[1] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-91.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.
[3] BUTLER S Z, HOLLEN S M, CAO L Y, et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J]. Acs Nano, 2013, 7(4): 2898-926.
[4] LV R, ROBINSON J A, SCHAAK R E, et al. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets [J]. Accounts of Chemical Research, 2015, 48(1): 56-64.
[5] BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent Advances in Two-Dimensional Materials beyond Graphene [J]. Acs Nano, 2015, 9(12): 11509-39.
[6] TAN C L, CAO X H, WU X J, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-331.
[7] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8).
[8] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-+.
[9] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-+.
[10] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-8.
[11] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-4.
[12] KANE C L, MELE E J. Quantum spin Hall effect in graphene [J]. Physical Review Letters, 2005, 95(22).
[13] POLSHYN H, ZHU J, KUMAR M A, et al. Electrical switching of magnetic order in an orbital Chern insulator [J]. Nature, 2020, 588(7836): 66-+.
[14] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum hall effect in graphene [J]. Science, 2007, 315(5817): 1379-.
[15] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene [J]. Reviews of Modern Physics, 2009, 81(1): 109-62.
[16] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-7.
[17] FAN X L, AN Y R, GUO W J. Ferromagnetism in Transitional Metal-Doped MoS2 Monolayer [J]. Nanoscale Research Letters, 2016, 11.
[18] XIANG Z C, ZHANG Z, XU X J, et al. Room-temperature ferromagnetism in Co doped MoS2 sheets [J]. Physical Chemistry Chemical Physics, 2015, 17(24): 15822-8.
[19] FU S C, KANG K, SHAYAN K, et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping [J]. Nature Communications, 2020, 11(1).
[20] HABIB M, MUHAMMAD Z, KHAN R, et al. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping [J]. Nanotechnology, 2018, 29(11).
[21] NAYLOR C H, PARKIN W M, PING J L, et al. Monolayer Single-Crystal 1T '-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect [J]. Nano Letters, 2016, 16(7): 4297-304.
[22] PASZTOR A, SCARFATO A, SPERA M, et al. Multiband charge density wave exposed in a transition metal dichalcogenide [J]. Nature Communications, 2021, 12(1).
[23] HSU Y T, VAEZI A, FISCHER M H, et al. Topological superconductivity in monolayer transition metal dichalcogenides [J]. Nature Communications, 2017, 8.
[24] MAK K F, LEE C, HONE J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
[25] MCDONNELL S, ADDOU R, BUIE C, et al. Defect-Dominated Doping and Contact Resistance in MoS2 [J]. Acs Nano, 2014, 8(3): 2880-8.
[26] ZHANG Z H, ZOU X L, CRESPI V H, et al. Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides [J]. Acs Nano, 2013, 7(12): 10475-81.
[27] QIAN Z Y, JIAO L Y, XIE L M. Phase Engineering of Two-Dimensional Transition Metal Dichalcogenides [J]. Chinese Journal of Chemistry, 2020, 38(7): 753-60.
[28] KAPPERA R, VOIRY D, YALCIN S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors [J]. Nature Materials, 2014, 13(12): 1128-34.
[29] HU T, LI R, DONG J M. A new (2 x 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations [J]. Journal of Chemical Physics, 2013, 139(17).
[30] FANG Y Q, HU X Z, ZHAO W, et al. Structural Determination and Nonlinear Optical Properties of New 1T '''-Type MoS2 Compound [J]. Journal of the American Chemical Society, 2019, 141(2): 790-3.
[31] ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide [J]. Nano Letters, 2013, 13(6): 2615-22.
[32] KOCHAT V, APTE A, HACHTEL J A, et al. Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism [J]. Advanced Materials, 2017, 29(43).
[33] LOH L Y, ZHANG Z P, BOSMAN M, et al. Substitutional doping in 2D transition metal dichalcogenides [J]. Nano Research, 2021, 14(6): 1668-81.
[34] ZHANG K H, BERSCH B M, JOSHI J, et al. Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping [J]. Advanced Functional Materials, 2018, 28(16).
[35] RHODES D, CHAE S H, RIBEIRO-PALAU R, et al. Disorder in van der Waals heterostructures of 2D materials [J]. Nature Materials, 2019, 18(6): 541-9.
[36] WANG S S, LEE G D, LEE S, et al. Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2 [J]. Acs Nano, 2016, 10(5): 5419-30.
[37] LI Y F, ZHOU Z, ZHANG S B, et al. MoS2 Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties [J]. Journal of the American Chemical Society, 2008, 130(49): 16739-44.
[38] BOWICK M J, TRAVESSET A. The statistical mechanics of membranes [J]. Physics Reports-Review Section of Physics Letters, 2001, 344(4-6): 255-308.
[39] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446(7131): 60-3.
[40] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in graphene [J]. Nature Materials, 2007, 6(11): 858-61.
[41] TIAN X Z, KIM D S, YANG S Z, et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides [J]. Nature Materials, 2020, 19(8): 867-+.
[42] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and Layers in Ultrathin MoS2 Membranes [J]. Nano Letters, 2011, 11(12): 5148-53.
[43] VAN DYCK D, CHEN F R. 'Big Bang' tomography as a new route to atomic-resolution electron tomography [J]. Nature, 2012, 486(7402): 243-6.
[44] HOFER C, KRAMBERGER C, MONAZAM M R A, et al. Revealing the 3D structure of graphene defects [J]. 2d Materials, 2018, 5(4).
[45] FATERMANS J, DEN DEKKER A J, MULLER-CASPARY K, et al. Atom column detection from simultaneously acquired ABF and ADF STEM images [J]. Ultramicroscopy, 2020, 219.
[46] FATERMANS J, DEN DEKKER A J, MULLER-CASPARY K, et al. Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images [J]. Physical Review Letters, 2018, 121(5).
[47] OOE K, SEKI T, IKUHARA Y, et al. High contrast STEM imaging for light elements by an annular segmented detector [J]. Ultramicroscopy, 2019, 202: 148-55.
[48] URBAN K W. Studying atomic structures by aberration-corrected transmission electron microscopy [J]. Science, 2008, 321(5888): 506-10.
[49] ROSE H. History of Direct Aberration Correction [M]//HAWKES P W. Advances in Imaging and Electron Physics, Vol 153. 2008: 3-+.
[50] YANG S Z, GONG Y J, MANCHANDA P, et al. Rhenium-Doped and Stabilized MoS2 Atomic Layers with Basal-Plane Catalytic Activity [J]. Advanced Materials, 2018, 30(51).
[51] ZHENG Y J, CHEN Y F, HUANG Y L, et al. Point Defects and Localized Excitons in 2D WSe2 [J]. Acs Nano, 2019, 13(5): 6050-9.
[52] WU K D, CHEN B, YANG S J, et al. Domain Architectures and Grain Boundaries in Chemical Vapor Deposited Highly Anisotropic ReS2 Monolayer Films [J]. Nano Letters, 2016, 16(9): 5888-94.
[53] HUANG P Y, KURASCH S, ALDEN J S, et al. Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica's Dance [J]. Science, 2013, 342(6155): 224-7.
[54] LIN J H, CRETU O, ZHOU W, et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers [J]. Nature Nanotechnology, 2014, 9(6): 436-42.
[55] BORN M, OPPENHEIMER R. Quantum theory of molecules [J]. Annalen Der Physik, 1927, 84(20): 0457-84.
[56] NIU K D, WENG M Y, LI S G, et al. Direct Visualization of Large-Scale Intrinsic Atomic Lattice Structure and Its Collective Anisotropy in Air-Sensitive Monolayer 1T'- WTe2 [J]. Advanced Science, 2021, 8(20).
Edit Comment