中文版 | English
Title

基于平面波发生器的天线阵列幅相校准方法研究

Alternative Title
RESEARCH ON AMPLITUDE AND PHASE CALIBRATION METHOD OF ANTENNA ARRAY BASED ON PLANE WAVE GENERATOR
Author
Name pinyin
LIU Jiaxin
School number
12032232
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
程庆沙
Mentor unit
电子与电气工程系
Tutor of External Organizations
龚志双
Tutor units of foreign institutions
华为技术有限公司
Publication Years
2022-04-28
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract
  由于加工误差等因素影响,天线阵列各通道信号幅度和相位会发生失准, 需要测量各通道以获得幅相信息进行校准。空口测试(Over-the-AirOTA) 作为一种测量天线通道信号幅相信息的方式,一直以来受到了国内外广泛的 研究。OTA 测试方法分为多种,其中一种是基于平面波发生器的近场测试方 法。设计平面波发生器可产生“静区”,测试时将待测天线置于静区内测量 幅相信。由于此方法能在小型暗室中实现高精度测试,并且具有低成本等优势,从而在大型 MIMOMulti-Input Multi-Output)基站天线,特别是Sub-6GHz 频段的天线测试中受到广泛的关注。但是基于平面波发生器的近场测试方法存在两点困难。首先,在小型暗室中,静区外围常常会引入较高的辐射信号,从而导致高反射率,这将对静区平坦度产生极大的影响。其次, 近场测试系统的频率鲁棒性通常较差,需要进行仿真和实验考察。
  在本论文研究中,我们设计了一种双极化天线单元,能够在较大的波束宽度范围(≥60°)内发射和接收±45°的两种极化波,可用于组成 5G 天线阵列进行信号传输和测试。我们实现了对静区采样的 LSMLeast Square Method)方法来合成平面波发生器的静区。为了提高静区平坦度,我们提出了改进的 LSM 方法,扩大了采样区域,并且对采样区域进行分域处理以便于参数化设计。该方法实现了静区的高平坦度,并且降低了静区外围的高反射。我们通过仿真实验分析得出,这种设计获得了一个静区外围区域反射率低至-15dB、幅度波动小于 0.18dB、相位波动小于 的较为理想的平面波区域,并且具有一定的测试系统频率鲁棒性。我们在 3.45GHz~3.55GHz 频段内分别进行了近场和远场实测。利用本论文所提出方法设计的平面波发生器对待测天线各通道的幅相信息进行测量,将其与 10m 远场测试方法进行比较。从测试结果可知,两种方法在幅度、相位、频率鲁棒性上具有一致性,从而验证了本论文方法的可行性。本论文提出的基于平面波发生器的方法可以对小型暗室中的 5G 基站天线进行大规模快速测试和幅相校准,具有重要的工程实践意义。
Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] ZHANG P, TAO Y, ZHANG Z. Survey of several key technologies for 5G[J]. Journal on Communications, 2016, 37(7): 15.
[2] ZHANG M, CHEN X M, ZHANG A. A simple tridiagonal loading method for robust adaptive beamforming[J]. Signal Processing, 2019, 157: 103-107.
[3] FAN W, KYOSTI P, RUMNEY M, et al. Over-the-air radiated testing of millimeter -wave beam-steerable devices in a cost-effective measurement setup[J]. IEEE Communications Magazine, 2018, 56(7): 64-71.
[4] KEYSIGHT. OTA test for millimeter-wave 5G NR devices and systems white paper [R]. 2018.
[5] LI Y, XIN LJ, LIU XQ, et al. Dual anechoic chamber setup for over-the-air radiated testing of 5G devices[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(3): 2469-2474.
[6] 马楠,余菲,杨晓丽,等.5G 终端 MIMO OTA 测试方法研究现状与展望[J].电信科 学,2021,37(02):22-31.
[7] WU Y, WU J, LI Z P. Plane wave synthesis using near field wave spectrum transform embedded into intersection approach[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2018: 1-3.
[8] ZHANG X, ZHANG Z, MA Y. 5G antenna system OTA testing with plane wave generator in range-constrained anechoic chamber[C]//2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2017: 1-3.
[9] KOTTKAMP M, ROWELL C. Antenna array testing-conducted and over the air: The way to 5G[J]. Rohde & Schwarz White Paper, 2016.
[10] RUMNEY M. Testing 5G: Time to throw away the cables[J]. Microw. J, 2016, 59(11): 10-18.
[11] KAWAMURA T, NODA H, NOUJEIM K. Overview of technologies for milli- meterwave ota measurement[M]//Anritsu White Paper. 2016.
[12] FAN W, CARTON I, KYSTI P, et al. A step toward 5G in 2020: Low-cost OTA performance evaluation of massive MIMO base stations[J]. IEEE Antennas and Propagation Magazine, 2016, 59(1): 38-47.
[13] KYÖSTI P, FAN W, KYRÖLÄINEN J. Assessing measurement distances for OTA testing of massive MIMO base station at 28 GHz[C]//2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 3679-3683.
[14] KYÖSTI P, FAN W, PEDERSEN G F, et al. On dimensions of OTA setups for massive MIMO base stations radiated testing[J]. IEEE Access, 2016, 4: 5971-5981.
[15] FAN W, ZHANG F, JÄMSÄ T, et al. Reproducing standard scme channel models for massive mimo base station radiated testing[C]//2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 3658-3662.
[16] ROEDERER A, FARR E, FOGED L J, et al. IEEE standard for definitions of terms for antennas[J]. IEEE Std, 2014: 145-2013.
[17] BARTLEY W K, Near-Field Antenna Focusing Rep. Goddard Space Flight Center, Greenbelt, MD, X-811-75-183.
[18] FENN A, DIEDERICH C J, STAUFFER P R. An adaptive-focusing algorithm for a microwave planar phased-array hyperthermia system[C]//Lincoln Lab. J. 1993.
[19] ERICSSON K, DOCOMO N, KATHREIN M V G. TP for TR 37.842: Adding EIRP test methods in Section 10[C]//TSG-RAN Working Group 4 (Radio) meeting 78 R4. 2016, 161372.
[20] BROOKER E. Practical phased array antenna systems. Antenna Array Fundamentals. Norwood, MA: Artech House, 1991, pt. 2.
[21] HILL D A. A numerical method for near-field synthesis[J]. IEEE Trans. Electro- magn. Compat, vol. EMC-27, no. 4, pp. 201–211, Nov. 1985.
[22] BALANIS C, Antenna Theory: Analysis and Design, 2nd ed[M]. New York: Wiley, 1997.
[23] FENN A J. Evaluation of adaptive phased array antenna far-field nulling performances in the near-field region[J].IEEE Transactions on Antennas and Propagation, vol. 38, no. 2, pp. 173–185, Feb. 1990.
[24] AUMANN H M, WILLWERTH F G.Synthesis of phased array far-field patterns by focusing in the near-field[C]//Proceedings of the IEEE National Radar Conference. IEEE, 1989: 101-106.
[25] RICARDI L, HANSEN R. Comparison of line and square source near fields[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 711-712.
[26] D'URSO M, PRISCO G, CICOLANI M. Synthesis of plane-wave generators via nonredundant sparse arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 449-452.
[27] SUN X, WANG Z, MIAO J. Near field quasi plane wave generation and performance evaluation[C]//2018 Asia-Pacific Microwave Conference (APMC). IEEE, 2018: 917-919.
[28] LI MT, CHEN XM, ZHANG AX, et al.Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2051-2055.
[29] ZHOU G N, SUN B H, LIANG Q Y, et al. Triband dual-polarized shared-aperture antenna for 2G/3G/4G/5G base station applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(1): 97-108.
[30] FENG Y, ZHANG FS, XIE GJ, et al. A broadband and wide-beamwidth dual- polarized orthogonal dipole antenna for 4g/5g communication[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(7): 1165-1169.
[31] 刘若鹏.超材料及由超材料制成的天线罩 [P].河南省 ,洛阳尖端装备技术有限公 司,2017-10-31.
[32] 冯学勇,杨林,龚书喜,等.可用于基站天线测量的平面波产生器的设计[J].西安电子 科技大学学报,2015,42(3):33-37.
[33] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. Plane-wave generators: Design guidelines, achievable performances and effective synthesis[J]. IEEE Transactions on Antennas and Propagation, 2012, 61(4): 2005-2018.
[34] HAUPT R. Synthesis of a plane wave in the near field with a planar phased array[C]//IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450). IEEE, 2003, 1: 792-795.
[35] BENNETT J C, SCHOESSOW E P. Antenna near-field/far-field transformation using a plane-wave-synthesis technique[C]//Proceedings of the Institution of Electrical Engineers. IET, 1978, 125(3): 179-184.
[36] YANG Z, WANG Z, ZHANG Y, et al. Robust plane wave generator design in small anechoic chamber setup using parameterized field method[J]. IEEE Access, 2020, 8: 187052-187059.
[37] 席红旗,孔国利.均匀直线阵天线的分析[J].水利电力机械,2006,28(4):56-57.
[38] HAUPT R. Generating a plane wave with a linear array of line sources[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(2): 273-278.
[39] HAUPT R. Generating a plane wave in the near field with a planar array antenna[J]. Channels, 2003, 5: 6G.
[40] CAPOZZOLI A, D’ELIA G. On the plane wave synthesis in the near field[C]//Proc. Int. Conf. Antenna Technol. ( ICAT), 2005, pp. 273–277.
[41] BUCCI O M, GENNARELLI C, SAVARESE C. Representation of electromagnetic fifields over arbitrary surfaces by a fifinite and non-redundant number of samples[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(3): 351-359
[42] RICARDI L, HANSEN R. Comparison of line and square source near fields[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 711-712.
[43] HANSEN R C, BROWN J. Minimum spot size of focused apertures[J]. Electro- magnetic Wave Theory, Part, 1965, 2: 661-668.
[44] HILL D A. A circular array for plane-wave synthesis[J]. IEEE Transactions On Electromagnetic Compatibility, 1988, 30(1): 3-8.
[45] HILL D A, KOEPKE G H. A near-field array of Yagi-Uda antennas for electro- magnetic-susceptibility testing[J]. IEEE Transactions On Electromagnetic Compatibility, 1986, 28(4): 170-178.
[46] DING Y, DEMIN F, QIZHONG L, et al. Application of the window function in the plane wave synthesis technique[C]//2006 7th International Symposium on Antennas, Propagation & EM Theory. IEEE, 2006: 1-4.
[47] YU D, FU D, LIU Q. Plane wave synthesis based on the Least Square Method [C]//2008 8th International Symposium on Antennas, Propagation and EM Theory. IEEE, 2008: 341-344.
[48] YU D, YANG L, FU D, et al. Application of the plane wave synthesis technique based on the least square method in antenna measurements[C]//2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2009: 834-837.
[49] YU D, XIE G, ZHAI W, et al. The optimization of cosine window function using Genetic Algorithm and its application in plane wave synthesis[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technolo- gies for Wireless Communications. IEEE, 2011: 194-197.
[50] YU D, ZHAI W, XIE G, et al. Application of the cosine window function with the parameters optimized by Genetic Algorithm in bistatic planar near-field scattering measurements[J]. Progress In Electromagnetics Research Letters, 2012, 29: 51-64.
[51] YU D, ZHAI W, XIE G, et al. The optimization of cosine window function using Genetic Algorithm and its application in bistatic planar near-field scattering measurements[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2011: 543-546.
[52] YU D, ZHANG N, XU P. Synthesis of a plane wave in the near field using genetic algorithm[C]//Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory. IEEE, 2010: 810-813.
[53] QIAO Z, WANG Z, LOH T H, et al. A compact minimally invasive antenna for OTA testing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1381-1385.
[54] QIAO Z , WANG Z, MIAO J . A high channel consistency subarray of plane-wave generators for 5G base station OTA testing[J]. Electronics, 2019, 8(10):1148.
[55] WANG H, MIAO J, JIANG J, et al. Generating plane waves in the near fields of pyramidal horn arrays[C]//ISAPE2012. IEEE, 2012: 211-218.
[56] ZHANG Y, WANG Z, SUN X, et al. Design and implementation of a wideband dual-polarized plane wave generator with tapered feeding nonuniform array[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11): 1988-1992.
[57] QIAO Z, WANG Z, FAN W, et al. Low scattering plane wave generator design using a novel non-coplanar structure for near-field over-the-air testing[J]. IEEE Access, 2020, 8: 211348-211357.
[58] XIE R, WANG X, WANG R, et al. Synthesis of plane wave applied to 5G commun- ication antenna measurement[C]//2017 Progress In Electromagnetics Research Symposium-Spring (PIERS). IEEE, 2017: 195-198.
[59] XIE R, XI W, WANG R, et al. A method for reducing excitation complexity of plane-wave generation[C]//Computing & Electromagnetics International Workshop. IEEE, 2017.
[60] SUN S, WANG N, MA X, et al. Design of plane wave generator in compact range for 5g ota testing[C]//2019 Photonics & Electromagnetics Research Symposium- Fall (PIERS-Fall). 2019.
[61] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Comparative testing of devices in a spherical near field system and plane wave generator[C]//2019 Antenna Measu- rement Techniques Association Symposium (AMTA). 2019.
[62] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Design of dual polarised wide band plane wave generator for direct far-field testing[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). IEEE, 2019: 1-4.
[63] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Dual polarized plane wave generator design for direct far-field testing[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 1841-1842.
[64] SCATTONE F, SEKULJICA D, GIACOMINI A, et al. Far-field OTA testing of user equipment using plane wave generators. AMTA regional Event, 2019
[65] STARWAVE: Shaping the future of 5G mmWave OTA testing. https://www. Microwa- vejournal.com/articles/33669-starwave-shaping-the-future-of-5g-mmwave-ota-testing
[66] POORDARAEE M, GLAZUNOV A A. Plane wave synthesis with irregular chamber planar antenna arrays for compact OTA measurements[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). IEEE, 2019: 1-5.
[67] POORDARAEE M, GLAZUNOV A A. Chamber array antenna layout for compact ota measurements[C]//2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1-4.
[68] 3GPP TSG-RAN WG4 Meeting #75 AAS AH R4-75AH-AAS-0004 Venice,Italy,29 June-1 July, 2015. https://www.3gpp.org/dynareport/Meetings-R4.htm?Itemid=418
[69] 3GPP TSG-RAN WG4 Meeting #76 R4-153986, Beijing, China, 24-28 Aug, 2015. https://www.3gpp.org/dynareport/Meetings-R4.htm?Itemid=418
[70] 3GPP TSG-RAN WG4 Meeting #87 R4-1806605 Busan, South Korea, 21-25 May 2018. https://www.3gpp.org/dynareport/Meetings-R4.htm?Itemid=418
[71] DERAT B, ROWELL C, TANKIELUN A. Promises of near-field software and hardware transformations for 5G OTA[C]//2018 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2018.
[72] TANKIELUN A, BELKACEM A, AKINCI M, et al. Quiet zone verification of plane wave synthesizer using polar near-field scanner[C]//2020 14th European Confe- rence on Antennas and Propagation (EuCAP). 2020.
[73] R&S PWC200 plane wave converter for 5G massive mimo base station testing. https://www.rohde-schwarz.com/tr/products/test-and-measurement/antenna-test-syste ms-and-ota-chambers/rs-pwc200-plane-wave-converter_63493-533696.html
[74] ROWELL C, TANKIELUN A. Plane wave converter for 5G massive MIMO basestation measurements[C]//12th European Conference on Antennas and Propagation (EuCAP 2018). IET, 2018: 1-3.
[75] CATTEAU S, IVASHINA M, REHAMMAR R. Design and simulation of a 28 GHz plane wave generator for NR measurements[C]//2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1-4.
[76] BUONANNO A, D'URSO M, PRISCO G. Reducing complexity in indoor array testing[J]. IEEE Transactions On Antennas And Propagation, 2010, 58(8): 2781-2784.
[77] FORD K L, BENNETT J C, HOLTBY D G. Use of a plane-wave synthesis technique to obtain target RCS from near-field measurements, with selective feature extraction capability[J]. IEEE Transactions On Antennas And Propagation, 2012, 61(4): 2051- 2057.
[78] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. An effective algorithm for the synthesis of a plane wave generator for linear array testing[C]//Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. IEEE, 2012: 1-2.
[79] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. On the synthesis of plane wave generators: performance limits, design paradigms and effective algorithms [C]//2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE, 2012: 3500-3503.

Academic Degree Assessment Sub committee
电子与电气工程系
Domestic book classification number
TN82
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343145
DepartmentDepartment of Electrical and Electronic Engineering
Recommended Citation
GB/T 7714
刘佳新. 基于平面波发生器的天线阵列幅相校准方法研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032232-刘佳新-电子与电气工程(4280KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘佳新]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘佳新]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘佳新]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.