中文版 | English
Title

α-Li2IrO3和Na2BaCo(PO4)2等阻挫磁体的材料拓展和物性研究

Alternative Title
Material expansion and physical properties research of frustrated magnets such as α-Li2IrO3 and Na2BaCo(PO4)2
Author
Name pinyin
HUANG Lianglong
School number
11930041
Degree
硕士
Discipline
070205 凝聚态物理
Subject category of dissertation
07 理学
Supervisor
梅佳伟
Mentor unit
物理系
Publication Years
2022-05-17
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

迫使量子磁矩位于蜂窝或三角形晶格中,可以增强磁矩之间的一些量子力学 相互作用,产生常规磁性系统中难以出现的奇异磁阻挫或临界行为。目前,人们 已经发现了一些可能实现这些奇异行为的物质,比如 𝛼-Li2IrO3 和 Na2BaCo(PO4)2 等,但对其机理尚未充分理解。在此基础上,我们开展了进一步的材料拓展和物 性研究。通过测量拉曼光谱、𝜇 子自旋弛豫、磁矩、和热容,我们对六种绝缘晶体 磁体进行了磁性的分析,其中四种是新化合物。研究结果主要有:(1)𝛼-Li2IrO3 和 H3LiIr2O6 在高能区域具有鼓包形状的磁拉曼连续谱,表明其可能存在分数化 磁激发;H3LiIr2O6 的 𝜇 子自旋弛豫数据在低能区域具有 𝐴(𝐵, 𝑡) ≈ 𝐴(𝑡/𝐵0.5) 的标 度行为,表明其磁激发的态密度可能具有形式:𝑁(𝐸) ∝ 𝐸−0.5。(2)四种新化合物Na2SrCo(PO4)2、Na2SrNi(PO4)2、Na2SrNi(VO4)2、Li2BaCo(PO4)2 分别是 𝑗 = 1/2 等腰三角形晶格反铁磁体(低温)、𝑗 = 1 等腰三角形晶格反铁磁体、𝑗 = 1 等腰 三角形晶格易面铁磁体、𝑗 = 1/2 等边三角形晶格易面铁磁体(低温)。(3)当 磁场垂直于 Na2SrCo(PO4)2 的三角形晶格时,其磁场-温度相图上可能存在一系列 新磁相,在饱和磁场附近,它还表现出可能的二维临界行为。(4)当磁场垂直于 Na2SrNi(VO4)2 的三角形晶格时,其在饱和磁场附近表现出可能的二维到三维临界 行为。这些结果将有助于发展物质磁阻挫和临界行为的量子力学模型,加深人们 对物质磁性的理解,甚至应用于下一代功能材料和器件。

Other Abstract

Forcing quantum magnetic moments to lie in honeycomb or triangular lattice strengthens some of the quantum mechanical interactions between the moments. In this way, it is possible to produce exotic magnetic frustration or critical behaviors not seen in conventional magnetic systems. Although some substances that may realize these exotic behaviors have been discovered, such as 𝛼-Li2IrO3 and Na2BaCo(PO4)2, etc., the mechanism has not been fully understood. On this basis, we carried out further material expansion and physical properties research. By measuring Raman spectroscopy, muon spin relaxation, magnetic moment, and heat capacity, we have analyzed the magnetic properties of six insulating crystalline magnets, four of which are new compounds. The results show that: (1) 𝛼-Li2IrO3 and H3LiIr2O6 have bulge-shaped magnetic Raman continuum in the high-energy region, indicating possible fractional magnetic excitation; for H3LiIr2O6, the observation of scaling behavior of muon spin relaxation data 𝐴(𝐵, 𝑡) ≈ 𝐴(𝑡/𝐵0.5) in the low-energy region indicates the magnetic excitation may have the form: 𝑁(𝐸) ∝ 𝐸−0.5. (2) Four new compounds Na2SrCo(PO4)2, Na2SrNi(PO4)2, Na2SrNi(VO4)2, Li2BaCo(PO4)2 are isosceles triangular lattice antiferromagnet with 𝑗 = 1/2 (low temperature), isosceles triangular lattice antiferromagnet with 𝑗 = 1, isosceles triangular lattice easy-plane ferromagnet with 𝑗 = 1, equilateral triangular lattice easyplane ferromagnet with 𝑗 = 1/2 (low temperature), respectively. (3) When the magnetic field is perpendicular to the triangular lattice of Na2SrCo(PO4)2, a series of new magnetic phases may exist on its magnetic field-temperature phase diagram, and it exhibits possible two-dimensional critical behavior near the saturated magnetic field. (4) When the magnetic field is perpendicular to the triangular lattice of Na2SrNi(VO4)2, it exhibits possible two- to three-dimensional critical behavior near the saturated magnetic field. These findings will contribute to the development of quantum mechanical models of magnetic frustration and critical behavior of matter, deepen our understanding of matter magnetism, and even be applied to next-generation functional materials and devices.

Keywords
Other Keyword
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] BLUNDELL S. Magnetism in condensed matter[M]. American Association of Physics Teachers, 2003.
[2] SCHOLLWÖCK U, RICHTER J, FARNELL D J, et al. Quantum magnetism[M]. Springer, 2004.
[3] KITTEL C. Introduction to solid state physics[M]. 8th ed. New Jersey: Wiley, 2005.
[4] SUZUKI M S. Superexchange interaction[EB/OL]. 2009. http://bingweb.binghamton.edu/~suzuki/SolidStatePhysics/33_Superexchange_interaction.pdf.
[5] RAMIREZ A. Geometrical frustration[J]. Handbook of magnetic materials, 2001, 13: 423-520.
[6] BALENTS L. Spin liquids in frustrated magnets[J]. Nature, 2010, 464(7286): 199-208.
[7] KITAEV A. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321(1): 2-111.
[8] SAVARY L, BALENTS L. Quantum spin liquids: a review[J]. Reports on Progress in Physics, 2016, 80(1): 016502.
[9] ZHOU Y, KANODA K, NG T K. Quantum spin liquid states[J]. Reviews of Modern Physics, 2017, 89(2): 025003.
[10] TAKAGI H, TAKAYAMA T, JACKELI G, et al. Concept and realization of Kitaev quantum spin liquids[J]. Nature Reviews Physics, 2019, 1(4): 264-280.
[11] BROHOLM C, CAVA R, KIVELSON S, et al. Quantum spin liquids[J]. Science, 2020, 367(6475): eaay0668.
[12] CHAMORRO J R, MCQUEEN T M, TRAN T T. Chemistry of quantum spin liquids[J]. Chemical Reviews, 2020, 121(5): 2898-2934.
[13] ANDERSON P W. Resonating valence bonds: A new kind of insulator?[J]. Materials Research Bulletin, 1973, 8(2): 153-160.
[14] ANDERSON P W. The resonating valence bond state in La2CuO4 and superconductivity[J]. Science, 1987, 235(4793): 1196-1198.
[15] NASU J, KNOLLE J, KOVRIZHIN D L, et al. Fermionic response from fractionalization in an insulating two-dimensional magnet[J]. Nature Physics, 2016, 12(10): 912-915.
[16] NASU J, YOSHITAKE J, MOTOME Y. Thermal transport in the Kitaev model[J]. Physical Review Letters, 2017, 119(12): 127204.
[17] ZAPF V, JAIME M, BATISTA C. Bose-Einstein condensation in quantum magnets[J]. Reviews of Modern Physics, 2014, 86(2): 563.
[18] SYROMYATNIKOV A. Bose-Einstein condensation of magnons in magnets with predominant ferromagnetic interactions[J]. Physical Review B, 2007, 75(13): 134421.
[19] SACHDEV S. Quantum phase transitions[M]. 2nd ed. Cambridge University Press, 2011.
[20] ALICEA J, CHUBUKOV A V, STARYKH O A. Quantum stabilization of the 1/3-magnetization plateau in Cs2CuBr4[J]. Physical Review Letters, 2009, 102(13): 137201.
[21] HIRATA S, KURITA N, YAMADA M, et al. Quasi-two-dimensional Bose−Einstein condensation of lattice bosons in the spin-1/2 XXZ ferromagnet K2CuF4[J]. Physical Review B, 2017, 95(17): 174406.
[22] SACHDEV S. Quantum phase transitions and conserved charges[J]. Zeitschrift für Physik B Condensed Matter, 1994, 94(4): 469-479.
[23] ONO T, TANAKA H, KATORI H A, et al. Magnetization plateau in the frustrated quantum spin system Cs2CuBr4[J]. Physical Review B, 2003, 67(10): 104431.
[24] ONO T, TANAKA H, KOLOMIYETS O, et al. Magnetization plateaux of the 𝑆 = 1/2 twodimensional frustrated antiferromagnet Cs2CuBr4[J]. Journal of Physics: Condensed Matter, 2004, 16(11): S773.
[25] TSUJII H, ROTUNDU C, ONO T, et al. Thermodynamics of the up-up-down phase of the 𝑆 = 1/2 triangular-lattice antiferromagnet Cs2CuBr4[J]. Physical Review B, 2007, 76(6): 060406.
[26] FORTUNE N A, HANNAHS S T, YOSHIDA Y, et al. Cascade of magnetic-field-induced quantum phase transitions in a spin-1/2 triangular-lattice antiferromagnet[J]. Physical Review Letters, 2009, 102(25): 257201.
[27] BAEK S H, DO S H, CHOI K Y, et al. Evidence for a field-induced quantum spin liquid in 𝛼-RuCl3[J]. Physical Review Letters, 2017, 119(3): 037201.
[28] EINSTEIN A. Quantum theory of the monatomic ideal gas[J/OL]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1924: 261-267.http://www.fisica.uns.edu.ar/albert/archivos/46/156/495246252_apuntes.pdf.
[29] EINSTEIN A. Quantentheorie des einatomigen idealen Gases[J/OL]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1924: 261-267. https://www.uni-muenster.de/imperia/md/content/physik_ap/demokritov/mbecfornonphysicists/einstein_1924_1925.pdf.
[30] ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose−Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.
[31] MATSUBARA T, MATSUDA H. A lattice model of liquid helium, I[J]. Progress of Theoretical Physics, 1956, 16(6): 569-582.
[32] BATYEV E, BRAGINSKII L. Antiferrornagnet in a strong magnetic field: analogy with Bosegas[J]. Soviet Journal of Experimental and Theoretical Physics, 1984, 60(4): 781.
[33] BATYEV E. Antiferromagnet of arbitrary spin in a strong magnetic field[J]. Soviet Journal of Experimental and Theoretical Physics, 1985, 62(1): 173.
[34] YAMASHITA S, NAKAZAWA Y, OGUNI M, et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a 𝜅-type organic salt[J]. Nature Physics, 2008, 4(6): 459-462.
[35] HAN T H, HELTON J S, CHU S, et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet[J]. Nature, 2012, 492(7429): 406-410.
[36] FU Y, LIN M L, WANG L, et al. Dynamic fingerprint of fractionalized excitations in singlecrystalline Cu3Zn(OH)6FBr[J]. Nature Communications, 2021, 12(1): 1-8.
[37] ZHONG R, GUO S, XU G, et al. Strong quantum fluctuations in a quantum spin liquid candidate with a Co-based triangular lattice[J]. Proceedings of the National Academy of Sciences, 2019, 116(29): 14505-14510.
[38] LI N, HUANG Q, YUE X, et al. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2[J]. Nature Communications, 2020, 11(1): 1-9.
[39] WELLM C, ROSCHER W, ZEISNER J, et al. Frustration enhanced by Kitaev exchange in a 𝑗eff = 1/2 triangular antiferromagnet[J]. Physical Review B, 2021, 104(10): L100420.
[40] LEE S, LEE C, BERLIE A, et al. Temporal and field evolution of spin excitations in the disorderfree triangular antiferromagnet Na2BaCo(PO4)2[J]. Physical Review B, 2021, 103(2): 024413.
[41] GAO Y, FAN Y C, LI H, et al. Spin Supersolidity in Nearly Ideal Easy-axis Triangular Quantum Antiferromagnet Na2BaCo(PO4)2[J]. ArXiv preprint arXiv:2202.05242, 2022.
[42] ZHANG C, XU Q, ZENG X T, et al. Doping-induced structural transformation in the spin1/2 triangular-lattice antiferromagnet Na2Ba1−𝑥Sr𝑥Co(PO4)2[J]. Journal of Alloys and Compounds, 2022, 905: 164147.
[43] HUANG Y Y, DAI D, ZHAO C C, et al. Thermal conductivity of triangular-lattice antiferromagnet Na2BaCo(PO4)2: Absence of itinerant fermionic excitations[J]. ArXiv preprint arXiv:2206.08866, 2022.
[44] RADU T, WILHELM H, YUSHANKHAI V, et al. Bose-Einstein condensation of magnons in Cs2CuCl4[J]. Physical Review Letters, 2005, 95(12): 127202.
[45] FU Y, CHEN J, SHENG J, et al. Dzyaloshinskii-Moriya anisotropy effect on field-induced magnon condensation in the kagome antiferromagnet 𝛼-Cu3.26Mg0.74(OH)6Br2[J]. Physical Review B, 2021, 104(24): 245107.
[46] SEBASTIAN S, SHARMA P, JAIME M, et al. Characteristic Bose-Einstein condensation scaling close to a quantum critical point in BaCuSi2O6[J]. Physical Review B, 2005, 72(10): 100404.
[47] TANAKA H, OOSAWA A, KATO T, et al. Observation of field-induced transverse Néel ordering in the spin gap system TlCuCl3[J]. Journal of the Physical Society of Japan, 2001, 70(4): 939-942.
[48] ZAPF V, ZOCCO D, HANSEN B R, et al. Bose-Einstein Condensation of 𝑆 = 1 Nickel Spin Degrees of Freedom in NiCl2−4SC(NH2)2[J]. Physical Review Letters, 2006, 96(7): 077204.
[49] WU L, NIKITIN S, WANG Z, et al. Tomonaga-Luttinger liquid behavior and spinon confinement in YbAlO3[J]. Nature Communications, 2019, 10(1): 1-9.
[50] O’MALLEY M J, VERWEIJ H, WOODWARD P M. Structure and properties of ordered Li2IrO3 and Li2PtO3[J]. Journal of Solid State Chemistry, 2008, 181(8): 1803-1809.
[51] BETTE S, TAKAYAMA T, KITAGAWA K, et al. Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H3LiIr2O6[J]. Dalton Transactions, 2017, 46(44): 15216-15227.
[52] KITAGAWA K, TAKAYAMA T, MATSUMOTO Y, et al. A spin–orbital-entangled quantum liquid on a honeycomb lattice[J]. Nature, 2018, 554(7692): 341-345.
[53] BADER V P, LANGMANN J, GEGENWART P, et al. Deformation of the triangular spin-1/2 lattice in Na2SrCo(PO4)2[J]. ArXiv preprint arXiv:2205.07740, 2022.
[54] AMUNEKE N E, GHEORGHE D E, LORENZ B, et al. Synthesis, crystal structure, and physical properties of BaAg2Cu[VO4]2: a new member of the 𝑆 = 1/2 triangular lattice[J]. Inorganic Chemistry, 2011, 50(6): 2207-2214.
[55] TSIRLIN A A, MÖLLER A, LORENZ B, et al. Superposition of ferromagnetic and antiferromagnetic spin chains in the quantum magnet BaAg2Cu[VO4]2[J]. Physical Review B, 2012, 85(1): 014401.
[56] SEBASTIAN S J, SOMESH K, NANDI M, et al. Quasi-one-dimensional magnetism in the spin-1/2 antiferromagnet BaNa2Cu(VO4)2[J]. Physical Review B, 2021, 103(6): 064413.
[57] LI N, HUANG Q, BRASSINGTON A, et al. Quantum spin state transitions in the spin-1 equilateral triangular lattice antiferromagnet Na2BaNi(PO4)2[J]. Physical Review B, 2021, 104(10): 104403.
[58] SANJEEWA L D, GARLEA V O, MCGUIRE M A, et al. Magnetic ground state crossover in a series of glaserite systems with triangular magnetic lattices[J]. Inorganic Chemistry, 2019, 58(4): 2813-2821.
[59] MÖLLER A, AMUNEKE N E, DANIEL P, et al. AAg2M[VO4]2(A = Ba, Sr; M = Co, Ni): aseries of ferromagnetic insulators[J]. Physical Review B, 2012, 85(21): 214422.
[60] AMUNEKE N E. Synthesis and Structure-Property Relationships of the AAg2M[VO4]2 Type of Compounds[D]. 2013.
[61] NAKAYAMA G, HARA S, SATO H, et al. Synthesis and magnetic properties of a new series of triangular-lattice magnets, Na2BaMV2O8(M = Ni, Co, and Mn)[J]. Journal of Physics: Condensed Matter, 2013, 25(11): 116003.
[62] SANJEEWA L D, GARLEA V O, MCGUIRE M A, et al. Investigation of a Structural Phase Transition and Magnetic Structure of Na2BaFe(VO4)2: A triangular magnetic lattice with a ferromagnetic ground state[J]. Inorganic Chemistry, 2017, 56(24): 14842-14849.
[63] SANJEEWA L D, MCMILLEN C D, WILLETT D, et al. Hydrothermal synthesis of singlecrystals of transition metal vanadates in the glaserite phase[J]. Journal of Solid State Chemistry, 2016, 236: 61-68.
[64] RETTICH R, MÜLLER-BUSCHBAUM H. Ag+ als Substituent eines Alkalimetalls in Ag2SrMnV2O8/Ag+ As Substituent Of An Alkaline Metal In Ag2SrMnV2O8[J]. Zeitschrift für Naturforschung B, 1998, 53(3): 279-282.
[65] RETTICH R, MÜLLER-BUSCHBAUM H. Zur Kristallchemie der Silber-ManganOxovanadate Ag2BaMnV2O8 und (AgCa2)Mn2(VO4)3/On the Crystal Chemistry of the Silver Manganese Oxovanadates Ag2BaMnV2O8 and (AgCa2)Mn2(VO4)3[J]. Zeitschrift für Naturforschung B, 1998, 53(3): 291-295.
[66] KIM J, KIM K, CHOI E, et al. Magnetic phase diagram of a 2-dimensional triangular lattice antiferromagnet Na2BaMn(PO4)2[J]. ArXiv preprint arXiv:2206.01353, 2022.
[67] FREUND F, WILLIAMS S, JOHNSON R, et al. Single crystal growth from separated educts and its application to lithium transition-metal oxides[J]. Scientific reports, 2016, 6(1): 1-6.
[68] LI G, HUANG L L, CHEN X, et al. Probing the continuum scattering and magnetic collapse in single-crystalline 𝛼-Li2IrO3 by Raman spectroscopy[J]. Physical Review B, 2020, 101(17): 174436.
[69] PEI S, HUANG L L, LI G, et al. Magnetic Raman continuum in single-crystalline H3LiIr2O6[J]. Physical Review B, 2020, 101(20): 201101.
[70] YANG Y X, HUANG L L, ZHU Z H, et al. Muon Spin Relaxation Study of Spin Dynamics in Quantum Spin Liquid Candidate H3LiIr2O6[J]. ArXiv preprint arXiv:2201.12978, 2022.
[71] YONESAKI Y, MATSUDA C, DONG Q. Structural consideration on the emission properties of Eu2+-doped Li2BaMgP2O8 and Na2BaMgP2O8 orthophosphates[J]. Journal of Solid State Chemistry, 2012, 196: 404-408.
[72] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.
[73] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C: Structural Chemistry, 2015, 71(1): 3-8.
[74] RIETVELD H M. A profile refinement method for nuclear and magnetic structures[J]. Journal of Applied Crystallography, 1969, 2(2): 65-71.
[75] COELHO A A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++[J]. Journal of Applied Crystallography, 2018, 51(1): 210-218.
[76] CANDINI A, GAZZADI G, DI BONA A, et al. Hall nano-probes fabricated by focused ion beam[J]. Nanotechnology, 2006, 17(9): 2105.
[77] CAVALLINI A, FRABONI B, CAPOTONDI F, et al. Deep levels in MBE grown AlGaAs/GaAs heterostructures[J]. Microelectronic Engineering, 2004, 73: 954-959.
[78] SNOW C S. Probing the dynamics of pressure-and magnetic field-tuned transitions in stronglycorrelated electron systems: Raman scattering studies[D]. 2003.
[79] ZI-HAO Z, LEI S. Muon Spin Relaxation Studies on Quantum Spin Liquid Candidate[J]. Progress in Physics, 2020, 40(5): 143.
[80] LEMMENS P, GÜNTHERODT G, GROS C. Magnetic light scattering in low-dimensional quantum spin systems[J]. Physics Reports, 2003, 375(1): 1-103.
[81] WINTER S M, LI Y, JESCHKE H O, et al. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales[J]. Physical Review B, 2016, 93(21): 214431.
[82] WINTER S M, TSIRLIN A A, DAGHOFER M, et al. Models and materials for generalized Kitaev magnetism[J]. Journal of Physics: Condensed Matter, 2017, 29(49): 493002.
[83] YADAV R, RAY R, ELDEEB M S, et al. Strong Effect of Hydrogen Order on Magnetic Kitaev Interactions in H3LiIr2O6[J]. Physical Review Letters, 2018, 121(19): 197203.
[84] HAYANO R, UEMURA Y, IMAZATO J, et al. Zero- and low-field spin relaxation studied by positive muons[J]. Physical Review B, 1979, 20(3): 850.
[85] KEREN A, MENDELS P, CAMPBELL I A, et al. Probing the Spin-Spin Dynamical Autocorrelation Function in a Spin Glass above 𝑇𝑔 via Muon Spin Relaxation[J]. Physical ReviewLetters, 1996, 77(7): 1386.
[86] NIKOLOVA R, KOSTOV-KYTIN V, et al. Crystal chemistry of “glaserite”type compounds[J]. Bulgarian Chemical Communications, 2013, 45(4): 418-426.
[87] SHIRATA Y, TANAKA H, MATSUO A, et al. Experimental realization of a spin-1/2 triangularlattice Heisenberg antiferromagnet[J]. Physical Review Letters, 2012, 108(5): 057205.
[88] LINES M. Magnetic Properties of CoCl2 and NiCl2[J]. Physical Review, 1963, 131(2): 546.
[89] SHIBA H, UEDA Y, OKUNISHI K, et al. Exchange interaction via crystal-field excited states and its importance in CsCoCl3[J]. Journal of the Physical Society of Japan, 2003, 72(9): 2326-2333.
[90] VAN VLECK J H. Quantum mechanics: The key to understanding magnetism[J]. Science, 1978, 201(4351): 113-120.
[91] SINGH R R, HUSE D A. Three-sublattice order in triangular-and kagomé-lattice spin-half antiferromagnets[J]. Physical Review Letters, 1992, 68(11): 1766.
[92] SINDZINGRE P, LECHEMINANT P, LHUILLIER C. Investigation of different classes of variational functions for the triangular and kagome spin-1/2 Heisenberg antiferromagnets[J]. Physical Review B, 1994, 50(5): 3108.
[93] BERNU B, LECHEMINANT P, LHUILLIER C, et al. Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice[J]. Physical Review B, 1994, 50(14): 10048.
[94] CAPRIOTTI L, TRUMPER A E, SORELLA S. Long-range Néel order in the triangular Heisenberg model[J]. Physical Review Letters, 1999, 82(19): 3899.
[95] WEIHONG Z, MCKENZIE R H, SINGH R R. Phase diagram for a class of spin-1/2 Heisenberg models interpolating between the square-lattice, the triangular-lattice, and the linear-chain limits[J]. Physical Review B, 1999, 59(22): 14367.
[96] WYSIN G. Demagnetization fields[EB/OL]. 2012. https://www.phys.ksu.edu/personal/wysin/notes/demag.pdf.
[97] CORPORATION O. OriginPro[M]. OriginLab Northampton, MA, USA, 2021.
[98] O’HANDLEY R C. Modern magnetic materials: principles and applications[M]. 1999.
[99] AMUSIA M, SHAGINYAN V. Strongly Correlated Fermi Systems[M]. Springer, 2020.
[100] KNOLLE J, CHERN G W, KOVRIZHIN D, et al. Raman scattering signatures of Kitaev spin liquids in A2IrO3 iridates with A = Na or Li[J]. Physical Review Letters, 2014, 113(18): 187201.
[101] BOUKHRIS A, HIDOURI M, GLORIEUX B, et al. Na2BaMg(PO4)2: synthesis, crystal structure and europium photoluminescence properties[J]. Journal of Rare Earths, 2013, 31(9): 849-856.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O469
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343144
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
黄良龙. α-Li2IrO3和Na2BaCo(PO4)2等阻挫磁体的材料拓展和物性研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930041-黄良龙-物理系.pdf(7377KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[黄良龙]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[黄良龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[黄良龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.