中文版 | English
Title

锌离子电池电解液添加剂设计及锌负极保护机理研究

Alternative Title
DESIGN OF ELECTROLYTE ADDITIVES FOR ZINC-ION BATTERIES AND RESEARCH ON THE PROTECTION MECHANISM OF ZINC ANODE
Author
Name pinyin
XU Siqi
School number
12032280
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
张帆
Mentor unit
中科院深圳先进技术研究院
Publication Years
2022-05-16
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

当今世界能源与环境问题日益严峻,基于锂离子电池的能量存储系统具有高效存储和转换能量的特性,已在电子设备、电动汽车及储能电网等领域占据了主导地位。然而,目前仍然存在资源短缺、成本高以及安全性差等问题限制了锂离子电池的发展。水系锌离子电池由于容量高、制作流程简单、安全廉价等特点而受到广泛关注,但是枝晶生长、锌腐蚀、副反应等难以避免的问题使得金属锌负极的长期循环稳定性较差、库伦效率较低,严重阻碍了锌的大规模应用。目前,引入电解液添加剂是改善锌负极结构稳定性最简便、最经济的方法。本论文设计了一种糖类添加剂改性锌负极的策略,通过对比含有不同种类及官能团数量的糖类添加剂,深入分析其对锌负极的界面化学以及电化学性能的影响,最终研发出了具有高稳定性的锌离子电池。具体研究内容如下:

首先,通过VASP软件分析了不同糖类小分子与锌表面吸附能、差分电荷密度,并且通过COMSOL软件利用有限元分析对锌枝晶的生长进行模拟,研究结果表明:糖类小分子添加剂可以吸附在锌负极表面,屏蔽部分尖端效应的影响,限制Zn2+在界面处的不可控的二维扩散行为,使得锌能够沉积得更加均匀,从而缓解枝晶生长。其中糖类分子的羟基与锌金属之间电子云密度分布较大,说明吸附作用主要源于羟基与锌直接的库伦作用。因此,相比于单糖,蔗糖与锌金属间电子云分布更广,吸附能力更强。

其次,通过对不同种类和浓度的糖类小分子添加剂进行电化学性能测试,并对电解液、极片等进行表征分析进一步验证其对锌负极改性机理,研究结果表明:在电流密度为0.5 mA cm-2,比容量为0.5 mAh cm-2下,引入10mM蔗糖添加剂的Zn//Zn对称电池可以稳定1300h以上,100mM稳定循环时间达到了2000多个小时,全电池在近900次循环后容量保持率达到85%ZnSO4电解质中引入糖类小分子可以改变Zn2+的六水溶剂化结构,削弱Zn2+和硫酸根离子之间的静电相互作用,提高界面稳定性,有效抑制副反应的发生、产气等问题,使得锌负极电化学性能得到优化。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-07
References List

[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-35.
[2] Ming J, Guo J, Xia C, et al. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84.
[3] Hannan M A, Lipu M S H, Hussain A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
[4] Nitta N, Wu F, Lee J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264.
[5] Hu L, Xiao P, Xue L, et al. The rising zinc anodes for high-energy aqueous batteries[J]. EnergyChem, 2021, 3(2).
[6] Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2017, 3(1): 16-21.
[7] Guo Y, Li H, Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries[J]. Adv Mater, 2017, 29(29).
[8] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194-206.
[9] Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304.
[10] Huang J, Guo Z, Ma Y, et al. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes[J]. Small Methods, 2019, 3(1).
[11] Li W, Wang K, Zhou M, et al. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(26): 22059-22066.
[12] Xu C, Li B, Du H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angew Chem Int Ed Engl, 2012, 51(4): 933-5.
[13] Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
[14] 陈丽能, 晏梦雨, 梅志文, 等. 水系锌离子电池的研究进展[J]. 无机材料学报, 2017, 32(3).
[15] Mainar A R, Colmenares L C, Blázquez J A, et al. A brief overview of secondary zinc anode development: The key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3): 903-918.
[16] Sun W, Wang F, Hou S, et al. Zn/MnO2 Battery Chemistry With H(+) and Zn(2+) Coinsertion[J]. J Am Chem Soc, 2017, 139(29): 9775-9778.
[17] Alfaruqi M H, Gim J, Kim S, et al. A layered δ-MnO 2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications[J]. Electrochemistry Communications, 2015, 60: 121-125.
[18] Ingale N D, Gallaway J W, Nyce M, et al. Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage and load leveling[J]. Journal of Power Sources, 2015, 276: 7-18.
[19] Tafur J P, Abad J, Román E, et al. Charge storage mechanism of MnO 2 cathodes in Zn/MnO 2 batteries using ionic liquid-based gel polymer electrolytes[J]. Electrochemistry Communications, 2015, 60: 190-194.
[20] Chen D, Lu M, Cai D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 712-726.
[21] Muldoon J, Bucur C B, Oliver A G, et al. Electrolyte roadblocks to a magnesium rechargeable battery[J]. Energy & Environmental Science, 2012, 5(3).
[22] Lee B, Seo H R, Lee H R, et al. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries[J]. ChemSusChem, 2016, 9(20): 2948-2956.
[23] Jin Y, Zou L, Liu L, et al. Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries[J]. Adv Mater, 2019, 31(29): e1900567.
[24] Levi E, Gofer Y, Aurbach D. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials[J]. Chemistry of Materials, 2009, 22(3): 860-868.
[25] Song M, Tan H, Chao D, et al. Recent Advances in Zn-Ion Batteries[J]. Advanced Functional Materials, 2018, 28(41).
[26] Yan M, He P, Chen Y, et al. Water-Lubricated Intercalation in V2 O5 .nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries[J]. Adv Mater, 2018, 30(1).
[27] Wang K, Gao S, Du Z, et al. MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance[J]. Journal of Power Sources, 2016, 305: 30-36.
[28] Xu C, Chiang S W, Ma J, et al. Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum[J]. Journal of The Electrochemical Society, 2012, 160(1): A93-A97.
[29] Lee B, Yoon C S, Lee H R, et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide[J]. Sci Rep, 2014, 4: 6066.
[30] Lee J, Ju J B, Cho W I, et al. Todorokite-type MnO2 as a zinc-ion intercalating material[J]. Electrochimica Acta, 2013, 112: 138-143.
[31] Alfaruqi M H, Mathew V, Gim J, et al. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System[J]. Chemistry of Materials, 2015, 27(10): 3609-3620.
[32] Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nat Commun, 2017, 8(1): 405.
[33] Wu B, Zhang G, Yan M, et al. Graphene Scroll-Coated alpha-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery[J]. Small, 2018, 14(13): e1703850.
[34] Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nat Commun, 2018, 9(1): 2906.
[35] 戴宇航, 甘志伟, 阮雨杉, 等. 水系锌离子电池及关键材料研究进展[J]. 硅酸盐学报, 2021, 49(7).
[36] Yao X, Zhao Y, Castro F A, et al. Rational Design of Preintercalated Electrodes for Rechargeable Batteries[J]. ACS Energy Letters, 2019, 4(3): 771-778.
[37] Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1(10).
[38] He P, Zhang G, Liao X, et al. Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries[J]. Advanced Energy Materials, 2018, 8(10).
[39] Xia C, Guo J, Li P, et al. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode[J]. Angew Chem Int Ed Engl, 2018, 57(15): 3943-3948.
[40] Chen L, Ruan Y, Zhang G, et al. Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction[J]. Chemistry of Materials, 2019, 31(3): 699-706.
[41] Wan F, Niu Z. Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries[J]. Angew Chem Int Ed Engl, 2019, 58(46): 16358-16367.
[42] Xue T, Fan H J. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story[J]. Journal of Energy Chemistry, 2021, 54: 194-201.
[43] Li Z, Ren Y, Mo L, et al. Impacts of Oxygen Vacancies on Zinc Ion Intercalation in VO2[J]. ACS Nano, 2020, 14(5): 5581-5589.
[44] Wessells C D, Huggins R A, Cui Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nat Commun, 2011, 2: 550.
[45] Wang L, Lu Y, Liu J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angew Chem Int Ed Engl, 2013, 52(7): 1964-7.
[46] Yi H, Qin R, Ding S, et al. Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications[J]. Advanced Functional Materials, 2020, 31(6).
[47] Qian J, Wu C, Cao Y, et al. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Advanced Energy Materials, 2018, 8(17).
[48] Jia Z, Wang B, Wang Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries[J]. Materials Chemistry and Physics, 2015, 149-150: 601-606.
[49] Zhang L, Chen L, Zhou X, et al. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System[J]. Advanced Energy Materials, 2015, 5(2).
[50] Wang L-P, Wang P-F, Wang T-S, et al. Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries[J]. Journal of Power Sources, 2017, 355: 18-22.
[51] Renman V, Ojwang D O, Valvo M, et al. Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction[J]. Journal of Power Sources, 2017, 369: 146-153.
[52] Du W, Ang E H, Yang Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2020, 13(10): 3330-3360.
[53] Du W, Huang S, Zhang Y, et al. Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization[J]. Energy Storage Materials, 2022, 45: 465-473.
[54] Li Q, Wang Y, Mo F, et al. Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure[J]. Advanced Energy Materials, 2021, 11(14).
[55] Han C, Li W, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries[J]. Nano Energy, 2020, 74.
[56] Wang K, Pei P, Ma Z, et al. Morphology control of zinc regeneration for zinc–air fuel cell and battery[J]. Journal of Power Sources, 2014, 271: 65-75.
[57] Wang K. Solutions for Dendrite Growth of Electrodeposited Zinc[J]. ACS Omega, 2020, 5(18): 10225-10227.
[58] Zhang Q, Luan J, Tang Y, et al. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries[J]. Angewandte Chemie-International Edition, 2020, 59(32): 13180-13191.
[59] Zhu M, Hu J, Lu Q, et al. A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery[J]. Adv Mater, 2021, 33(8): e2007497.
[60] Guo W, Zhang Y, Tong X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries[J]. Materials Today Energy, 2021, 20.
[61] Liang P, Yi J, Liu X, et al. Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries[J]. Advanced Functional Materials, 2020, 30(13).
[62] Chen P, Yuan X, Xia Y, et al. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries[J]. Adv Sci (Weinh), 2021, 8(11): e2100309.
[63] Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6: 8058.
[64] Zeng Y, Zhang X, Qin R, et al. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries[J]. Adv Mater, 2019, 31(36): e1903675.
[65] Kang Z, Wu C, Dong L, et al. 3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3364-3371.
[66] Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020, 13(2): 503-510.
[67] Liu B, Wang S, Wang Z, et al. Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries[J]. Small, 2020, 16(22): e2001323.
[68] Wang S B, Ran Q, Yao R Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries[J]. Nat Commun, 2020, 11(1): 1634.
[69] Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews, 2022, 452.
[70] Zhou J, Shan L, Wu Z, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode[J]. Chem Commun (Camb), 2018, 54(35): 4457-4460.
[71] Zhang N, Cheng F, Liu Y, et al. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery[J]. J Am Chem Soc, 2016, 138(39): 12894-12901.
[72] Li N, Li G, Li C, et al. Bi-Cation Electrolyte for a 1.7 V Aqueous Zn Ion Battery[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13790-13796.
[73] Huang S, Zhu J, Tian J, et al. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries[J]. Chemistry, 2019, 25(64): 14480-14494.
[74] Xing Z, Huang C, Hu Z. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries[J]. Coordination Chemistry Reviews, 2022, 452.
[75] Zou Y, Liu T, Du Q, et al. A four-electron Zn-I2 aqueous battery enabled by reversible I(-)/I2/I(+) conversion[J]. Nat Commun, 2021, 12(1): 170.
[76] Zhang C, Holoubek J, Wu X, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chem Commun (Camb), 2018, 54(100): 14097-14099.
[77] Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nat Mater, 2018, 17(6): 543-549.
[78] Guo S, Qin L, Zhang T, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries[J]. Energy Storage Materials, 2021, 34: 545-562.
[79] Xu W, Zhao K, Huo W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
[80] Zhang Q, Luan J, Fu L, et al. The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive[J]. Angew Chem Int Ed Engl, 2019, 58(44): 15841-15847.
[81] Naveed A, Yang H, Shao Y, et al. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries[J]. Adv Mater, 2019, 31(36): e1900668.
[82] Cao L, Li D, Hu E, et al. Solvation Structure Design for Aqueous Zn Metal Batteries[J]. J Am Chem Soc, 2020, 142(51): 21404-21409.
[83] Guo X, Zhang Z, Li J, et al. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives[J]. ACS Energy Letters, 2021, 6(2): 395-403.
[84] Zeng X, Mao J, Hao J, et al. Electrolyte Design for In Situ Construction of Highly Zn(2+) -Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions[J]. Adv Mater, 2021, 33(11): e2007416.
[85] Olbasa B W, Fenta F W, Chiu S-F, et al. High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes[J]. ACS Applied Energy Materials, 2020, 3(5): 4499-4508.
[86] Lu W, Xie C, Zhang H, et al. Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries[J]. ChemSusChem, 2018, 11(23): 3996-4006.
[87] Wan F, Zhang L, Dai X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nat Commun, 2018, 9(1): 1656.
[88] Yang H, Chang Z, Qiao Y, et al. Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries[J]. Angew Chem Int Ed Engl, 2020, 59(24): 9377-9381.
[89] Hao J, Li B, Li X, et al. An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries[J]. Adv Mater, 2020, 32(34): e2003021.
[90] Mathew V, Sambandam B, Kim S, et al. Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments[J]. ACS Energy Letters, 2020, 5(7): 2376-2400.
[91] Hao J, Li X, Zeng X, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries[J]. Energy & Environmental Science, 2020, 13(11): 3917-3949.
[92] Zhang N, Chen X, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chem Soc Rev, 2020, 49(13): 4203-4219.
[93] Yi Z, Chen G, Hou F, et al. Strategies for the Stabilization of Zn Metal Anodes for Zn‐Ion Batteries[J]. Advanced Energy Materials, 2020, 11(1).
[94] Konarov A, Voronina N, Jo J H, et al. Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries[J]. ACS Energy Letters, 2018, 3(10): 2620-2640.
[95] Ye Z, Cao Z, Lam Chee M O, et al. Advances in Zn-ion batteries via regulating liquid electrolyte[J]. Energy Storage Materials, 2020, 32: 290-305.
[96] Cui B-F, Han X-P, Hu W-B. Micronanostructured Design of Dendrite-Free Zinc Anodes and Their Applications in Aqueous Zinc-Based Rechargeable Batteries[J]. Small Structures, 2021, 2(6).
[97] Bayaguud A, Fu Y, Zhu C. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies[J]. Journal of Energy Chemistry, 2022, 64: 246-262.
[98] Huang Y, Gu Q, Guo Z, et al. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study[J]. Energy Storage Materials, 2022, 46: 243-251.
[99] Yuan L, Hao J, Kao C-C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy & Environmental Science, 2021, 14(11): 5669-5689.
[100] Sun K E, Hoang T K, Doan T N, et al. Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9681-9687.
[101] Wang J, Yang Y, Zhang Y, et al. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries[J]. Energy Storage Materials, 2021, 35: 19-46.
[102] He P, Chen Q, Yan M, et al. Building better zinc-ion batteries: A materials perspective[J]. EnergyChem, 2019, 1(3).
[103] Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949.
[104] Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359–367.
[105] Dubouis N, Serva A, Salager E, et al. The Fate of Water at the Electrochemical Interfaces: Electrochemical Behavior of Free Water Versus Coordinating Water[J]. J Phys Chem Lett, 2018, 9(23): 6683-6688.
[106] Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science, 2020, 13(10): 3527-3535.
[107] Hao J, Yuan L, Ye C, et al. Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents[J]. Angew Chem Int Ed Engl, 2021, 60(13): 7366-7375.
[108] James E B, Tatyana M S, Krause M, et al. Antagonism between Ena/VASP Proteins and Actin Filament Capping Regulates Fibroblast Motility[J], 2002, 109: 509-521.
[109] Sakthi D, Prakasam M, Prakasam A, et al. A Complete DFT, TD-DFT and Non-Linear Optical Property Study on 6-Amino-2-Methylpyridine-3-Carbonitrile[J]. Computational Chemistry, 2017, 5: 129-144.
[110] Meng R, Deng Q, Peng C, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries[J]. Nano Today, 2020, 35.
[111] Wang T, Li Y, Zhang J, et al. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries[J]. Nat Commun, 2020, 11(1): 5429.
[112] Zhou J, Shan L, Tang B, et al. Development and challenges of aqueous rechargeable zinc batteries[J]. Chinese Science Bulletin, 2020, 65(32): 3562-3584.
[113] Yu P, Zeng Y, Zhang H, et al. Flexible Zn-Ion Batteries: Recent Progresses and Challenges[J]. Small, 2019, 15(7): e1804760.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TQ152
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343142
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
徐思奇. 锌离子电池电解液添加剂设计及锌负极保护机理研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032280-徐思奇-中国科学院深圳(17269KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[徐思奇]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[徐思奇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[徐思奇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.