[1] ZHANG P, TAO Y, ZHANG Z. Survey of several key technologies for 5G[J]. Journal on Communications, 2016, 37(7): 15.
[2] ZHANG M, CHEN X M, ZHANG A. A simple tridiagonal loading method for robust adaptive beamforming[J]. Signal Processing, 2019, 157: 103-107.
[3] FAN W, KYOSTI P, RUMNEY M, et al. Over-the-air radiated testing of millimeter -wave beam-steerable devices in a cost-effective measurement setup[J]. IEEE Communications Magazine, 2018, 56(7): 64-71.
[4] KEYSIGHT. OTA test for millimeter-wave 5G NR devices and systems white paper [R]. 2018.
[5] LI Y, XIN LJ, LIU XQ, et al. Dual anechoic chamber setup for over-the-air radiated testing of 5G devices[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(3): 2469-2474.
[6] 马楠,余菲,杨晓丽,等.5G 终端 MIMO OTA 测试方法研究现状与展望[J].电信科 学,2021,37(02):22-31.
[7] WU Y, WU J, LI Z P. Plane wave synthesis using near field wave spectrum transform embedded into intersection approach[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2018: 1-3.
[8] ZHANG X, ZHANG Z, MA Y. 5G antenna system OTA testing with plane wave generator in range-constrained anechoic chamber[C]//2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2017: 1-3.
[9] KOTTKAMP M, ROWELL C. Antenna array testing-conducted and over the air: The way to 5G[J]. Rohde & Schwarz White Paper, 2016.
[10] RUMNEY M. Testing 5G: Time to throw away the cables[J]. Microw. J, 2016, 59(11): 10-18.
[11] KAWAMURA T, NODA H, NOUJEIM K. Overview of technologies for milli- meterwave ota measurement[M]//Anritsu White Paper. 2016.
[12] FAN W, CARTON I, KYSTI P, et al. A step toward 5G in 2020: Low-cost OTA performance evaluation of massive MIMO base stations[J]. IEEE Antennas and Propagation Magazine, 2016, 59(1): 38-47.
[13] KYÖSTI P, FAN W, KYRÖLÄINEN J. Assessing measurement distances for OTA testing of massive MIMO base station at 28 GHz[C]//2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 3679-3683.
[14] KYÖSTI P, FAN W, PEDERSEN G F, et al. On dimensions of OTA setups for massive MIMO base stations radiated testing[J]. IEEE Access, 2016, 4: 5971-5981.
[15] FAN W, ZHANG F, JÄMSÄ T, et al. Reproducing standard scme channel models for massive mimo base station radiated testing[C]//2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 3658-3662.
[16] ROEDERER A, FARR E, FOGED L J, et al. IEEE standard for definitions of terms for antennas[J]. IEEE Std, 2014: 145-2013.
[17] BARTLEY W K, Near-Field Antenna Focusing Rep. Goddard Space Flight Center, Greenbelt, MD, X-811-75-183.
[18] FENN A, DIEDERICH C J, STAUFFER P R. An adaptive-focusing algorithm for a microwave planar phased-array hyperthermia system[C]//Lincoln Lab. J. 1993.
[19] ERICSSON K, DOCOMO N, KATHREIN M V G. TP for TR 37.842: Adding EIRP test methods in Section 10[C]//TSG-RAN Working Group 4 (Radio) meeting 78 R4. 2016, 161372.
[20] BROOKER E. Practical phased array antenna systems. Antenna Array Fundamentals. Norwood, MA: Artech House, 1991, pt. 2.
[21] HILL D A. A numerical method for near-field synthesis[J]. IEEE Trans. Electro- magn. Compat, vol. EMC-27, no. 4, pp. 201–211, Nov. 1985.
[22] BALANIS C, Antenna Theory: Analysis and Design, 2nd ed[M]. New York: Wiley, 1997.
[23] FENN A J. Evaluation of adaptive phased array antenna far-field nulling performances in the near-field region[J].IEEE Transactions on Antennas and Propagation, vol. 38, no. 2, pp. 173–185, Feb. 1990.
[24] AUMANN H M, WILLWERTH F G.Synthesis of phased array far-field patterns by focusing in the near-field[C]//Proceedings of the IEEE National Radar Conference. IEEE, 1989: 101-106.
[25] RICARDI L, HANSEN R. Comparison of line and square source near fields[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 711-712.
[26] D'URSO M, PRISCO G, CICOLANI M. Synthesis of plane-wave generators via nonredundant sparse arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 449-452.
[27] SUN X, WANG Z, MIAO J. Near field quasi plane wave generation and performance evaluation[C]//2018 Asia-Pacific Microwave Conference (APMC). IEEE, 2018: 917-919.
[28] LI MT, CHEN XM, ZHANG AX, et al.Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2051-2055.
[29] ZHOU G N, SUN B H, LIANG Q Y, et al. Triband dual-polarized shared-aperture antenna for 2G/3G/4G/5G base station applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(1): 97-108.
[30] FENG Y, ZHANG FS, XIE GJ, et al. A broadband and wide-beamwidth dual- polarized orthogonal dipole antenna for 4g/5g communication[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(7): 1165-1169.
[31] 刘若鹏.超材料及由超材料制成的天线罩 [P].河南省 ,洛阳尖端装备技术有限公 司,2017-10-31.
[32] 冯学勇,杨林,龚书喜,等.可用于基站天线测量的平面波产生器的设计[J].西安电子 科技大学学报,2015,42(3):33-37.
[33] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. Plane-wave generators: Design guidelines, achievable performances and effective synthesis[J]. IEEE Transactions on Antennas and Propagation, 2012, 61(4): 2005-2018.
[34] HAUPT R. Synthesis of a plane wave in the near field with a planar phased array[C]//IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450). IEEE, 2003, 1: 792-795.
[35] BENNETT J C, SCHOESSOW E P. Antenna near-field/far-field transformation using a plane-wave-synthesis technique[C]//Proceedings of the Institution of Electrical Engineers. IET, 1978, 125(3): 179-184.
[36] YANG Z, WANG Z, ZHANG Y, et al. Robust plane wave generator design in small anechoic chamber setup using parameterized field method[J]. IEEE Access, 2020, 8: 187052-187059.
[37] 席红旗,孔国利.均匀直线阵天线的分析[J].水利电力机械,2006,28(4):56-57.
[38] HAUPT R. Generating a plane wave with a linear array of line sources[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(2): 273-278.
[39] HAUPT R. Generating a plane wave in the near field with a planar array antenna[J]. Channels, 2003, 5: 6G.
[40] CAPOZZOLI A, D’ELIA G. On the plane wave synthesis in the near field[C]//Proc. Int. Conf. Antenna Technol. ( ICAT), 2005, pp. 273–277.
[41] BUCCI O M, GENNARELLI C, SAVARESE C. Representation of electromagnetic fifields over arbitrary surfaces by a fifinite and non-redundant number of samples[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(3): 351-359
[42] RICARDI L, HANSEN R. Comparison of line and square source near fields[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 711-712.
[43] HANSEN R C, BROWN J. Minimum spot size of focused apertures[J]. Electro- magnetic Wave Theory, Part, 1965, 2: 661-668.
[44] HILL D A. A circular array for plane-wave synthesis[J]. IEEE Transactions On Electromagnetic Compatibility, 1988, 30(1): 3-8.
[45] HILL D A, KOEPKE G H. A near-field array of Yagi-Uda antennas for electro- magnetic-susceptibility testing[J]. IEEE Transactions On Electromagnetic Compatibility, 1986, 28(4): 170-178.
[46] DING Y, DEMIN F, QIZHONG L, et al. Application of the window function in the plane wave synthesis technique[C]//2006 7th International Symposium on Antennas, Propagation & EM Theory. IEEE, 2006: 1-4.
[47] YU D, FU D, LIU Q. Plane wave synthesis based on the Least Square Method [C]//2008 8th International Symposium on Antennas, Propagation and EM Theory. IEEE, 2008: 341-344.
[48] YU D, YANG L, FU D, et al. Application of the plane wave synthesis technique based on the least square method in antenna measurements[C]//2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2009: 834-837.
[49] YU D, XIE G, ZHAI W, et al. The optimization of cosine window function using Genetic Algorithm and its application in plane wave synthesis[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technolo- gies for Wireless Communications. IEEE, 2011: 194-197.
[50] YU D, ZHAI W, XIE G, et al. Application of the cosine window function with the parameters optimized by Genetic Algorithm in bistatic planar near-field scattering measurements[J]. Progress In Electromagnetics Research Letters, 2012, 29: 51-64.
[51] YU D, ZHAI W, XIE G, et al. The optimization of cosine window function using Genetic Algorithm and its application in bistatic planar near-field scattering measurements[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2011: 543-546.
[52] YU D, ZHANG N, XU P. Synthesis of a plane wave in the near field using genetic algorithm[C]//Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory. IEEE, 2010: 810-813.
[53] QIAO Z, WANG Z, LOH T H, et al. A compact minimally invasive antenna for OTA testing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1381-1385.
[54] QIAO Z , WANG Z, MIAO J . A high channel consistency subarray of plane-wave generators for 5G base station OTA testing[J]. Electronics, 2019, 8(10):1148.
[55] WANG H, MIAO J, JIANG J, et al. Generating plane waves in the near fields of pyramidal horn arrays[C]//ISAPE2012. IEEE, 2012: 211-218.
[56] ZHANG Y, WANG Z, SUN X, et al. Design and implementation of a wideband dual-polarized plane wave generator with tapered feeding nonuniform array[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11): 1988-1992.
[57] QIAO Z, WANG Z, FAN W, et al. Low scattering plane wave generator design using a novel non-coplanar structure for near-field over-the-air testing[J]. IEEE Access, 2020, 8: 211348-211357.
[58] XIE R, WANG X, WANG R, et al. Synthesis of plane wave applied to 5G commun- ication antenna measurement[C]//2017 Progress In Electromagnetics Research Symposium-Spring (PIERS). IEEE, 2017: 195-198.
[59] XIE R, XI W, WANG R, et al. A method for reducing excitation complexity of plane-wave generation[C]//Computing & Electromagnetics International Workshop. IEEE, 2017.
[60] SUN S, WANG N, MA X, et al. Design of plane wave generator in compact range for 5g ota testing[C]//2019 Photonics & Electromagnetics Research Symposium- Fall (PIERS-Fall). 2019.
[61] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Comparative testing of devices in a spherical near field system and plane wave generator[C]//2019 Antenna Measu- rement Techniques Association Symposium (AMTA). 2019.
[62] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Design of dual polarised wide band plane wave generator for direct far-field testing[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). IEEE, 2019: 1-4.
[63] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Dual polarized plane wave generator design for direct far-field testing[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 1841-1842.
[64] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Far-field OTA testing of user equipment using plane wave generators. AMTA regional Event, 2019
[65] STARWAVE: Shaping the future of 5G mmWave OTA testing. https://www. Microwa- vejournal.com/articles/33669-starwave-shaping-the-future-of-5g-mmwave-ota-testing
[66] POORDARAEE M, GLAZUNOV A A. Plane wave synthesis with irregular chamber planar antenna arrays for compact OTA measurements[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). IEEE, 2019: 1-5.
[67] POORDARAEE M, GLAZUNOV A A. Chamber array antenna layout for compact ota measurements[C]//2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1-4.
[68] 3GPP TSG-RAN WG4 Meeting #75 AAS AH R4-75AH-AAS-0004 Venice,Italy,29 June-1 July, 2015. https://www.3gpp.org/dynareport/Meetings-R4.htm?Itemid=418
[69] 3GPP TSG-RAN WG4 Meeting #76 R4-153986, Beijing, China, 24-28 Aug, 2015. https://www.3gpp.org/dynareport/Meetings-R4.htm?Itemid=418
[70] 3GPP TSG-RAN WG4 Meeting #87 R4-1806605 Busan, South Korea, 21-25 May 2018. https://www.3gpp.org/dynareport/Meetings-R4.htm?Itemid=418
[71] DERAT B, ROWELL C, TANKIELUN A. Promises of near-field software and hardware transformations for 5G OTA[C]//2018 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2018.
[72] TANKIELUN A, BELKACEM A, AKINCI M, et al. Quiet zone verification of plane wave synthesizer using polar near-field scanner[C]//2020 14th European Confe- rence on Antennas and Propagation (EuCAP). 2020.
[73] R&S PWC200 plane wave converter for 5G massive mimo base station testing. https://www.rohde-schwarz.com/tr/products/test-and-measurement/antenna-test-syste ms-and-ota-chambers/rs-pwc200-plane-wave-converter_63493-533696.html
[74] ROWELL C, TANKIELUN A. Plane wave converter for 5G massive MIMO basestation measurements[C]//12th European Conference on Antennas and Propagation (EuCAP 2018). IET, 2018: 1-3.
[75] CATTEAU S, IVASHINA M, REHAMMAR R. Design and simulation of a 28 GHz plane wave generator for NR measurements[C]//2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1-4.
[76] BUONANNO A, D'URSO M, PRISCO G. Reducing complexity in indoor array testing[J]. IEEE Transactions On Antennas And Propagation, 2010, 58(8): 2781-2784.
[77] FORD K L, BENNETT J C, HOLTBY D G. Use of a plane-wave synthesis technique to obtain target RCS from near-field measurements, with selective feature extraction capability[J]. IEEE Transactions On Antennas And Propagation, 2012, 61(4): 2051- 2057.
[78] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. An effective algorithm for the synthesis of a plane wave generator for linear array testing[C]//Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. IEEE, 2012: 1-2.
[79] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. On the synthesis of plane wave generators: performance limits, design paradigms and effective algorithms [C]//2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE, 2012: 3500-3503.
Edit Comment