中文版 | English
Title

B-C-N 固溶体包覆 cBN 的高温高压制备与表征

Alternative Title
SYNTHESIS AND CHARACTERIZATION OF CBNCOATED BY B-C-N SOLID SOLUTION AT HIGHTEMPERATURE AND HIGH PRESSURE
Author
Name pinyin
CAI Tuo
School number
12032054
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
王培
Mentor unit
前沿与交叉科学研究院
Publication Years
2022-05-13
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

立方氮化硼(cBN)是已知硬度仅次于金刚石的超硬材料,在含铁簇元素材料 的切、磨、削等加工中有着不可替代的作用。然而,cBN 的硬度只有金刚石的一半, 其加工效率和使用寿命较低。考虑到 cBN 与金刚石在晶体结构与原子共价键半径 的近亲关系,可通过在 cBN 表层包覆碳类材料,经高温高压固溶强化处理,形成 硬度更高和热稳定性更好的 B-C-N 壳层包覆 cBN 材料,增强其机械性能与化学惰性,从而提高其加工效率与使用寿命。 本工作使用 Kawai 型大腔体压机装置,以不同粒度的 cBN 粉末和石墨烯粉末 作为主要原料,研究了制备聚晶 cBN 及 B-C-N 固溶体包覆 cBN 材料的高温高压 合成技术与方法。主要研究内容包括:1)聚晶 cBN 材料的设计和表征,探讨在各 种压力合成条件下温度对烧结体特性的影响,为对比研究 B-C-N 型固溶体壳层奠 定了试验基础和理论依据。2)以相同的 cBN 初始材料,按照一定比例混合化学活 性更好的石墨烯,通过控制温度、压力条件,制备不同的 B-C-N 固溶体包覆 cBN 的样品,通过对其性能表征,研究了压力、温度、组分对 B-C-N 固溶体包覆 cBN 烧结体性能的影响,并与纯的聚晶 cBN 烧结体性能进行了对比研究。本文主要得 到了以下结论: 1. 选择合适的原材料是得到优良 B-C-N 固溶材料的必要前提。本文对 cBN 的 原材料及粒度的影响进行了探讨,发现在采用的两种不同的 cBN 原材料,A 型 cBN 粉末粒度分布集中,颗粒大小均匀,更适合用于 cBN 基超硬材料的高温高压合成。 2. 在不同压力和温度条件下合成的聚晶 cBN 材料表现出不同的性质。1)通过 对比实验,发现在合成压力高于 16 GPa 的条件下,当合成温度高于 1600 °C 时, 聚晶 cBN 才能烧结成块,并且随着温度的上升,颗粒的晶界会模糊,晶粒也会长 大,在合成条件为 18 GPa、2000 °C 时,合成的聚晶 cBN 外观呈现半透明状,在 该条件下合成了高纯度的烧结完好的聚晶 cBN。2)压力的升高抑制了晶粒的长大, 同时增加了晶粒间的位错和缺陷的产生,同时温度的上升使其显微结构明显致密 化,18 GPa、2 000 °C 样品的维氏硬度达到了 45 GPa,相比单晶 cBN 硬度 30 GPa 有很大提升。 3. 在高压下碳原子固溶到 cBN 中形成 B-C-N 固溶体与温度正相关。1)研 究发现在相同压力下随着温度越高,越有利于碳原子溶解到金刚石中:温度超过 2 000 °C 时晶界中会产生石墨烯转变的金刚石,当温度持续上升,金刚石在拉曼和 X-ray 图谱中峰值减弱,当到达 2 300 °C 时消失,同时材料外观由不透明的深 色转变为半透明,金刚石中的碳原子固溶到 cBN 晶格中,导致了 cBN 的晶格明显 减小,符合 Vegard’s law。2)由于固溶强化作用,随着温度上升带来的固溶度的提 高,样品硬度和热稳定性有一定提升,18 GPa、2300 °C 样品小加载时维氏硬度高 达 90 GPa,大加载时稳定在 60 GPa,相比聚晶 cBN 硬度 45 GPa 有显著提高;热稳 定性由原料 cBN 的 1073 °C 提高到了 1180 °C,比聚晶 cBN 的 1130 °C 有提高。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] BOBZIN K. High-performance coatings for cutting tools[J]. CIRP Journal of ManufacturingScience and Technology, 2017, 18: 1-9.
[2] ZOYA Z, KRISHNAMURTHY R. The performance of cBN tools in the machining of titaniumalloys[J]. Journal of materials processing technology, 2000, 100(1-3): 80-86.
[3] HAINES J, LEGER J, BOCQUILLON G. Synthesis and design of superhard materials[J].Annual Review of Materials Research, 2001, 31(1): 1-23.
[4] MCMILLAN P F. New materials from high-pressure experiments[J]. Nature materials, 2002,1(1): 19-25.
[5] WANG P, HE D, WANG L, et al. Diamond-cBN alloy : a universal cutting material[J]. AppliedPhysics Letters, 2015, 107(10): 101901.
[6] LE GODEC Y, COURAC A, SOLOZHENKO V L. High-pressure synthesis of superhard andultrahard materials[J]. Journal of Applied Physics, 2019, 126(15): 151102.
[7] LIU X, JIA X, ZHANG Z, et al. Synthesis and characterization of new “BCN”diamondunder high pressure and high temperature conditions[J]. Crystal Growth & Design, 2011, 11(4): 1006-1014.
[8] MELAIBARI A, MOLIAN P, SHROTRIYA P. Laser/waterjet heat treatment of polycrystallinecubic/wurtzite boron nitride composite for reaching hardness of polycrystalline diamond[J].Materials Letters, 2012, 89: 123-125.
[9] EICHLER J, LESNIAK C. Boron nitride (BN) and BN composites for high-temperature applications[J]. Journal of the European Ceramic Society, 2008, 28(5): 1105-1109.
[10] RAMON S. Boron nitride and carbon nanostructures : synthesis, characterization and ab initiocalculations[D]. Ph. D. thesis], University of San Luis Potosi, 2015.
[11] 邢淑芝, 郭明, 侯丽新, 等. 立方氮化硼的结构和基本性质[J]. 现代交际: 下半月, 2014(12):98-98.
[12] LOGINOV P, MISHNAEVSKY JR L, LEVASHOV E, et al. Diamond and cBN hybrid andnanomodified cutting tools with enhanced performance : Development, testing and modelling[J]. Materials & Design, 2015, 88: 310-319.
[13] KLAGES C P, FRYDA M, MATTHÉE T, et al. Diamond coatings and cBN coatings for tools[J]. International Journal of Refractory Metals and Hard Materials, 1998, 16(3): 171-176.
[14] KIR D, ISLAK S, ÇELIK H, et al. Effect of the cBN content and sintering temperature on thetransverse rupture strength and hardness of cBN/diamond cutting tools[J]. 2012.
[15] GRABCHENKO A I, FEDOROVICH V A, PYZHOV I, et al. Simulation of grinding processof polycrystalline superhard materials[C]//Key Engineering Materials: volume 581. Trans TechPubl, 2014: 217-223.
[16] VEPŘEK S. The search for novel, superhard materials[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999, 17(5): 2401-2420.
[17] KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials[J]. Science, 2005,308(5726): 1268-1269.
[18] TANIGUCHI T, WATANABE K, KOIZUMI S. Defect characterization of cBN single crystalsgrown under HP/HT[J]. physica status solidi (a), 2004, 201(11): 2573-2577.
[19] RATHINASABAPATHY S, SANTHOSH M, ASOKAN M. Significance of boron nitride incomposites and its applications[J]. Recent Advances in Boron-Containing Materials, 2020: 63.
[20] WENTORF R, DEVRIES R C, BUNDY F. Sintered superhard materials[J]. Science, 1980, 208(4446): 873-880.
[21] YU M, CHEN S, CUI D. The synthesis of boron nitride dendrite crystals under hydrothermalcondition[J]. JOURNAL OF FUNCTIONAL MATERIALS, 2006, 37(11): 1856.
[22] CHEN Z, LAI Z, SUN C. Preparation of BN nanorings by benzene thermal synthesis method[J]. JOURNAL OF FUNCTIONAL MATERIALS, 2006, 37(6): 919.
[23] WANG J, YANG G, ZHANG C, et al. Cubic-BN nanocrystals synthesis by pulsed laser inducedliquid-solid interfacial reaction[J]. Chemical physics letters, 2003, 367(1-2): 10-14.
[24] 李琳琳, 李爱军, 彭雨晴, 等. Progress on boron nitride interface coating achieved by CVD[J].宇航材料工艺, 2016, 46(4): 8-28.
[25] SILBERBERG M S, AMATEIS P, VENKATESWARAN R, et al. Chemistry : The molecularnature of matter and change[M]. Mosby St. Louis, MO, 1996.
[26] ZARECHNAYA E Y, DUBROVINSKY L, DUBROVINSKAIA N, et al. Superhard semiconducting optically transparent high pressure phase of boron[J]. Physical Review Letters, 2009,102(18): 185501.
[27] KURAKEVYCH O O, SOLOZHENKO V L. Crystal structure of dense pseudo-cubic boronallotrope, pc-B52, by powder X-ray diffraction[J]. Journal of Superhard Materials, 2013, 35(1):60-63.
[28] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al. Ultimate metastable solubility of boron in diamond : Synthesis of superhard diamondlike BC5[J]. Physical ReviewLetters, 2009, 102(1): 015506.
[29] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10): 1385-1387.
[30] DUBROVINSKAIA N, SOLOZHENKO V L, MIYAJIMA N, et al. Superhard nanocompositeof dense polymorphs of boron nitride : Noncarbon material has reached diamond hardness[J].Applied Physics Letters, 2007, 90(10): 101912.
[31] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures byextreme conditions : High-pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced materials, 2012, 24(12): 1540-1544.
[32] LIU G, KOU Z, YAN X, et al. Submicron cubic boron nitride as hard as diamond[J]. AppliedPhysics Letters, 2015, 106(12): 121901.
[33] SUN K, LIANG Y, ZHU Y, et al. The effect of graphene oxide on the mechanical properties ofcBN composites fabricated by HTHP method[J]. Diamond and Related Materials, 2020, 104:107754.
[34] LIANG H, LIN W, WANG Q, et al. Ultrahard and stable nanostructured cubic boron nitridefrom hexagonal boron nitride[J]. Ceramics International, 2020, 46(8): 12788-12794.
[35] SJÖSTRÖM H, STAFSTRÖM S, BOMAN M, et al. Superhard and elastic carbon nitride thinfilms having fullerenelike microstructure[J]. Physical Review Letters, 1995, 75(7): 1336.
[36] ULRICH S, EHRHARDT H, SCHWAN J, et al. Subplantation effect in magnetron sputteredsuperhard boron carbide thin films[J]. Diamond and related materials, 1998, 7(6): 835-838.
[37] MATTHEY B, PIRLING T, HERRMANN M, et al. Determination of bulk residual stresses insuperhard diamond-SiC materials[J]. Journal of the European Ceramic Society, 2020, 40(4):1035-1042.
[38] MERCHUK J, BERZIN I. Distribution of energy dissipation in airlift reactors[J]. ChemicalEngineering Science, 1995, 50(14): 2225-2233.
[39] HANSEN N. Hall-Petch relation and boundary strengthening[J]. Scripta materialia, 2004, 51(8): 801-806.
[40] ZHAO Y, HE D, DAEMEN L, et al. Superhard B-C-N materials synthesized in nanostructuredbulks[J]. Journal of materials research, 2002, 17(12): 3139-3145.
[41] TANG M, HE D, WANG W, et al. Superhard solid solutions of diamond and cubic boron nitride[J]. Scripta Materialia, 2012, 66(10): 781-784.
[42] LIU X, CHEN X, MA H A, et al. Ultrahard stitching of nanotwinned diamond and cubic boronnitride in C2-BN composite[J]. Scientific reports, 2016, 6(1): 1-9.
[43] KLIMCZYK P, WYŻGA P, CYBOROŃ J, et al. Phase stability and mechanical properties ofAl2O3-cBN composites prepared via spark plasma sintering[J]. Diamond and Related Materials,2020, 104: 107762.
[44] ZHANG J, TU R, GOTO T. Spark plasma sintering of Al2O3-cBN composites facilitated byNi nanoparticle precipitation on cBN powder by rotary chemical vapor deposition[J]. Journalof the European Ceramic Society, 2011, 31(12): 2083-2087.
[45] LI Y, LI S, LV R, et al. Study of high-pressure sintering behavior of cBN composites startingwith cBN-Al mixtures[J]. Journal of Materials Research, 2008, 23(9): 2366-2372.
[46] FAGNONI M, DONDI D, RAVELLI D, et al. Photocatalysis for the Formation of the C-C Bond[J]. Chemical Reviews, 2007, 107(6): 2725-2756.
[47] ÅGREN J. A revised expression for the diffusivity of carbon in binary Fe-C austenite[J]. Scriptametallurgica, 1986, 20(11): 1507-1510.
[48] O’CONNELL M J. Carbon nanotubes: properties and applications[M]. CRC press, 2018.
[49] SHENDEROVA O A, GRUEN D M. Ultrananocrystalline diamond : synthesis, properties andapplications[M]. William Andrew, 2012.
[50] TOYODA M, INAGAKI M. Heavy oil sorption using exfoliated graphite : New application ofexfoliated graphite to protect heavy oil pollution[J]. Carbon, 2000, 38(2): 199-210.
[51] BUNDY F, KASPER J. Hexagonal diamond—a new form of carbon[J]. The Journal of ChemicalPhysics, 1967, 46(9): 3437-3446.
[52] HARRISON B S, ATALA A. Carbon nanotube applications for tissue engineering[J]. Biomaterials, 2007, 28(2): 344-353.
[53] 李飞, 张涵. 石墨烯在防腐涂料中的应用分析及展望[J]. 当代化工研究, 2022.
[54] FROST D, POE B, TRøNNES R, et al. A new large-volume multianvil system[J]. Physics ofthe Earth and Planetary Interiors, 2004, 143144: 507-514.
[55] 何飞, 贺端威, 马迎功, 等. 二级 6-8 型静高压装置厘米级腔体的设计原理与实验研究[J].高压物理学报, 2015(3): 161-168.
[56] REN X, YANG Q, JAMES R, et al. Cutting temperatures in hard turning chromium hardfacingswith PcBN tooling[J]. Journal of Materials Processing Technology, 2004, 147(1): 38-44.
[57] DUB S, LYTVYN P, STRELCHUK V, et al. Vickers hardness of diamond and cBN singlecrystals : AFM approach[J]. Crystals, 2017, 7(12): 369.
[58] BADZIAN A R. Cubic boron nitride-diamond mixed crystals[J]. Materials Research Bulletin,1981, 16(11): 1385-1393.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
TM301.2
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343147
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
蔡拓. B-C-N 固溶体包覆 cBN 的高温高压制备与表征[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032054-蔡拓-物理系.pdf(8656KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[蔡拓]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[蔡拓]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[蔡拓]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.