂在脑肿瘤部位的富集。小鼠脑肿瘤荧光成像的结果显示,基于核酸杂化材料的NIR-II纳米荧光团在脑肿瘤处的荧光信号是基于传统PS-b-PEG纳米荧光团的3.8倍,显著提高的成像分辨率将有利于脑肿瘤的进一步诊断和治疗。

虽然NIR-II荧光成像实现了更深层的组织穿透,但受组织光散射和自身荧光的影响,其成像分辨率仍然亟待提高。余辉成像作为一种持续发光技术,消除了外界激发光源的影响,可实现明显高于荧光成像的信噪比。本论文通过核酸修饰技术提高了有机长余辉纳米粒子靶向肿瘤的能力,开发了一种共组装策略——将两亲性的脂质-DNA和疏水的半导体聚合物共组装成DNA功能化的半导体聚合物纳米粒子(DNA-SPNs)。进一步通过DNA-SPNs表面DNA的互补配对引入具有靶向功能的核酸适配体,赋予SPNs特异性的肿瘤靶向能力。小鼠的肿瘤余辉成像结果显示,DNA修饰的SPNs相比于未修饰的SPNs在肿瘤部位的余辉信号对比度提高了1.7倍,相关结果对实现微小肿瘤的早期诊断具有重要意义。

上述两个工作都是通过物理复合有机发光材料进而得到核酸-有机发光杂化材料,在生物应用中存在着复合结构分离从而影响生物安全性的风险。因此,论文进一步开发了将多条DNA序列共价接枝到疏水荧光共轭聚合物(FCP)骨架上的化学偶联策略,合成了两亲性的FCP-g-DNA,该方法合成产率高,产物结构明确,特别是排除了有机发光材料和DNA解离的风险。FCP-g-DNA在疏水驱动力下自组装形成球形核酸(SNA),其内核完全由FCP组成,因此最大化了其“光捕获天线放大效应”。由于FCP独特的电子离域结构和表面DNA的分子识别能力,FCP-SNA的能量传递范围可超越Förster半径,实现了传感信号的~37倍放大,可用于超低浓度的标志物检测。在传感应用中, FCP-SNA探针对microRNA的检测限低至1.7 pM,适用于单细胞水平的microRNA成像,在分子生物学、药物筛选、病理分析领域展示出很好的应用潜力。

关键词:生物传感;生物成像;有机发光材料;功能核酸;核酸-有机发光杂化材料

Other Abstract

Sensing and imaging techniques based on optical signals have emerged as crucial tools in biological and medical research due to their superiority in high sensitivity, specificity, quick feedback, low cost, non-invasive imaging. Compared with the inorganic luminescent materials, organic luminescent materials (OLMs) exhibit higher light-harvesting capacity, higher brightness, better biocompatibility, and continuously tunable performance. However, current OLMs still lack the capability of recognizing biomarkers in bioimaging and biosensing, which greatly limits their clinical translation and commercial applications.

Biomolecule conjugation have been developed to address the above problems, such as oligopeptide conjugation, enzyme conjugation, and antibody conjugation. Nucleic acids exhibit unique molecular recognition, assembly capabilities, and rich biological functionalities, which makes them become a kind of important material in biomedical field, especially in the design of biosensors based on dynamic signal changes and targeted drug delivery. However, very few reports have utilized functional nucleic acids to improve the biomedical applications of OLMs, which is limited by technical difficulties in the combination between the hydrophilic nucleic acids with the highly hydrophobic OLMs. Therefore, in this dissertation, the methods of efficiently and controllably modifying nucleic acids onto OLMs have been systematically studied, and a series of nucleic acid-organic luminescent hybrid materials (NA-OLMs) have been developed. On the basis of the detailed investigation of their optical and biological properties, their applications in bioimaging and biosensing have been exploited. The main research contents and results are summarized as follows:

Overcoming the obstacles of blood-brain barrier (BBB) is an important prerequisite for the near-infrared second region (NIR-II) nanofluorophores in targeted imaging of brain tumors. Therefore, an organic spherical nucleic acid (SNA) is developed and it can encapsulate NIR-II fluorescent dyes through hydrophobic interactions. This organic SNA is formed by self-assembly of a novel amphiphilic DNA block copolymer, polystyrene-b-DNA (PS-b-DNA), in aqueous solution. The study found that the PS-b-DNA-based NA-OLMs could efficiently cross the BBB via the scavenger receptor-mediated transcytosis pathway. Through the strand hybridization of surface DNA, nucleic acid aptamers targeting brain tumors can be modified to further enhance the enrichment of imaging agents at brain tumor sites. The imaging of mouse brain tumors showed that the fluorescence signal of NIR-II nanofluorophore based on NA-OLMs at brain tumor was 3.8 times as high as that of the nanofluorophore based on PS-b-PEG.

Although NIR-II fluorescence imaging achieves deeper tissue penetration, its resolution still needs to be improved due to tissue light scattering and autofluorescence. As a persistent luminescence technology, afterglow imaging can achieve a signal-to-background ratio (SBR) significantly higher than that of fluorescence imaging due to the removal of external excitation light source. To confer the capability of targeting tumors on organic afterglow nanoparticles, a co-assembly strategy is developed to fabricate DNA-functionalized semiconducting polymer nanoparticles (DNA-SPNs) by the self-assembly of the amphiphilic lipid-DNA and hydrophobic SPs. Through the complementary pairing of DNA on the surface of DNA-SPNs, nucleic acid aptamers with targeting function are introduced, which endows DNA-SPNs with stronger tumor-targeting capability. The tumor afterglow imaging in mice demonstrated that DNA-modified SPNs showed 1.7-fold improvement in SBR of afterglow signal at tumor sites compared with unmodified SPNs.

In the above two works, NA-OLMs are fabricated by physically encapsulating the OLMs, and there is a risk that the composite structure will be separated and affect biological safety in biological applications. Therefore, a chemical conjugation strategy of directly grafting multiple DNA strands onto the backbone of hydrophobic fluorescent conjugated polymer (FCP) is developed to synthesize amphiphilic FCP-g-DNA. This method shows high synthesis efficiency and a well-defined product structure, especially eliminating the risk of dissociation of OLMs and DNA. The FCP-g-DNA amphiphiles self-assemble into an SNA structure under hydrophobic driving force, whose inner core is entirely composed of FCP, thus maximizing its “light-harvesting antenna amplification effect”. Due to the unique electron delocalized structure of FCP and the molecular recognition capability of the surface DNA, the energy transfer range of FCP-SNA can exceed the Förster radius, achieving ~37-fold amplification of the sensing signal, which can be applied in marker detection at ultra-low concentrations. Therefore, it was observed that the detection limit of this FCP-SNA probe for microRNA detection reached as low as 1.7 pM in a sensing applications. Further, the FCP-based SNA probe was applied for microRNA imaging at the single-cell level.

Keywords: biosensing, bioimaging, organic luminescent material, functional nucleic acid, nucleic acid-organic luminescent hybrid material

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2017
Year of Degree Awarded
2022-07
References List

[1] Wu W B, Bazan G C, Liu B. Conjugated-Polymer-Amplified Sensing, Imaging, and Therapy[J]. Chem, 2017, 2(6): 760-790.
[2] Gaylord B S, Heeger A J, Bazan G C. DNA Detection using Water-Soluble Conjugated Polymers and Peptide Nucleic Scid Probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(17): 10954-10957.
[3] Feng F D, Tang Y L, Wang S, Li Y L, Zhu D B. Continuous Fluorometric Assays for Acetylcholinesterase Activity and Inhibition with Conjugated Polyelectrolytes[J]. Angewandte Chemie International Edition, 2007, 46(41): 7882-7886.
[4] Pu K Y, Shuhendler A J, Rao J H. Semiconducting Polymer Nanoprobe for In Vivo Imaging of Reactive Oxygen and Nitrogen Species[J]. Angewandte Chemie International Edition, 2013, 52(39): 10325-10329.
[5] Hong G S, Antaris A L, Dai H J. Near-Infrared Fluorophores for Biomedical Imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[6] Antaris A L, Chen H, Cheng K, Sun Y, Hong G S, Qu C R, Diao S, Deng Z X, Hu X M, Zhang B, Zhang X D, Yaghi O K, Alamparambil Z R, Hong X C, Cheng Z, Dai H J. A Small-Molecule Dye for NIR-II Imaging[J]. Nature Materials, 2016, 15(2): 235-242.
[7] Zhang X D, Wang H S, Antaris A L, Li L L, Diao S, Ma R, Nguyen A, Hong G S, Ma Z R, Wang J, Zhu S J, Castellano J M, Wyss-Coray T, Liang Y Y, Luo J, Dai H J. Traumatic Brain Injury Imaging in the Second Near-Infrared Window with a Molecular Fluorophore[J]. Advanced Materials, 2016, 28(32): 6872-6879.
[8] Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, Zhang X, Yang J, Zhang X, Sun H, Liu W, Liang Y, Dai H. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window[J]. Advanced Materials, 2017, 29(12): 1605497.
[9] Yang Q L, Hu Z B, Zhu S J, Ma R, Ma H L, Ma Z R, Wan H, Zhu T, Jiang Z Y, Liu W Q, Jiao L Y, Sun H T, Liang Y Y, Dai H J. Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance[J]. Journal of the American Chemical Society, 2018, 140(5): 1715-1724.
[10] Wan H, Yue J, Zhu S, Uno T, Zhang X, Yang Q, Yu K, Hong G, Wang J, Li L, Ma Z, Gao H, Zhong Y, Su J, Antaris A L, Xia Y, Luo J, Liang Y, Dai H. A Bright Organic NIR-II Nanofluorophore for Three-Dimensional Imaging into Biological Tissues[J]. Nature Communications, 2018, 9: 1171.
[11] Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting Polymer Dots with Dually Enhanced NIR‐IIa Fluorescence for Through‐Skull Mouse Brain Imaging[J]. Angewandte Chemie International Edition, 2020, 59(9): 3691-3698.
[12] Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew W H, Yao K, Jiang J, Liu C, Zheng H, Liu B. Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors[J]. Advanced Materials, 2018, 30(29): 1800766.
[13] Liu Y, Liu J F, Chen D D, Wang X S, Zhang Z, Yang Y C, Jiang L H, Qi W Z, Ye Z Y, He S Q, Liu Q Y, Xi L, Zou Y P, Wu C F. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging[J]. Angewandte Chemie International Edition, 2020, 59(47): 21049-21057.
[14] Zhen X, Tao Y, An Z F, Chen P, Xu C J, Chen R F, Huang W, Pu K Y. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging[J]. Advanced Materials, 2017, 29(33): 1606665.
[15] Miao Q Q, Xie C, Zhen X, Lyu Y, Duan H W, Liu X G, Jokerst J V, Pu K Y. Molecular Afterglow Imaging with Bright, Biodegradable Polymer Nanoparticles[J]. Nature Biotechnology, 2017, 35(11): 1102-1110.
[16] Xie C, Zhen X, Miao Q Q, Lyu Y, Pu K Y. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors[J]. Advanced Materials, 2018, 30(21): 1801331.
[17] Zhen X, Xie C, Pu K Y. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy[J]. Angewandte Chemie International Edition, 2018, 57(15): 3938-3942.
[18] Li J C, Pu K Y. Development of Organic Semiconducting Materials for Deep-Tissue Optical Imaging, Phototherapy and Photoactivation[J]. Chemical Society Reviews, 2019, 48(1): 38-71.
[19] Shuhendler A J, Pu K Y, Cui L, Uetrecht J P, Rao J H. Real-time Imaging of Oxidative and Nitrosative Stress in the Liver of Live Animals for Drug-Toxicity Testing[J]. Nature Biotechnology, 2014, 32(4): 373-380.
[20] Zhen X, Zhang C W, Xie C, Miao Q Q, Lim K L, Pu K Y. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species[J]. ACS Nano, 2016, 10(6): 6400-6409.
[21] Mao D, Wu W B, Ji S L, Chen C, Hu F, Kong D L, Ding D, Liu B. Chemiluminescence-Guided Cancer Therapy Using a Chemiexcited Photosensitizer[J]. Chem, 2017, 3(6): 991-1007.
[22] Li P, Liu L, Xiao H B, Zhang W, Wang L L, Tang B. A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice[J]. Journal of the American Chemical Society, 2016, 138(9): 2893-2896.
[23] Bruemmer K J, Green O, Su T A, Shabat D, Chang C J. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice[J]. Angewandte Chemie International Edition, 2018, 57(25): 7508-7512.
[24] Green O, Eilon T, Hananya N, Gutkin S, Bauer C R, Shabat D. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes[J]. ACS Central Science, 2017, 3(4): 349-358.
[25] Cao J, Lopez R, Thacker J M, Moon J Y, Jiang C, Morris S N S, Bauer J H, Tao P, Mason R P, Lippert A R. Chemiluminescent Probes for Imaging H2S in Living Animals[J]. Chemical Science, 2015, 6(3): 1979-1985.
[26] Cao J, Campbell J, Liu L, Mason R P, Lippert A R. In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation[J]. Analytical Chemistry, 2016, 88(9): 4995-5002.
[27] Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. Near-Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode[J]. Journal of the American Chemical Society, 2017, 139(37): 13243-13248.
[28] Roth-Konforti M E, Bauer C R, Shabat D. Unprecedented Sensitivity in a Probe for Monitoring CathepsinB: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme[J]. Angewandte Chemie International Edition, 2017, 56(49): 15633-15638.
[29] Seeman N C. Nucleic-Acid Junctions and Lattices[J]. Journal of Theoretical Biology, 1982, 99(2): 237-247.
[30] Ellington A D, Szostak J W. In Vitro Selection of RNA Molecules That Bind Specific Ligands[J]. Nature, 1990, 346(6287): 818-822.
[31] Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J. Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin[J]. Nature, 1992, 355(6360): 564-566.
[32] Winfree E, Liu F R, Wenzler L A, Seeman N C. Design and Self-Assembly of Two-Dimensional DNA Crystals[J]. Nature, 1998, 394(6693): 539-544.
[33] Liu D, Wang M S, Deng Z X, Walulu R, Mao C D. Tensegrity: Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions[J]. Journal of the American Chemical Society, 2004, 126(8): 2324-2325.
[34] Zheng J P, Birktoft J J, Chen Y, Wang T, Sha R J, Constantinou P E, Ginell S L, Mao C D, Seeman N C. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal[J]. Nature, 2009, 461(7260): 74-77.
[35] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication[J]. Science, 2005, 310(5754): 1661-1665.
[36] Chen J H, Seeman N C. Synthesis from DNA of a Molecule with the Connectivity of a Cube[J]. Nature, 1991, 350(6319): 631-633.
[37] Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires[J]. Science, 2003, 301(5641): 1882-1884.
[38] Shih W M, Quispe J D, Joyce G F. A 1.7-kilobase Single-Stranded DNA that Folds into a Nanoscale Octahedron[J]. Nature, 2004, 427(6975): 618-621.
[39] Rothemund P W K. Folding DNA to Create Nanoscale Shapes and Patterns[J]. Nature, 2006, 440(7082): 297-302.
[40] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes[J]. Nature, 2009, 459(7245): 414-418.
[41] Dietz H, Douglas S M, Shih W M. Folding DNA into Twisted and Curved Nanoscale Shapes[J]. Science, 2009, 325(5941): 725-730.
[42] Han D R, Pal S, Liu Y, Yan H. Folding and Cutting DNA into Reconfigurable Topological Nanostructures[J]. Nature Nanotechnology, 2010, 5(10): 712-717.
[43] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials[J]. Nature, 1996, 382(6592): 607-609.
[44] Wang L, Deng Y, Wei J, Huang Y, Wang Z, Li G. Spherical Nucleic Acids-based Cascade Signal Amplification for Highly Sensitive Detection of Exosomes[J]. Biosensors and Bioelectronics, 2021, 191(1): 113465.
[45] Zhu L J, Guo Y Y, Qian Q H, Yan D Y, Li Y H, Zhu X Y, Zhang C. Carrier-Free Delivery of Precise Drug-Chemogene Conjugates for Synergistic Treatment of Drug-Resistant Cancer[J]. Angewandte Chemie International Edition, 2020, 59(41): 17944-17950.
[46] Fang Y, Lu X G, Wang D L, Cai J S, Wang Y Y, Chen P R, Ren M Q, Lu H, Union J, Zhang L, Sun Y H, Jia F, Kang X, Tan X Y, Zhang K. Spherical Nucleic Acids for Topical Treatment of Hyperpigmentation[J]. Journal of the American Chemical Society, 2021, 143(3): 1296-1300.
[47] Li H, Zhang B H, Lu X G, Tan X Y, Jia F, Xiao Y, Cheng Z H, Li Y, Silva D O, Schrekker H S, Zhang K, Mirkin C A. Molecular Spherical Nucleic Acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4340-4344.
[48] Mokhtarzadeh A, Vahidnezhad H, Youssefian L, Mosafer J, Baradaran B, Uitto J. Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems[J]. Trends in Molecular Medicine, 2019, 25(12): 1066-1079.
[49] Kapadia C H, Melamed J R, Day E S. Spherical Nucleic Acid Nanoparticles: Therapeutic Potential[J]. Biodrugs, 2018, 32(4): 297-309.
[50] Cutler J I, Auyeung E, Mirkin C A. Spherical Nucleic Acids[J]. Journal of the American Chemical Society, 2012, 134(3): 1376-1391.
[51] Tokareva I, Hutter E. Hybridization of Oligonucleotide-Modified Silver and Gold Nanoparticles in Aqueous Dispersions and on Gold Films[J]. Journal of the American Chemical Society, 2004, 126(48): 15784-15789.
[52] Lu J X, Sun J H, Li F Y, Wang J, Liu J N, Kim D, Fan C H, Hyeon T, Ling D S. Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies[J]. Journal of the American Chemical Society, 2018, 140(32): 10071-10074.
[53] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A. Semiconductor Nanocrystals as Fluorescent Biological Probes[J]. Science, 1998, 281(5385): 2013-2016.
[54] Banga R J, Chernyak N, Narayan S P, Nguyen S T, Mirkin C A. Liposomal Spherical Nucleic Acids[J]. Journal of the American Chemical Society, 2014, 136(28): 9866-9869.
[55] Brodin J D, Sprangers A J, McMillan J R, Mirkin C A. DNA-Mediated Cellular Delivery of Functional Enzymes[J]. Journal of the American Chemical Society, 2015, 137(47): 14838-14841.
[56] Lee S H, Mok H, Lee Y, Park T G. Self-Assembled siRNA-PLGA Conjugate Micelles for Gene Silencing[J]. Journal of Controlled Release, 2011, 152(1): 152-158.
[57] Ferrer J R, Sinegra A J, Ivancic D, Yeap X Y, Qiu L H, Wang J J, Zhang Z J, Wertheim J A, Mirkin C A. Structure-Dependent Biodistribution of Liposomal Spherical Nucleic Acids[J]. ACS Nano, 2020, 14(2): 1682-1693.
[58] Callmann C E, Kusmierz C D, Dittmar J W, Broger L, Mirkin C A. Impact of Liposomal Spherical Nucleic Acid Structure on Immunotherapeutic Function[J]. ACS Central Science, 2021, 7(5): 892-899.
[59] Meckes B, Banga R J, Nguyen S B T, Mirkin C A. Enhancing the Stability and Immunomodulatory Activity of Liposomal Spherical Nucleic Acids through Lipid-Tail DNA Modifications[J]. Small, 2017, 14(5): 1702909.
[60] Li Z, Zhang Y, Fullhart P, Mirkin C A. Reversible and Chemically Programmable Micelle Assembly with DNA Block-Copolymer Amphiphiles[J]. Nano Letters, 2004, 4(6): 1055-1058.
[61] Zhang C, Hao L L, Calabrese C M, Zhou Y, Choi C H J, Xing H, Mirkin C A. Biodegradable DNA-Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation[J]. Small, 2015, 11(40): 5360-5368.
[62] Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA Moiety of Ribonuclease P is the Catalytic Subunit of the Enzyme[J]. Cell, 1983, 35(3): 849-857.
[63] Cho E J, Yang L, Levy M, Ellington A D. Using a Deoxyribozyme Ligase and Rolling Circle Amplification to Detect a Non-Nucleic Acid Analyte, ATP[J]. Journal of the American Chemical Society, 2005, 127(7): 2022-2023.
[64] Zhang H, Lin L, Zeng X, Ruan Y, Wu Y, Lin M, He Y, Fu F. Magnetic Beads-based DNAzyme Recognition and AuNPs-based Enzymatic Catalysis Amplification for Visual Detection of Trace Uranyl Ion in Aqueous Environment[J]. Biosensors and Bioelectronics, 2016, 78(15): 73-79.
[65] Li F, Wang C, Guo W. Multifunctional Poly‐N‐isopropylacrylamide/DNAzyme Microgels as Highly Efficient and Recyclable Catalysts for Biosensing[J]. Advanced Functional Materials, 2018, 28(10): 1705876.
[66] Lee K, Povlich L K, Kim J. Label-Free and Self-Signal Amplifying Molecular DNA Sensors Based on Bioconjugated Polyelectrolytes[J]. Advanced Functional Materials, 2007, 17(14): 2580-2587.
[67] Sowwan M, Faroun M, Mentovich E, Ibrahim I, Haboush S, Alemdaroglu F E, Kwak M, Richter S, Herrmann A. Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy[J]. Macromolecular Rapid Communications, 2010, 31(14): 1242-1246.
[68] Ni Q Q, Zhang F W, Zhang Y L, Zhu G Z, Wang Z, Teng Z G, Wang C Y, Yung B C, Niu G, Lu G M, Zhang L J, Chen X Y. In Situ shRNA Synthesis on DNA-Polylactide Nanoparticles to Treat Multidrug Resistant Breast Cancer[J]. Advanced Materials, 2018, 30(10): 1705737.
[69] Wang D, Lu X, Jia F, Tan X, Sun X, Cao X, Wai F, Zhang C, Zhang K. Precision Tuning of DNA- and Poly (Ethylene Glycol)- based Nanoparticles via Coassembly for Effective Antisense Gene Regulation[J]. Chemistry of Materials, 2017, 29(23): 9882-9886.
[70] Liu K, Zheng L F, Liu Q, de Vries J W, Gerasimov J Y, Herrmann A. Nucleic Acid Chemistry in the Organic Phase: From Functionalized Oligonucleotides to DNA Side Chain Polymers[J]. Journal of the American Chemical Society, 2014, 136(40): 14255-14262.
[71] Ding F, Mou Q B, Ma Y, Pan G F, Guo Y Y, Tong G S, Choi C H J, Zhu X Y, Zhang C. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy[J]. Angewandte Chemie International Edition, 2018, 57(12): 3064-3068.
[72] Kwak M, Gao J, Prusty D K, Musser A J, Markov V A, Tombros N, Stuart M C A, Browne W R, Boekema E J, ten Brinke G, Jonkman H T, van Wees B J, Loi M A, Herrmann A. DNA Block Copolymer Doing It All: From Selection to Self-Assembly of Semiconducting Carbon Nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(14): 3206-3210.
[73] Albert S K, Thelu H V P, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-Assembly of DNA-Oligo(p-phenylene-ethynylene) Hybrid Amphiphiles into Surface-Engineered Vesicles with Enhanced Emission[J]. Angewandte Chemie International Edition, 2014, 53(32): 8352-8357.
[74] Luo Q J, Shi Z, Zhang Y T, Chen X J, Han S Y, Baumgart T, Chenoweth D M, Park S J. DNA Island Formation on Binary Block Copolymer Vesicles[J]. Journal of the American Chemical Society, 2016, 138(32): 10157-10162.
[75] Yang C Y J, Pinto M, Schanze K, Tan W H. Direct Synthesis of an Oligonucleotide-Poly(phenylene ethynylene) Conjugate with a Precise One-to-One Molecular Ratio[J]. Angewandte Chemie International Edition, 2005, 44(17): 2572-2576.
[76] Edwardson T G W, Carneiro K M M, Serpell C J, Sleiman H F. An Efficient and Modular Route to Sequence-Defined Polymers Appended to DNA[J]. Angewandte Chemie International Edition, 2014, 53(18): 4567-4571.
[77] Averick S E, Dey S K, Grahacharya D, Matyjaszewski K, Das S R. Solid-Phase Incorporation of an ATRP Initiator for Polymer-DNA Biohybrids[J]. Angewandte Chemie International Edition, 2014, 53(10): 2739-2744.
[78] Lueckerath T, Strauch T, Koynov K, Barner-Kowollik C, Ng D Y W, Weil T. DNA-Polymer Conjugates by Photoinduced RAFT Polymerization[J]. Biomacromolecules, 2019, 20(1): 212-221.
[79] Cangialosi A, Yoon C, Liu J, Huang Q, Guo J K, Nguyen T D, Gracias D H, Schulman R. DNA Sequence-Directed Shape change of Photopatterned Hydrogels via High-Degree Swelling[J]. Science, 2017, 357(6356): 1126-1129.
[80] Jia F, Lu X G, Tan X Y, Zhang K. Facile synthesis of nucleic acid-polymer amphiphiles and their self-assembly[J]. Chemical Communications, 2015, 51(37): 7843-7846.
[81] Roloff A, Carlini A S, Callmann C E, Gianneschi N C. Micellar Thrombin-Binding Aptamers: Reversible Nanoscale Anticoagulants[J]. Journal of the American Chemical Society, 2017, 139(46): 16442-16445.
[82] Lim M, Xia Y, Bettegowda C, Weller M. Current State of Immunotherapy for Glioblastoma[J]. Nature Reviews Clinical Oncology, 2018, 15(7): 422-442.
[83] Davis M E. Glioblastoma: Overview of Disease and Treatment[J]. Clinical Journal of Oncology Nursing, 2016, 20(5): 2-8.
[84] Langen K-J, Galldiks N, Hattingen E, Shah N J. Advances in Neuro-Oncology Imaging[J]. Nature Reviews Neuroscience, 2017, 13(5): 279.
[85] Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister S M, Nishikawa R, Rosenthal M, Wen P Y, Stupp R, Reifenberger G. Glioma[J]. Nature Reviews Disease Primers, 2015, 1(1): 15017.
[86] Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging Blood–Brain-Barrier-Crossing Nanotechnology for Brain Cancer Theranostics[J]. Chemical Society Reviews, 2019, 48(11): 2967-3014.
[87] Xue J W, Zhao Z K, Zhang L, Xue L J, Shen S Y, Wen Y J, Wei Z Y, Wang L, Kong L Y, Sun H B, Ping Q N, Mo R, Zhang C. Neutrophil-Mediated Anticancer Drug Delivery for Suppression of Postoperative Malignant Glioma Recurrence[J]. Nature Nanotechnology, 2017, 12(7): 692-700.
[88] Kim K R, Kang S J, Lee A Y, Hwang D, Park M, Park H, Kim S, Hur K, Chung H S, Mao C, Ahn D R. Highly Tumor-Specific DNA Nanostructures Discovered by In Vivo Screening of a Nucleic Acid Cage Library and Their Applications in Tumor-Targeted Drug Delivery[J]. Biomaterials, 2019, 195(1): 1-12.
[89] Seeman N C, Sleiman H F. DNA Nnanotechnology[J]. Nature Reviews Materials, 2018, 3(1): 17068.
[90] Li S P, Jiang Q, Liu S L, Zhang Y L, Tian Y H, Song C, Wang J, Zou Y G, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G B, Nie G J, Yan H, Ding B Q, Zhao Y L. A DNA Nanorobot Functions as a Cancer Therapeutic in Response to a Molecular Trigger In Vivo[J]. Nature Biotechnology, 2018, 36(3): 258-264.
[91] Jensen S A, Day E S, Ko C H, Hurley L A, Luciano J P, Kouri F M, Merkel T J, Luthi A J, Patel P C, Cutler J I, Daniel W L, Scott A W, Rotz M W, Meade T J, Giljohann D A, Mirkin C A, Stegh A H. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma[J]. Science Translational Medicine, 2013, 5(209): 152.
[92] Zheng M, Jiang T, Yang W, Zou Y, Wu H G, Liu X H, Zhu F P, Qian R J, Ling D S, McDonald K, Shi J J, Shi B Y. The siRNAsome: A Cation-Free and Versatile Nanostructure for siRNA and Drug Co-delivery[J]. Angewandte Chemie International Edition, 2019, 58(15): 4938-4942.
[93] Guo Y Y, Zhang J, Ding F, Pan G F, Li J, Feng J, Zhu X Y, Zhang C. Stressing the Role of DNA as a Drug Carrier: Synthesis of DNA-Drug Conjugates through Grafting Chemotherapeutics onto Phosphorothioate Oligonucleotides[J]. Advanced Materials, 2019, 31(16): 1807533.
[94] Tan X, Lu X, Jia F, Liu X, Sun Y, Logan J K, Zhang K. Blurring the Role of Oligonucleotides: Spherical Nucleic Acids as a Drug Delivery Vehicle[J]. Journal of the American Chemical Society, 2016, 138(34): 10834-10837.
[95] Rush A M, Nelles D A, Blum A P, Barnhill S A, Tatro E T, Yeo G W, Gianneschi N C. Intracellular mRNA Regulation with Self-Assembled Locked Nucleic Acid Polymer Nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(21): 7615-7618.
[96] Liu H, Moynihan K D, Zheng Y, Szeto G L, Li A V, Huang B, Van Egeren D S, Park C, Irvine D J. Structure-based Programming of Lymph-Node Targeting in Molecular Vaccines[J]. Nature, 2014, 507(7493): 519-522.
[97] Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic Dye Based Nanoparticles for Cancer Phototheranostics[J]. Small, 2018, 14(25): 1704247.
[98] Reisch A, Klymchenko A S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging[J]. Small, 2016, 12(15): 1968-1992.
[99] Ma Z, Wan H, Wang W, Zhang X, Uno T, Yang Q, Yue J, Gao H, Zhong Y, Tian Y, Sun Q, Liang Y, Dai H. A Theranostic Agent for Cancer Therapy and Imaging in the Second Near-Infrared Window[J]. Nano Research, 2019, 12(2): 273-279.
[100] Wu L, Wu I-C, DuFort C C, Carlson M A, Wu X, Chen L, Kuo C-T, Qin Y, Yu J, Hingorani S R, Chiu D T. Photostable Ratiometric Pdot Probe for In Vitro and In Vivo Imaging of Hypochlorous Acid[J]. Journal of the American Chemical Society, 2017, 139(20): 6911-6918.
[101] Randeria P S, Jones M R, Kohlstedt K L, Banga R J, de la Cruz M O, Schatz G C, Mirkin C A. What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids?[J]. Journal of the American Chemical Society, 2015, 137(10): 3486-3489.
[102] Xu P, Gullotti E, Tong L, Highley C B, Errabelli D R, Hasan T, Cheng J-X, Kohane D S, Yeo Y. Intracellular Drug Delivery by Poly (Lactic-co-Glycolic Acid) Nanoparticles, Revisited[J]. Molecular Pharmacology, 2009, 6(1): 190-201.
[103] Zhang H, Xia H, Wang J, Li Y. High Intensity Focused Ultrasound-Responsive Release Behavior of PLA-b-PEG Copolymer Micelles[J]. Journal of Controlled Release, 2009, 139(1): 31-39.
[104] Monaco I, Camorani S, Colecchia D, Locatelli E, Calandro P, Oudin A, Niclou S, Arra C, Chiariello M, Cerchia L, Franchini M C. Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood-Brain Barrier[J]. Journal of Medicinal Chemistry, 2017, 60(10): 4510-4516.
[105] Camorani S, Esposito C L, Rienzo A, Catuogno S, Iaboni M, Condorelli G, de Franciscis V, Cerchia L. Inhibition of Receptor Signaling and of Glioblastoma-Derived Tumor Growth by a Novel PDGFRβ Aptamer[J]. Molecular Therapy, 2014, 22(2): 828-841.
[106] Choi C H, Hao L, Narayan S P, Auyeung E, Mirkin C A. Mechanism for the Endocytosis of Spherical Nucleic Acid Nanoparticle Conjugates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7625-7630.
[107] Furtado D, Björnmalm M, Ayton S, Bush A I, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases[J]. Advanced Materials, 2018, 30(46): 1801362.
[108] Cai X, Bandla A, Mao D, Feng G, Qin W, Liao L D, Thakor N, Tang B Z, Liu B. Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregation-Induced Emission for Evaluation of Blood-Brain Barrier Damage[J]. Advanced Materials, 2016, 28(39): 8760-8765.
[109] Bolliger A, Everds N, Haematology of the Mouse[M]. The Laboratory Mouse. 2nd Ed. 2012: pp 331-347.
[110] Cui D, Xie C, Li J C, Lyu Y, Pu K Y. Semiconducting Photosensitizer-Incorporated Copolymers as Near-Infrared Afterglow Nanoagents for Tumor Imaging[J]. Advanced Healthcare Materials, 2018, 7(18): 1800329.
[111] Wu L Y, Ishigaki Y, Hu Y X, Sugimoto K, Zeng W H, Harimoto T, Sun Y D, He J, Suzuki T, Jiang X Q, Chen H Y, Ye D J. H2S-Activatable Near-Infrared Afterglow Luminescent Probes for Sensitive Molecular Imaging In Vivo[J]. Nature Communications, 2020, 11: 446.
[112] Xie C, Lyu Y, Zhen X, Miao Q Q, Pu K Y. Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols[J]. Acs Applied Bio Materials, 2018, 1(4): 1147-1153.
[113] Xu W T, He W C, Du Z H, Zhu L Y, Huang K L, Lu Y, Luo Y B. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications[J]. Angewandte Chemie International Edition, 2021, 60(13): 6890-6918.
[114] Alvarez-Salas L M. Nucleic Acids as Therapeutic Agents[J]. Current Topics in Medicinal Chemistry, 2008, 8(15): 1379-1404.
[115] Klinman D M, Klaschik S, Sato T, Tross D. CpG Oligonucleotides as Adjuvants for Vaccines Targeting Infectious Diseases[J]. Advanced Drug Delivery Reviews, 2009, 61(3): 248-255.
[116] Li H Y, Fan J L, Buhl E M, Huo S D, Loznik M, Gostl R, Herrmann A. DNA Hybridization as a General Method to Enhance the Cellular Uptake of Nanostructures[J]. Nanoscale, 2020, 12(41): 21299-21305.
[117] Han L, Wang M J, Jia X M, Chen W, Qian H J, He F. Uniform Two-Dimensional Square Assemblies from Conjugated Block Copolymers Driven by pi-pi Interactions with Controllable Sizes[J]. Nature Communications, 2018, 9: 865.
[118] Evanko D. Focus on Fluorescence Imaging[J]. Nature Methods, 2005, 2(12): 901-901.
[119] Wolfbeis O S. An Overview of Nanoparticles Commonly Used in Fluorescent Bioimaging[J]. Chemical Society Reviews, 2015, 44(14): 4743-4768.
[120] Yang Y Q, Fan X X, Li L, Yang Y M, Nuernisha A, Xue D W, He C, Qian J, Hu Q L, Chen H, Liu J, Huang W. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence[J]. ACS Nano, 2020, 14(2): 2509-2521.
[121] Men X, Wang F, Chen H B, Liu Y B, Men X X, Yuan Y, Zhang Z, Gao D Y, Wu C F, Yuan Z. Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy[J]. Advanced Functional Materials, 2020, 30(24): 1909673.
[122] Yang T, Liu L, Deng Y B, Guo Z Q, Zhang G B, Ge Z S, Ke H T, Chen H B. Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for Dually Photoactive Tumor Inhibition[J]. Advanced Materials, 2017, 29(31): 1700487.
[123] Wu C F, Chiu D T. Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine[J]. Angewandte Chemie International Edition, 2013, 52(11): 3086-3109.
[124] MacFarlane L R, Shaikh H, Garcia-Hernandez J D, Vespa M, Fukui T, Manners I. Functional Nanoparticles through pi-Conjugated Polymer Self-Assembly[J]. Nature Reviews Materials, 2021, 6(1): 7-26.
[125] Wu C F, Schneider T, Zeigler M, Yu J B, Schiro P G, Burnham D R, McNeill J D, Chiu D T. Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting[J]. Journal of the American Chemical Society, 2010, 132(43): 15410-15417.
[126] Pu K Y, Liu B. Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing[J]. Advanced Functional Materials, 2009, 19(2): 277-284.
[127] Wang Y X, Li S L, Liu L B, Lv F T, Wang S. Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts[J]. Angewandte Chemie International Edition, 2017, 56(19): 5308-5311.
[128] Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted Semiconducting Polymer Amphiphiles for Multimodal Optical Imaging and Combination Phototherapy[J]. Chemical Science, 2020, 11(39): 10553-10570.
[129] Nolan T, Hands R E, Bustin S A. Quantification of mRNA using Real-Time RT-PCR[J]. Nature Protocols, 2006, 1(3): 1559-1582.
[130] Teles F R R, Fonseca L R. Trends in DNA Biosensors[J]. Talanta, 2008, 77(2): 606-623.
[131] Melnychuk N, Egloff S, Runser A, Reisch A, Klymchenko A S. Light-Harvesting Nanoparticle Probes for FRET-Based Detection of Oligonucleotides with Single-Molecule Sensitivity[J]. Angewandte Chemie International Edition, 2020, 59(17): 6811-6818.
[132] Severi C, Melnychuk N, Klymchenko A S. Smartphone-Assisted Detection of Nucleic Acids by Light-Harvesting FRET-based Nanoprobe[J]. Biosensors and Bioelectronics, 2020, 168(15): 112515.
[133] Melnychuk N, Klymchenko A S. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids[J]. Journal of the American Chemical Society, 2018, 140(34): 10856-10865.
[134] Trofymchuk K, Reisch A, Didier P, Fras F, Gilliot P, Mely Y, Klymchenko A S. Giant Light-Harvesting Nanoantenna for Single-Molecule Detection in Ambient Light[J]. Nature Photonics, 2017, 11(10): 657-663.
[135] Xie C, Zhen X, Lei Q L, Ni R, Pu K Y. Self-Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging[J]. Advanced Functional Materials, 2017, 27(8): 1605397.
[136] Piwonski H, Michinobu T, Habuchi S. Controlling Photophysical Properties of Ultrasmall Conjugated Polymer Nanoparticles Through Polymer Chain Packing[J]. Nature Communications, 2017, 8: 15256.
[137] Vogelsang J, Adachi T, Brazard J, Bout D A V, Barbara P F. Self-Assembly of Highly Ordered Conjugated Polymer Aggregates with Long-Range Energy Transfer[J]. Nature Materials, 2011, 10(12): 942-946.
[138] Pecher J, Mecking S. Nanoparticles of Conjugated Polymers[J]. Chemical Reviews, 2010, 110(10): 6260-6279.
[139] Groff L C I. Picosecond Time-Resolved Studies of Multiple Energy Transfer in Conjugated Polymer Nanoparticles. Clemson University, 2015. pp 117-152.
[140] Krol J, Loedige I, Filipowicz W. The Widespread Regulation of microRNA Biogenesis, Function and Decay[J]. Nature Reviews Genetics, 2010, 11(9): 597-610.
[141] Choi C K K, Li J M, Wei K C, Xu Y J, Ho L W C, Zhu M L, To K K W, Choi C H J, Bian L M. A Gold@Polydopamine Core-Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells[J]. Journal of the American Chemical Society, 2015, 137(23): 7337-7346.
[142] Yu J T, He S H, Shao C, Zhao H R, Li J, Tian L L. A Common Anchor Facilitated GO-DNA Nano-System for Multiplex MicroRNA Analysis in Live Cells[J]. Nanoscale, 2018, 10(15): 7067-7076.
[143] Cheglakov Z, Cronin T M, He C, Weizmann Y. Live Cell MicroRNA Imaging Using Cascade Hybridization Reaction[J]. Journal of the American Chemical Society, 2015, 137(19): 6116-6119.
[144] Wu C C, Cansiz S, Zhang L Q, Teng I T, Qiu L P, Li J, Liu Y, Zhou C S, Hu R, Zhang T, Cui C, Cui L, Tan W H. A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells[J]. Journal of the American Chemical Society, 2015, 137(15): 4900-4903.
[145] Wu Z, Liu G Q, Yang X L, Jiang J H. Electrostatic Nucleic Acid Nanoassembly Enables Hybridization Chain Reaction in Living Cells for Ultrasensitive mRNA Imaging[J]. Journal of the American Chemical Society, 2015, 137(21): 6829-6836.
[146] Liang C P, Ma P Q, Liu H, Guo X G, Yin B C, Ye B C. Rational Engineering of a Dynamic, Entropy-Driven DNA Nanomachine for Intracellular MicroRNA Imaging[J]. Angewandte Chemie International Edition, 2017, 56(31): 9077-9081.
[147] Peng H Y, Li X F, Zhang H Q, Le X C. A MicroRNA-Initiated DNAzyme Motor Operating in Living Cells[J]. Nature Communications, 2017, 8: 14378.
[148] Ying Z M, Wu Z, Tu B, Tan W H, Jiang J H. Genetically Encoded Fluorescent RNA Sensor for Ratiometric Imaging of MicroRNA in Living Tumor Cells[J]. Journal of the American Chemical Society, 2017, 139(29): 9779-9782.
[149] He L, Lu D Q, Liang H, Xie S T, Zhang X B, Liu O L, Yuan Q, Tan W H. mRNA-Initiated, Three-Dimensional DNA Amplifier Able to Function inside Living Cells[J]. Journal of the American Chemical Society, 2018, 140(1): 258-263.
[150] Ge J, Zhang L L, Liu S J, Yu R Q, Chu X. A Highly Sensitive Target-Primed Rolling Circle Amplification (TPRCA) Method for Fluorescent in Situ Hybridization Detection of MicroRNA in Tumor Cells[J]. Analytical Chemistry, 2014, 86(3): 1808-1815.
[151] Deng R J, Zhang K X, Sun Y P, Ren X J, Li J H. Highly Specific Imaging of mRNA in Single Cells by Target RNA-Initiated Rolling Circle Amplification[J]. Chemical Science, 2017, 8(5): 3668-3675.
[152] Meng X D, Zhang K, Dai W H, Cao Y, Yang F, Dong H F, Zhang X J. Multiplex microRNA Imaging in Living Cells using DNA-Capped-Au Assembled Hydrogels[J]. Chemical Science, 2018, 9(37): 7419-7425.
[153] Zhou S Y, Zhang S J, Shen H Y, Chen W, Xu H Z, Chen X, Sun D W, Zhong S L, Zhao J H, Tang J H. Curcumin Inhibits Cancer Progression through Regulating Expression of microRNAs[J]. Tumor Biology, 2017, 39(2): 10.1177/1010428317691680.

Academic Degree Assessment Sub committee
材料科学与工程系
Domestic book classification number
R318.08
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343141
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
肖凡. 核酸-有机发光杂化材料的合成及其生物成像和传感应用[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11749225-肖凡-材料科学与工程系(10960KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[肖凡]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[肖凡]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[肖凡]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.