中文版 | English
Title

二维单层过渡金属硫族化合物材料中缺陷结构的精确表征及分析

Alternative Title
ACCURATE CHARACTERIZATIONAND ANALYSISOF DEFECT STRUCTUREIN TWO-DIMENSIONAL TRANSITION METAL DICHALCOGENIDE MONOLAYER
Author
Name pinyin
LI Songge
School number
11930534
Degree
硕士
Discipline
070205 凝聚态物理
Subject category of dissertation
07 理学
Supervisor
林君浩
Mentor unit
物理系
Publication Years
2022-05-17
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

二维单层过渡金属硫族化合物(TMDC)以其新颖的电学、光学、磁学等性质,近年来引起了广泛的关注。由于热扰动、电子束辐射、掺杂等因素导致的缺陷结构的影响,TMDC的扫描透射电子显微镜(STEM)图像呈现出与标准晶格不同的明暗变化和结构畸变。本文聚焦不同TMDC单层材料高分辨STEM图像的数据分析,通过对原子(柱)投影位置、亮度、形状等图像信息的量化处理,挖掘图像中明暗变化和结构畸变背后的物理意义。本论文主要包括三方面工作:(1)基于单一STEM的二维投影图像对单层MoSe2结构进行精确三维重构。利用Se2原子柱投影在低采集角度(MAADF)下呈现出衬度明暗变化的特性,通过多层切片模拟和量子散射理论的计算的方法,我们证明了上下两层硒原子的微小错位是明暗变化的主要原因。结合硒原子错位导致投影图样形状变化的特点,Se2原子柱的错位位移可以被精确重构。该位移来自于材料起伏结构的性质,MoSe2的三维起伏结构因此可以被重构。(2)WTe2各向异性的起伏结构的表征。WTe2的STEM图像显示WTe2晶格存在畸变,通过量化晶格畸变程度并统计大范围的畸变分布,我们揭示了WTe2在畸变-非畸变区域存在的明显的边界,该现象来源于WTe2各向异性的起伏结构。(3)钒掺杂的硒化钨(Wx V(1-x) Se2)中的一维钒原子链结构的表征。STEM图像显示出钒原子倾向于聚集并形成链状结构,我们精确定位了钒原子链的位置并且对其长度、宽度以及链间距等参数做统计,证明该链状结构是导致材料磁性的重要原因。该系列工作为TMDC的STEM图像信息的深入挖掘提供了新的方法,推动了TMDC各个维度的缺陷结构的精确表征及重构的研究。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-07
References List

[1] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-91.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.
[3] BUTLER S Z, HOLLEN S M, CAO L Y, et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J]. Acs Nano, 2013, 7(4): 2898-926.
[4] LV R, ROBINSON J A, SCHAAK R E, et al. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets [J]. Accounts of Chemical Research, 2015, 48(1): 56-64.
[5] BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent Advances in Two-Dimensional Materials beyond Graphene [J]. Acs Nano, 2015, 9(12): 11509-39.
[6] TAN C L, CAO X H, WU X J, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-331.
[7] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8).
[8] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-+.
[9] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-+.
[10] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-8.
[11] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-4.
[12] KANE C L, MELE E J. Quantum spin Hall effect in graphene [J]. Physical Review Letters, 2005, 95(22).
[13] POLSHYN H, ZHU J, KUMAR M A, et al. Electrical switching of magnetic order in an orbital Chern insulator [J]. Nature, 2020, 588(7836): 66-+.
[14] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum hall effect in graphene [J]. Science, 2007, 315(5817): 1379-.
[15] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene [J]. Reviews of Modern Physics, 2009, 81(1): 109-62.
[16] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-7.
[17] FAN X L, AN Y R, GUO W J. Ferromagnetism in Transitional Metal-Doped MoS2 Monolayer [J]. Nanoscale Research Letters, 2016, 11.
[18] XIANG Z C, ZHANG Z, XU X J, et al. Room-temperature ferromagnetism in Co doped MoS2 sheets [J]. Physical Chemistry Chemical Physics, 2015, 17(24): 15822-8.
[19] FU S C, KANG K, SHAYAN K, et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping [J]. Nature Communications, 2020, 11(1).
[20] HABIB M, MUHAMMAD Z, KHAN R, et al. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping [J]. Nanotechnology, 2018, 29(11).
[21] NAYLOR C H, PARKIN W M, PING J L, et al. Monolayer Single-Crystal 1T '-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect [J]. Nano Letters, 2016, 16(7): 4297-304.
[22] PASZTOR A, SCARFATO A, SPERA M, et al. Multiband charge density wave exposed in a transition metal dichalcogenide [J]. Nature Communications, 2021, 12(1).
[23] HSU Y T, VAEZI A, FISCHER M H, et al. Topological superconductivity in monolayer transition metal dichalcogenides [J]. Nature Communications, 2017, 8.
[24] MAK K F, LEE C, HONE J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
[25] MCDONNELL S, ADDOU R, BUIE C, et al. Defect-Dominated Doping and Contact Resistance in MoS2 [J]. Acs Nano, 2014, 8(3): 2880-8.
[26] ZHANG Z H, ZOU X L, CRESPI V H, et al. Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides [J]. Acs Nano, 2013, 7(12): 10475-81.
[27] QIAN Z Y, JIAO L Y, XIE L M. Phase Engineering of Two-Dimensional Transition Metal Dichalcogenides [J]. Chinese Journal of Chemistry, 2020, 38(7): 753-60.
[28] KAPPERA R, VOIRY D, YALCIN S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors [J]. Nature Materials, 2014, 13(12): 1128-34.
[29] HU T, LI R, DONG J M. A new (2 x 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations [J]. Journal of Chemical Physics, 2013, 139(17).
[30] FANG Y Q, HU X Z, ZHAO W, et al. Structural Determination and Nonlinear Optical Properties of New 1T '''-Type MoS2 Compound [J]. Journal of the American Chemical Society, 2019, 141(2): 790-3.
[31] ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide [J]. Nano Letters, 2013, 13(6): 2615-22.
[32] KOCHAT V, APTE A, HACHTEL J A, et al. Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism [J]. Advanced Materials, 2017, 29(43).
[33] LOH L Y, ZHANG Z P, BOSMAN M, et al. Substitutional doping in 2D transition metal dichalcogenides [J]. Nano Research, 2021, 14(6): 1668-81.
[34] ZHANG K H, BERSCH B M, JOSHI J, et al. Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping [J]. Advanced Functional Materials, 2018, 28(16).
[35] RHODES D, CHAE S H, RIBEIRO-PALAU R, et al. Disorder in van der Waals heterostructures of 2D materials [J]. Nature Materials, 2019, 18(6): 541-9.
[36] WANG S S, LEE G D, LEE S, et al. Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2 [J]. Acs Nano, 2016, 10(5): 5419-30.
[37] LI Y F, ZHOU Z, ZHANG S B, et al. MoS2 Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties [J]. Journal of the American Chemical Society, 2008, 130(49): 16739-44.
[38] BOWICK M J, TRAVESSET A. The statistical mechanics of membranes [J]. Physics Reports-Review Section of Physics Letters, 2001, 344(4-6): 255-308.
[39] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446(7131): 60-3.
[40] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in graphene [J]. Nature Materials, 2007, 6(11): 858-61.
[41] TIAN X Z, KIM D S, YANG S Z, et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides [J]. Nature Materials, 2020, 19(8): 867-+.
[42] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and Layers in Ultrathin MoS2 Membranes [J]. Nano Letters, 2011, 11(12): 5148-53.
[43] VAN DYCK D, CHEN F R. 'Big Bang' tomography as a new route to atomic-resolution electron tomography [J]. Nature, 2012, 486(7402): 243-6.
[44] HOFER C, KRAMBERGER C, MONAZAM M R A, et al. Revealing the 3D structure of graphene defects [J]. 2d Materials, 2018, 5(4).
[45] FATERMANS J, DEN DEKKER A J, MULLER-CASPARY K, et al. Atom column detection from simultaneously acquired ABF and ADF STEM images [J]. Ultramicroscopy, 2020, 219.
[46] FATERMANS J, DEN DEKKER A J, MULLER-CASPARY K, et al. Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images [J]. Physical Review Letters, 2018, 121(5).
[47] OOE K, SEKI T, IKUHARA Y, et al. High contrast STEM imaging for light elements by an annular segmented detector [J]. Ultramicroscopy, 2019, 202: 148-55.
[48] URBAN K W. Studying atomic structures by aberration-corrected transmission electron microscopy [J]. Science, 2008, 321(5888): 506-10.
[49] ROSE H. History of Direct Aberration Correction [M]//HAWKES P W. Advances in Imaging and Electron Physics, Vol 153. 2008: 3-+.
[50] YANG S Z, GONG Y J, MANCHANDA P, et al. Rhenium-Doped and Stabilized MoS2 Atomic Layers with Basal-Plane Catalytic Activity [J]. Advanced Materials, 2018, 30(51).
[51] ZHENG Y J, CHEN Y F, HUANG Y L, et al. Point Defects and Localized Excitons in 2D WSe2 [J]. Acs Nano, 2019, 13(5): 6050-9.
[52] WU K D, CHEN B, YANG S J, et al. Domain Architectures and Grain Boundaries in Chemical Vapor Deposited Highly Anisotropic ReS2 Monolayer Films [J]. Nano Letters, 2016, 16(9): 5888-94.
[53] HUANG P Y, KURASCH S, ALDEN J S, et al. Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica's Dance [J]. Science, 2013, 342(6155): 224-7.
[54] LIN J H, CRETU O, ZHOU W, et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers [J]. Nature Nanotechnology, 2014, 9(6): 436-42.
[55] BORN M, OPPENHEIMER R. Quantum theory of molecules [J]. Annalen Der Physik, 1927, 84(20): 0457-84.
[56] NIU K D, WENG M Y, LI S G, et al. Direct Visualization of Large-Scale Intrinsic Atomic Lattice Structure and Its Collective Anisotropy in Air-Sensitive Monolayer 1T'- WTe2 [J]. Advanced Science, 2021, 8(20).

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O469
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343151
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
李松格. 二维单层过渡金属硫族化合物材料中缺陷结构的精确表征及分析[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930534-李松格-物理系.pdf(4938KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李松格]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李松格]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李松格]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.