[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-35.
[2] Ming J, Guo J, Xia C, et al. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84.
[3] Hannan M A, Lipu M S H, Hussain A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
[4] Nitta N, Wu F, Lee J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264.
[5] Hu L, Xiao P, Xue L, et al. The rising zinc anodes for high-energy aqueous batteries[J]. EnergyChem, 2021, 3(2).
[6] Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2017, 3(1): 16-21.
[7] Guo Y, Li H, Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries[J]. Adv Mater, 2017, 29(29).
[8] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194-206.
[9] Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304.
[10] Huang J, Guo Z, Ma Y, et al. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes[J]. Small Methods, 2019, 3(1).
[11] Li W, Wang K, Zhou M, et al. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(26): 22059-22066.
[12] Xu C, Li B, Du H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angew Chem Int Ed Engl, 2012, 51(4): 933-5.
[13] Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
[14] 陈丽能, 晏梦雨, 梅志文, 等. 水系锌离子电池的研究进展[J]. 无机材料学报, 2017, 32(3).
[15] Mainar A R, Colmenares L C, Blázquez J A, et al. A brief overview of secondary zinc anode development: The key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3): 903-918.
[16] Sun W, Wang F, Hou S, et al. Zn/MnO2 Battery Chemistry With H(+) and Zn(2+) Coinsertion[J]. J Am Chem Soc, 2017, 139(29): 9775-9778.
[17] Alfaruqi M H, Gim J, Kim S, et al. A layered δ-MnO 2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications[J]. Electrochemistry Communications, 2015, 60: 121-125.
[18] Ingale N D, Gallaway J W, Nyce M, et al. Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage and load leveling[J]. Journal of Power Sources, 2015, 276: 7-18.
[19] Tafur J P, Abad J, Román E, et al. Charge storage mechanism of MnO 2 cathodes in Zn/MnO 2 batteries using ionic liquid-based gel polymer electrolytes[J]. Electrochemistry Communications, 2015, 60: 190-194.
[20] Chen D, Lu M, Cai D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 712-726.
[21] Muldoon J, Bucur C B, Oliver A G, et al. Electrolyte roadblocks to a magnesium rechargeable battery[J]. Energy & Environmental Science, 2012, 5(3).
[22] Lee B, Seo H R, Lee H R, et al. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries[J]. ChemSusChem, 2016, 9(20): 2948-2956.
[23] Jin Y, Zou L, Liu L, et al. Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries[J]. Adv Mater, 2019, 31(29): e1900567.
[24] Levi E, Gofer Y, Aurbach D. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials[J]. Chemistry of Materials, 2009, 22(3): 860-868.
[25] Song M, Tan H, Chao D, et al. Recent Advances in Zn-Ion Batteries[J]. Advanced Functional Materials, 2018, 28(41).
[26] Yan M, He P, Chen Y, et al. Water-Lubricated Intercalation in V2 O5 .nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries[J]. Adv Mater, 2018, 30(1).
[27] Wang K, Gao S, Du Z, et al. MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance[J]. Journal of Power Sources, 2016, 305: 30-36.
[28] Xu C, Chiang S W, Ma J, et al. Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum[J]. Journal of The Electrochemical Society, 2012, 160(1): A93-A97.
[29] Lee B, Yoon C S, Lee H R, et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide[J]. Sci Rep, 2014, 4: 6066.
[30] Lee J, Ju J B, Cho W I, et al. Todorokite-type MnO2 as a zinc-ion intercalating material[J]. Electrochimica Acta, 2013, 112: 138-143.
[31] Alfaruqi M H, Mathew V, Gim J, et al. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System[J]. Chemistry of Materials, 2015, 27(10): 3609-3620.
[32] Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nat Commun, 2017, 8(1): 405.
[33] Wu B, Zhang G, Yan M, et al. Graphene Scroll-Coated alpha-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery[J]. Small, 2018, 14(13): e1703850.
[34] Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nat Commun, 2018, 9(1): 2906.
[35] 戴宇航, 甘志伟, 阮雨杉, 等. 水系锌离子电池及关键材料研究进展[J]. 硅酸盐学报, 2021, 49(7).
[36] Yao X, Zhao Y, Castro F A, et al. Rational Design of Preintercalated Electrodes for Rechargeable Batteries[J]. ACS Energy Letters, 2019, 4(3): 771-778.
[37] Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1(10).
[38] He P, Zhang G, Liao X, et al. Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries[J]. Advanced Energy Materials, 2018, 8(10).
[39] Xia C, Guo J, Li P, et al. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode[J]. Angew Chem Int Ed Engl, 2018, 57(15): 3943-3948.
[40] Chen L, Ruan Y, Zhang G, et al. Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction[J]. Chemistry of Materials, 2019, 31(3): 699-706.
[41] Wan F, Niu Z. Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries[J]. Angew Chem Int Ed Engl, 2019, 58(46): 16358-16367.
[42] Xue T, Fan H J. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story[J]. Journal of Energy Chemistry, 2021, 54: 194-201.
[43] Li Z, Ren Y, Mo L, et al. Impacts of Oxygen Vacancies on Zinc Ion Intercalation in VO2[J]. ACS Nano, 2020, 14(5): 5581-5589.
[44] Wessells C D, Huggins R A, Cui Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nat Commun, 2011, 2: 550.
[45] Wang L, Lu Y, Liu J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angew Chem Int Ed Engl, 2013, 52(7): 1964-7.
[46] Yi H, Qin R, Ding S, et al. Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications[J]. Advanced Functional Materials, 2020, 31(6).
[47] Qian J, Wu C, Cao Y, et al. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Advanced Energy Materials, 2018, 8(17).
[48] Jia Z, Wang B, Wang Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries[J]. Materials Chemistry and Physics, 2015, 149-150: 601-606.
[49] Zhang L, Chen L, Zhou X, et al. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System[J]. Advanced Energy Materials, 2015, 5(2).
[50] Wang L-P, Wang P-F, Wang T-S, et al. Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries[J]. Journal of Power Sources, 2017, 355: 18-22.
[51] Renman V, Ojwang D O, Valvo M, et al. Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction[J]. Journal of Power Sources, 2017, 369: 146-153.
[52] Du W, Ang E H, Yang Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2020, 13(10): 3330-3360.
[53] Du W, Huang S, Zhang Y, et al. Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization[J]. Energy Storage Materials, 2022, 45: 465-473.
[54] Li Q, Wang Y, Mo F, et al. Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure[J]. Advanced Energy Materials, 2021, 11(14).
[55] Han C, Li W, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries[J]. Nano Energy, 2020, 74.
[56] Wang K, Pei P, Ma Z, et al. Morphology control of zinc regeneration for zinc–air fuel cell and battery[J]. Journal of Power Sources, 2014, 271: 65-75.
[57] Wang K. Solutions for Dendrite Growth of Electrodeposited Zinc[J]. ACS Omega, 2020, 5(18): 10225-10227.
[58] Zhang Q, Luan J, Tang Y, et al. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries[J]. Angewandte Chemie-International Edition, 2020, 59(32): 13180-13191.
[59] Zhu M, Hu J, Lu Q, et al. A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery[J]. Adv Mater, 2021, 33(8): e2007497.
[60] Guo W, Zhang Y, Tong X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries[J]. Materials Today Energy, 2021, 20.
[61] Liang P, Yi J, Liu X, et al. Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries[J]. Advanced Functional Materials, 2020, 30(13).
[62] Chen P, Yuan X, Xia Y, et al. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries[J]. Adv Sci (Weinh), 2021, 8(11): e2100309.
[63] Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6: 8058.
[64] Zeng Y, Zhang X, Qin R, et al. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries[J]. Adv Mater, 2019, 31(36): e1903675.
[65] Kang Z, Wu C, Dong L, et al. 3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3364-3371.
[66] Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020, 13(2): 503-510.
[67] Liu B, Wang S, Wang Z, et al. Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries[J]. Small, 2020, 16(22): e2001323.
[68] Wang S B, Ran Q, Yao R Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries[J]. Nat Commun, 2020, 11(1): 1634.
[69] Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews, 2022, 452.
[70] Zhou J, Shan L, Wu Z, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode[J]. Chem Commun (Camb), 2018, 54(35): 4457-4460.
[71] Zhang N, Cheng F, Liu Y, et al. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery[J]. J Am Chem Soc, 2016, 138(39): 12894-12901.
[72] Li N, Li G, Li C, et al. Bi-Cation Electrolyte for a 1.7 V Aqueous Zn Ion Battery[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13790-13796.
[73] Huang S, Zhu J, Tian J, et al. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries[J]. Chemistry, 2019, 25(64): 14480-14494.
[74] Xing Z, Huang C, Hu Z. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries[J]. Coordination Chemistry Reviews, 2022, 452.
[75] Zou Y, Liu T, Du Q, et al. A four-electron Zn-I2 aqueous battery enabled by reversible I(-)/I2/I(+) conversion[J]. Nat Commun, 2021, 12(1): 170.
[76] Zhang C, Holoubek J, Wu X, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chem Commun (Camb), 2018, 54(100): 14097-14099.
[77] Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nat Mater, 2018, 17(6): 543-549.
[78] Guo S, Qin L, Zhang T, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries[J]. Energy Storage Materials, 2021, 34: 545-562.
[79] Xu W, Zhao K, Huo W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
[80] Zhang Q, Luan J, Fu L, et al. The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive[J]. Angew Chem Int Ed Engl, 2019, 58(44): 15841-15847.
[81] Naveed A, Yang H, Shao Y, et al. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries[J]. Adv Mater, 2019, 31(36): e1900668.
[82] Cao L, Li D, Hu E, et al. Solvation Structure Design for Aqueous Zn Metal Batteries[J]. J Am Chem Soc, 2020, 142(51): 21404-21409.
[83] Guo X, Zhang Z, Li J, et al. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives[J]. ACS Energy Letters, 2021, 6(2): 395-403.
[84] Zeng X, Mao J, Hao J, et al. Electrolyte Design for In Situ Construction of Highly Zn(2+) -Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions[J]. Adv Mater, 2021, 33(11): e2007416.
[85] Olbasa B W, Fenta F W, Chiu S-F, et al. High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes[J]. ACS Applied Energy Materials, 2020, 3(5): 4499-4508.
[86] Lu W, Xie C, Zhang H, et al. Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries[J]. ChemSusChem, 2018, 11(23): 3996-4006.
[87] Wan F, Zhang L, Dai X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nat Commun, 2018, 9(1): 1656.
[88] Yang H, Chang Z, Qiao Y, et al. Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries[J]. Angew Chem Int Ed Engl, 2020, 59(24): 9377-9381.
[89] Hao J, Li B, Li X, et al. An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries[J]. Adv Mater, 2020, 32(34): e2003021.
[90] Mathew V, Sambandam B, Kim S, et al. Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments[J]. ACS Energy Letters, 2020, 5(7): 2376-2400.
[91] Hao J, Li X, Zeng X, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries[J]. Energy & Environmental Science, 2020, 13(11): 3917-3949.
[92] Zhang N, Chen X, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chem Soc Rev, 2020, 49(13): 4203-4219.
[93] Yi Z, Chen G, Hou F, et al. Strategies for the Stabilization of Zn Metal Anodes for Zn‐Ion Batteries[J]. Advanced Energy Materials, 2020, 11(1).
[94] Konarov A, Voronina N, Jo J H, et al. Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries[J]. ACS Energy Letters, 2018, 3(10): 2620-2640.
[95] Ye Z, Cao Z, Lam Chee M O, et al. Advances in Zn-ion batteries via regulating liquid electrolyte[J]. Energy Storage Materials, 2020, 32: 290-305.
[96] Cui B-F, Han X-P, Hu W-B. Micronanostructured Design of Dendrite-Free Zinc Anodes and Their Applications in Aqueous Zinc-Based Rechargeable Batteries[J]. Small Structures, 2021, 2(6).
[97] Bayaguud A, Fu Y, Zhu C. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies[J]. Journal of Energy Chemistry, 2022, 64: 246-262.
[98] Huang Y, Gu Q, Guo Z, et al. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study[J]. Energy Storage Materials, 2022, 46: 243-251.
[99] Yuan L, Hao J, Kao C-C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy & Environmental Science, 2021, 14(11): 5669-5689.
[100] Sun K E, Hoang T K, Doan T N, et al. Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9681-9687.
[101] Wang J, Yang Y, Zhang Y, et al. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries[J]. Energy Storage Materials, 2021, 35: 19-46.
[102] He P, Chen Q, Yan M, et al. Building better zinc-ion batteries: A materials perspective[J]. EnergyChem, 2019, 1(3).
[103] Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949.
[104] Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359–367.
[105] Dubouis N, Serva A, Salager E, et al. The Fate of Water at the Electrochemical Interfaces: Electrochemical Behavior of Free Water Versus Coordinating Water[J]. J Phys Chem Lett, 2018, 9(23): 6683-6688.
[106] Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science, 2020, 13(10): 3527-3535.
[107] Hao J, Yuan L, Ye C, et al. Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents[J]. Angew Chem Int Ed Engl, 2021, 60(13): 7366-7375.
[108] James E B, Tatyana M S, Krause M, et al. Antagonism between Ena/VASP Proteins and Actin Filament Capping Regulates Fibroblast Motility[J], 2002, 109: 509-521.
[109] Sakthi D, Prakasam M, Prakasam A, et al. A Complete DFT, TD-DFT and Non-Linear Optical Property Study on 6-Amino-2-Methylpyridine-3-Carbonitrile[J]. Computational Chemistry, 2017, 5: 129-144.
[110] Meng R, Deng Q, Peng C, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries[J]. Nano Today, 2020, 35.
[111] Wang T, Li Y, Zhang J, et al. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries[J]. Nat Commun, 2020, 11(1): 5429.
[112] Zhou J, Shan L, Tang B, et al. Development and challenges of aqueous rechargeable zinc batteries[J]. Chinese Science Bulletin, 2020, 65(32): 3562-3584.
[113] Yu P, Zeng Y, Zhang H, et al. Flexible Zn-Ion Batteries: Recent Progresses and Challenges[J]. Small, 2019, 15(7): e1804760.
Edit Comment