[1] BLUNDELL S. Magnetism in condensed matter[M]. American Association of Physics Teachers, 2003.
[2] SCHOLLWÖCK U, RICHTER J, FARNELL D J, et al. Quantum magnetism[M]. Springer, 2004.
[3] KITTEL C. Introduction to solid state physics[M]. 8th ed. New Jersey: Wiley, 2005.
[4] SUZUKI M S. Superexchange interaction[EB/OL]. 2009. http://bingweb.binghamton.edu/~suzuki/SolidStatePhysics/33_Superexchange_interaction.pdf.
[5] RAMIREZ A. Geometrical frustration[J]. Handbook of magnetic materials, 2001, 13: 423-520.
[6] BALENTS L. Spin liquids in frustrated magnets[J]. Nature, 2010, 464(7286): 199-208.
[7] KITAEV A. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321(1): 2-111.
[8] SAVARY L, BALENTS L. Quantum spin liquids: a review[J]. Reports on Progress in Physics, 2016, 80(1): 016502.
[9] ZHOU Y, KANODA K, NG T K. Quantum spin liquid states[J]. Reviews of Modern Physics, 2017, 89(2): 025003.
[10] TAKAGI H, TAKAYAMA T, JACKELI G, et al. Concept and realization of Kitaev quantum spin liquids[J]. Nature Reviews Physics, 2019, 1(4): 264-280.
[11] BROHOLM C, CAVA R, KIVELSON S, et al. Quantum spin liquids[J]. Science, 2020, 367(6475): eaay0668.
[12] CHAMORRO J R, MCQUEEN T M, TRAN T T. Chemistry of quantum spin liquids[J]. Chemical Reviews, 2020, 121(5): 2898-2934.
[13] ANDERSON P W. Resonating valence bonds: A new kind of insulator?[J]. Materials Research Bulletin, 1973, 8(2): 153-160.
[14] ANDERSON P W. The resonating valence bond state in La2CuO4 and superconductivity[J]. Science, 1987, 235(4793): 1196-1198.
[15] NASU J, KNOLLE J, KOVRIZHIN D L, et al. Fermionic response from fractionalization in an insulating two-dimensional magnet[J]. Nature Physics, 2016, 12(10): 912-915.
[16] NASU J, YOSHITAKE J, MOTOME Y. Thermal transport in the Kitaev model[J]. Physical Review Letters, 2017, 119(12): 127204.
[17] ZAPF V, JAIME M, BATISTA C. Bose-Einstein condensation in quantum magnets[J]. Reviews of Modern Physics, 2014, 86(2): 563.
[18] SYROMYATNIKOV A. Bose-Einstein condensation of magnons in magnets with predominant ferromagnetic interactions[J]. Physical Review B, 2007, 75(13): 134421.
[19] SACHDEV S. Quantum phase transitions[M]. 2nd ed. Cambridge University Press, 2011.
[20] ALICEA J, CHUBUKOV A V, STARYKH O A. Quantum stabilization of the 1/3-magnetization plateau in Cs2CuBr4[J]. Physical Review Letters, 2009, 102(13): 137201.
[21] HIRATA S, KURITA N, YAMADA M, et al. Quasi-two-dimensional Bose−Einstein condensation of lattice bosons in the spin-1/2 XXZ ferromagnet K2CuF4[J]. Physical Review B, 2017, 95(17): 174406.
[22] SACHDEV S. Quantum phase transitions and conserved charges[J]. Zeitschrift für Physik B Condensed Matter, 1994, 94(4): 469-479.
[23] ONO T, TANAKA H, KATORI H A, et al. Magnetization plateau in the frustrated quantum spin system Cs2CuBr4[J]. Physical Review B, 2003, 67(10): 104431.
[24] ONO T, TANAKA H, KOLOMIYETS O, et al. Magnetization plateaux of the 𝑆 = 1/2 twodimensional frustrated antiferromagnet Cs2CuBr4[J]. Journal of Physics: Condensed Matter, 2004, 16(11): S773.
[25] TSUJII H, ROTUNDU C, ONO T, et al. Thermodynamics of the up-up-down phase of the 𝑆 = 1/2 triangular-lattice antiferromagnet Cs2CuBr4[J]. Physical Review B, 2007, 76(6): 060406.
[26] FORTUNE N A, HANNAHS S T, YOSHIDA Y, et al. Cascade of magnetic-field-induced quantum phase transitions in a spin-1/2 triangular-lattice antiferromagnet[J]. Physical Review Letters, 2009, 102(25): 257201.
[27] BAEK S H, DO S H, CHOI K Y, et al. Evidence for a field-induced quantum spin liquid in 𝛼-RuCl3[J]. Physical Review Letters, 2017, 119(3): 037201.
[28] EINSTEIN A. Quantum theory of the monatomic ideal gas[J/OL]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1924: 261-267.http://www.fisica.uns.edu.ar/albert/archivos/46/156/495246252_apuntes.pdf.
[29] EINSTEIN A. Quantentheorie des einatomigen idealen Gases[J/OL]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1924: 261-267. https://www.uni-muenster.de/imperia/md/content/physik_ap/demokritov/mbecfornonphysicists/einstein_1924_1925.pdf.
[30] ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose−Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.
[31] MATSUBARA T, MATSUDA H. A lattice model of liquid helium, I[J]. Progress of Theoretical Physics, 1956, 16(6): 569-582.
[32] BATYEV E, BRAGINSKII L. Antiferrornagnet in a strong magnetic field: analogy with Bosegas[J]. Soviet Journal of Experimental and Theoretical Physics, 1984, 60(4): 781.
[33] BATYEV E. Antiferromagnet of arbitrary spin in a strong magnetic field[J]. Soviet Journal of Experimental and Theoretical Physics, 1985, 62(1): 173.
[34] YAMASHITA S, NAKAZAWA Y, OGUNI M, et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a 𝜅-type organic salt[J]. Nature Physics, 2008, 4(6): 459-462.
[35] HAN T H, HELTON J S, CHU S, et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet[J]. Nature, 2012, 492(7429): 406-410.
[36] FU Y, LIN M L, WANG L, et al. Dynamic fingerprint of fractionalized excitations in singlecrystalline Cu3Zn(OH)6FBr[J]. Nature Communications, 2021, 12(1): 1-8.
[37] ZHONG R, GUO S, XU G, et al. Strong quantum fluctuations in a quantum spin liquid candidate with a Co-based triangular lattice[J]. Proceedings of the National Academy of Sciences, 2019, 116(29): 14505-14510.
[38] LI N, HUANG Q, YUE X, et al. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2[J]. Nature Communications, 2020, 11(1): 1-9.
[39] WELLM C, ROSCHER W, ZEISNER J, et al. Frustration enhanced by Kitaev exchange in a 𝑗eff = 1/2 triangular antiferromagnet[J]. Physical Review B, 2021, 104(10): L100420.
[40] LEE S, LEE C, BERLIE A, et al. Temporal and field evolution of spin excitations in the disorderfree triangular antiferromagnet Na2BaCo(PO4)2[J]. Physical Review B, 2021, 103(2): 024413.
[41] GAO Y, FAN Y C, LI H, et al. Spin Supersolidity in Nearly Ideal Easy-axis Triangular Quantum Antiferromagnet Na2BaCo(PO4)2[J]. ArXiv preprint arXiv:2202.05242, 2022.
[42] ZHANG C, XU Q, ZENG X T, et al. Doping-induced structural transformation in the spin1/2 triangular-lattice antiferromagnet Na2Ba1−𝑥Sr𝑥Co(PO4)2[J]. Journal of Alloys and Compounds, 2022, 905: 164147.
[43] HUANG Y Y, DAI D, ZHAO C C, et al. Thermal conductivity of triangular-lattice antiferromagnet Na2BaCo(PO4)2: Absence of itinerant fermionic excitations[J]. ArXiv preprint arXiv:2206.08866, 2022.
[44] RADU T, WILHELM H, YUSHANKHAI V, et al. Bose-Einstein condensation of magnons in Cs2CuCl4[J]. Physical Review Letters, 2005, 95(12): 127202.
[45] FU Y, CHEN J, SHENG J, et al. Dzyaloshinskii-Moriya anisotropy effect on field-induced magnon condensation in the kagome antiferromagnet 𝛼-Cu3.26Mg0.74(OH)6Br2[J]. Physical Review B, 2021, 104(24): 245107.
[46] SEBASTIAN S, SHARMA P, JAIME M, et al. Characteristic Bose-Einstein condensation scaling close to a quantum critical point in BaCuSi2O6[J]. Physical Review B, 2005, 72(10): 100404.
[47] TANAKA H, OOSAWA A, KATO T, et al. Observation of field-induced transverse Néel ordering in the spin gap system TlCuCl3[J]. Journal of the Physical Society of Japan, 2001, 70(4): 939-942.
[48] ZAPF V, ZOCCO D, HANSEN B R, et al. Bose-Einstein Condensation of 𝑆 = 1 Nickel Spin Degrees of Freedom in NiCl2−4SC(NH2)2[J]. Physical Review Letters, 2006, 96(7): 077204.
[49] WU L, NIKITIN S, WANG Z, et al. Tomonaga-Luttinger liquid behavior and spinon confinement in YbAlO3[J]. Nature Communications, 2019, 10(1): 1-9.
[50] O’MALLEY M J, VERWEIJ H, WOODWARD P M. Structure and properties of ordered Li2IrO3 and Li2PtO3[J]. Journal of Solid State Chemistry, 2008, 181(8): 1803-1809.
[51] BETTE S, TAKAYAMA T, KITAGAWA K, et al. Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H3LiIr2O6[J]. Dalton Transactions, 2017, 46(44): 15216-15227.
[52] KITAGAWA K, TAKAYAMA T, MATSUMOTO Y, et al. A spin–orbital-entangled quantum liquid on a honeycomb lattice[J]. Nature, 2018, 554(7692): 341-345.
[53] BADER V P, LANGMANN J, GEGENWART P, et al. Deformation of the triangular spin-1/2 lattice in Na2SrCo(PO4)2[J]. ArXiv preprint arXiv:2205.07740, 2022.
[54] AMUNEKE N E, GHEORGHE D E, LORENZ B, et al. Synthesis, crystal structure, and physical properties of BaAg2Cu[VO4]2: a new member of the 𝑆 = 1/2 triangular lattice[J]. Inorganic Chemistry, 2011, 50(6): 2207-2214.
[55] TSIRLIN A A, MÖLLER A, LORENZ B, et al. Superposition of ferromagnetic and antiferromagnetic spin chains in the quantum magnet BaAg2Cu[VO4]2[J]. Physical Review B, 2012, 85(1): 014401.
[56] SEBASTIAN S J, SOMESH K, NANDI M, et al. Quasi-one-dimensional magnetism in the spin-1/2 antiferromagnet BaNa2Cu(VO4)2[J]. Physical Review B, 2021, 103(6): 064413.
[57] LI N, HUANG Q, BRASSINGTON A, et al. Quantum spin state transitions in the spin-1 equilateral triangular lattice antiferromagnet Na2BaNi(PO4)2[J]. Physical Review B, 2021, 104(10): 104403.
[58] SANJEEWA L D, GARLEA V O, MCGUIRE M A, et al. Magnetic ground state crossover in a series of glaserite systems with triangular magnetic lattices[J]. Inorganic Chemistry, 2019, 58(4): 2813-2821.
[59] MÖLLER A, AMUNEKE N E, DANIEL P, et al. AAg2M[VO4]2(A = Ba, Sr; M = Co, Ni): aseries of ferromagnetic insulators[J]. Physical Review B, 2012, 85(21): 214422.
[60] AMUNEKE N E. Synthesis and Structure-Property Relationships of the AAg2M[VO4]2 Type of Compounds[D]. 2013.
[61] NAKAYAMA G, HARA S, SATO H, et al. Synthesis and magnetic properties of a new series of triangular-lattice magnets, Na2BaMV2O8(M = Ni, Co, and Mn)[J]. Journal of Physics: Condensed Matter, 2013, 25(11): 116003.
[62] SANJEEWA L D, GARLEA V O, MCGUIRE M A, et al. Investigation of a Structural Phase Transition and Magnetic Structure of Na2BaFe(VO4)2: A triangular magnetic lattice with a ferromagnetic ground state[J]. Inorganic Chemistry, 2017, 56(24): 14842-14849.
[63] SANJEEWA L D, MCMILLEN C D, WILLETT D, et al. Hydrothermal synthesis of singlecrystals of transition metal vanadates in the glaserite phase[J]. Journal of Solid State Chemistry, 2016, 236: 61-68.
[64] RETTICH R, MÜLLER-BUSCHBAUM H. Ag+ als Substituent eines Alkalimetalls in Ag2SrMnV2O8/Ag+ As Substituent Of An Alkaline Metal In Ag2SrMnV2O8[J]. Zeitschrift für Naturforschung B, 1998, 53(3): 279-282.
[65] RETTICH R, MÜLLER-BUSCHBAUM H. Zur Kristallchemie der Silber-ManganOxovanadate Ag2BaMnV2O8 und (AgCa2)Mn2(VO4)3/On the Crystal Chemistry of the Silver Manganese Oxovanadates Ag2BaMnV2O8 and (AgCa2)Mn2(VO4)3[J]. Zeitschrift für Naturforschung B, 1998, 53(3): 291-295.
[66] KIM J, KIM K, CHOI E, et al. Magnetic phase diagram of a 2-dimensional triangular lattice antiferromagnet Na2BaMn(PO4)2[J]. ArXiv preprint arXiv:2206.01353, 2022.
[67] FREUND F, WILLIAMS S, JOHNSON R, et al. Single crystal growth from separated educts and its application to lithium transition-metal oxides[J]. Scientific reports, 2016, 6(1): 1-6.
[68] LI G, HUANG L L, CHEN X, et al. Probing the continuum scattering and magnetic collapse in single-crystalline 𝛼-Li2IrO3 by Raman spectroscopy[J]. Physical Review B, 2020, 101(17): 174436.
[69] PEI S, HUANG L L, LI G, et al. Magnetic Raman continuum in single-crystalline H3LiIr2O6[J]. Physical Review B, 2020, 101(20): 201101.
[70] YANG Y X, HUANG L L, ZHU Z H, et al. Muon Spin Relaxation Study of Spin Dynamics in Quantum Spin Liquid Candidate H3LiIr2O6[J]. ArXiv preprint arXiv:2201.12978, 2022.
[71] YONESAKI Y, MATSUDA C, DONG Q. Structural consideration on the emission properties of Eu2+-doped Li2BaMgP2O8 and Na2BaMgP2O8 orthophosphates[J]. Journal of Solid State Chemistry, 2012, 196: 404-408.
[72] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.
[73] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C: Structural Chemistry, 2015, 71(1): 3-8.
[74] RIETVELD H M. A profile refinement method for nuclear and magnetic structures[J]. Journal of Applied Crystallography, 1969, 2(2): 65-71.
[75] COELHO A A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++[J]. Journal of Applied Crystallography, 2018, 51(1): 210-218.
[76] CANDINI A, GAZZADI G, DI BONA A, et al. Hall nano-probes fabricated by focused ion beam[J]. Nanotechnology, 2006, 17(9): 2105.
[77] CAVALLINI A, FRABONI B, CAPOTONDI F, et al. Deep levels in MBE grown AlGaAs/GaAs heterostructures[J]. Microelectronic Engineering, 2004, 73: 954-959.
[78] SNOW C S. Probing the dynamics of pressure-and magnetic field-tuned transitions in stronglycorrelated electron systems: Raman scattering studies[D]. 2003.
[79] ZI-HAO Z, LEI S. Muon Spin Relaxation Studies on Quantum Spin Liquid Candidate[J]. Progress in Physics, 2020, 40(5): 143.
[80] LEMMENS P, GÜNTHERODT G, GROS C. Magnetic light scattering in low-dimensional quantum spin systems[J]. Physics Reports, 2003, 375(1): 1-103.
[81] WINTER S M, LI Y, JESCHKE H O, et al. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales[J]. Physical Review B, 2016, 93(21): 214431.
[82] WINTER S M, TSIRLIN A A, DAGHOFER M, et al. Models and materials for generalized Kitaev magnetism[J]. Journal of Physics: Condensed Matter, 2017, 29(49): 493002.
[83] YADAV R, RAY R, ELDEEB M S, et al. Strong Effect of Hydrogen Order on Magnetic Kitaev Interactions in H3LiIr2O6[J]. Physical Review Letters, 2018, 121(19): 197203.
[84] HAYANO R, UEMURA Y, IMAZATO J, et al. Zero- and low-field spin relaxation studied by positive muons[J]. Physical Review B, 1979, 20(3): 850.
[85] KEREN A, MENDELS P, CAMPBELL I A, et al. Probing the Spin-Spin Dynamical Autocorrelation Function in a Spin Glass above 𝑇𝑔 via Muon Spin Relaxation[J]. Physical ReviewLetters, 1996, 77(7): 1386.
[86] NIKOLOVA R, KOSTOV-KYTIN V, et al. Crystal chemistry of “glaserite”type compounds[J]. Bulgarian Chemical Communications, 2013, 45(4): 418-426.
[87] SHIRATA Y, TANAKA H, MATSUO A, et al. Experimental realization of a spin-1/2 triangularlattice Heisenberg antiferromagnet[J]. Physical Review Letters, 2012, 108(5): 057205.
[88] LINES M. Magnetic Properties of CoCl2 and NiCl2[J]. Physical Review, 1963, 131(2): 546.
[89] SHIBA H, UEDA Y, OKUNISHI K, et al. Exchange interaction via crystal-field excited states and its importance in CsCoCl3[J]. Journal of the Physical Society of Japan, 2003, 72(9): 2326-2333.
[90] VAN VLECK J H. Quantum mechanics: The key to understanding magnetism[J]. Science, 1978, 201(4351): 113-120.
[91] SINGH R R, HUSE D A. Three-sublattice order in triangular-and kagomé-lattice spin-half antiferromagnets[J]. Physical Review Letters, 1992, 68(11): 1766.
[92] SINDZINGRE P, LECHEMINANT P, LHUILLIER C. Investigation of different classes of variational functions for the triangular and kagome spin-1/2 Heisenberg antiferromagnets[J]. Physical Review B, 1994, 50(5): 3108.
[93] BERNU B, LECHEMINANT P, LHUILLIER C, et al. Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice[J]. Physical Review B, 1994, 50(14): 10048.
[94] CAPRIOTTI L, TRUMPER A E, SORELLA S. Long-range Néel order in the triangular Heisenberg model[J]. Physical Review Letters, 1999, 82(19): 3899.
[95] WEIHONG Z, MCKENZIE R H, SINGH R R. Phase diagram for a class of spin-1/2 Heisenberg models interpolating between the square-lattice, the triangular-lattice, and the linear-chain limits[J]. Physical Review B, 1999, 59(22): 14367.
[96] WYSIN G. Demagnetization fields[EB/OL]. 2012. https://www.phys.ksu.edu/personal/wysin/notes/demag.pdf.
[97] CORPORATION O. OriginPro[M]. OriginLab Northampton, MA, USA, 2021.
[98] O’HANDLEY R C. Modern magnetic materials: principles and applications[M]. 1999.
[99] AMUSIA M, SHAGINYAN V. Strongly Correlated Fermi Systems[M]. Springer, 2020.
[100] KNOLLE J, CHERN G W, KOVRIZHIN D, et al. Raman scattering signatures of Kitaev spin liquids in A2IrO3 iridates with A = Na or Li[J]. Physical Review Letters, 2014, 113(18): 187201.
[101] BOUKHRIS A, HIDOURI M, GLORIEUX B, et al. Na2BaMg(PO4)2: synthesis, crystal structure and europium photoluminescence properties[J]. Journal of Rare Earths, 2013, 31(9): 849-856.
Edit Comment