[1] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extreme quantum limit[J]. Physical Review Letters, 1982, 48(22): 1559.
[2] LAUGHLIN R B. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations[J]. Physical Review Letters, 1983, 50(18): 1395.
[3] GOLDMAN V, SU B. Resonant tunneling in the quantum hall regime: measurement of fractional charge[J]. Science, 1995, 267(5200): 1010-1012.
[4] SAMINADAYAR L, GLATTLI D, JIN Y, et al. Observation of the e/3 fractionally charged laughlin quasiparticle[J]. Physical Review Letters, 1997, 79(13): 2526.
[5] GODDARD A. Condensed matter: Fractional charge carriers discovered[J]. Physics World, 1997, 10(10): 9.
[6] DE-PICCIOTTO R, REZNIKOV M, HEIBLUM M, et al. Direct observation of a fractional charge[J]. Physica B: Condensed Matter, 1998, 249: 395-400.
[7] SCHWARZSCHILD B. Physics nobel prize goes to tsui, stormer and laughlin for the fractional quantum hall effect.[J]. Physics Today, 1998, 51(12): 17-19.
[8] FREEDMAN M, KITAEV A, LARSEN M, et al. Topological quantum computation[J]. Bulletin of the American Mathematical Society, 2003, 40(1): 31-38.
[9] ZENG B, CHEN X, ZHOU D L, et al. Quantum information meets quantum matter[M]. Springer, 2019.
[10] WILLETT R. The quantum hall effect at 5/2 filling factor[J]. Reports on Progress in Physics, 2013, 76(7): 076501.
[11] WEN X G, NIU Q. Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus riemann surfaces[J]. Physical Review B, 1990, 41(13): 9377.
[12] ZHANG S C, HANSSON T H, KIVELSON S. Effective-field-theory model for the fractional quantum hall effect[J]. Physical review letters, 1989, 62(1): 82.
[13] JAIN J K. Composite fermions[M]. Cambridge University Press, 2007.
[14] DUNNE G V. Aspects of chern-simons theory[M]//Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems. Springer, 1999: 177-263.
[15] WITTEN E. Quantum field theory and the jones polynomial[J]. Communications in Mathematical Physics, 1989, 121(3): 351-399.
[16] WITTEN E. Chern-simons gauge theory as a string theory[M]//The Floer memorial volume. Springer, 1995: 637-678.
[17] WEN X G. Topological orders and edge excitations in fractional quantum hall states[J]. Advances in Physics, 1995, 44(5): 405-473.
[18] KANE C, MUKHOPADHYAY R, LUBENSKY T. Fractional quantum hall effect in an array of quantum wires[J]. Physical review letters, 2002, 88(3): 036401.
[19] TEO J C, KANE C. From luttinger liquid to non-abelian quantum hall states[J]. Physical Review B, 2014, 89(8): 085101.
[20] KANE C L, STERN A. Coupled wire model of z 4 orbifold quantum hall states[J]. Physical Review B, 2018, 98(8): 085302.
[21] TAM P M, HU Y, KANE C L. Coupled wire model of z 2× z 2 orbifold quantum hall states[J]. Physical Review B, 2020, 101(12): 125104.
[22] BARKESHLI M, WEN X G. Bilayer quantum hall phase transitions and the orbifold non-abelian fractional quantum hall states[J]. Physical Review B, 2011, 84(11): 115121.
[23] TAM P M, KANE C L. Nondiagonal anisotropic quantum hall states[J]. Physical Review B, 2021, 103(3): 035142.
[24] SULLIVAN J, DUA A, CHENG M. Fractonic topological phases from coupled wires[J]. Physical Review Research, 2021, 3(2): 023123.
[25] MENG T. Coupled-wire constructions: a luttinger liquid approach to topology[J]. The European Physical Journal Special Topics, 2020, 229(4): 527-543.
[26] WANG P, YU G, KWAN Y H, et al. One-dimensional luttinger liquids in a two-dimensional moir\’e lattice[J]. arXiv preprint arXiv:2109.04637, 2021.
[27] LIU L, HAN J, XU L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856.
[28] LI Y, DIETRICH S, FORSYTHE C, et al. Anisotropic band flattening in graphene with onedimensional superlattices[J]. Nature Nanotechnology, 2021, 16(5): 525-530.
[29] BLUMENSTEIN C, SCHÄFER J, MIETKE S, et al. Atomically controlled quantum chains hosting a tomonaga–luttinger liquid[J]. Nature Physics, 2011, 7(10): 776-780.
[30] FONTANA W B, GOMES P R, HERNASKI C A. From quantum wires to the chern-simons description of the fractional quantum hall effect[J]. Physical Review B, 2019, 99(20): 201113.
[31] IMAMURA Y, TOTSUKA K, HANSSON T H. From coupled-wire construction of quantum hall states to wave functions and hydrodynamics[J]. Physical Review B, 2019, 100(12): 125148.
[32] HERNASKI C A, GOMES P R. Duality between 3d massive thirring and maxwell-chern-simons models from 2d bosonization[J]. Physical review letters, 2018, 121(4): 041601.
[33] SÉNÉCHAL D. An introduction to bosonization[M]//Theoretical Methods for Strongly Correlated Electrons. Springer, 2004: 139-186.
[34] KANE C. Lectures on bosonization[J]. Boulder Summer School lectures, 2005.
[35] FRADKIN E. Quantum field theory: an integrated approach[M]. Princeton University Press, 2021.
[36] ALTLAND A, SIMONS B D. Condensed matter field theory[M]. Cambridge university press, 2010.
[37] HALDANE F. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids[J]. Physical Review Letters, 1981, 47(25): 1840.
[38] HALDANE F. ’luttinger liquid theory’of one-dimensional quantum fluids. i. properties of the luttinger model and their extension to the general 1d interacting spinless fermi gas[J]. Journal of Physics C: Solid State Physics, 1981, 14(19): 2585.
[39] SONDHI S L, YANG K. Sliding phases via magnetic fields[J]. Physical Review B, 2001, 63(5): 054430.
[40] FRANCESCO P, MATHIEU P, SÉNÉCHAL D. Conformal field theory[M]. Springer Science & Business Media, 2012.
Edit Comment