中文版 | English
Title

CH-ILKBP在调控足细胞结构和功能稳态中的作用机制研究

Alternative Title
THE ROLE OFCH-ILKBPIN THEMAINTENANCE OF NORMAL PODOCYTE ARCHITECTURE AND FUNCTION
Author
Name pinyin
GENG Yiqing
School number
11930114
Degree
硕士
Discipline
0710 生物学
Subject category of dissertation
07 理学
Supervisor
孙颖
Mentor unit
生物系
Publication Years
2022-05-05
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

肾脏是最重要的代谢器官之一,肾脏疾病困扰着数百万人,给全球公共医疗费用带来巨大负担。掌握预防肾小球疾病的潜在治疗靶点具有重要临床意义。CH-ILKBPα-parvin)是一种粘着斑蛋白,可调节多种生物学功能如细胞骨架。然而,关于CH-ILKBP在肾小球疾病中的作用知之甚少。为研究CH-ILKBP在生理条件下维持足细胞结构和功能的功能,利用Cre-LoxP系统在足细胞中条件性敲除CH-ILKBP基因,生成小鼠模型(CH-ILKBPNphs2 cKO)。足细胞缺失CH-ILKBP导致小鼠大量蛋白尿和肾衰竭。组织学上,在CH-ILKBPNphs2 cKO小鼠中观察到典型的肾脏损伤,包括肾小管空强化,蛋白类物质沉积和肾小球硬化。在机制方面,我们确定了一种关键的细胞连接蛋白ZO-1CH-ILKBP的相互作用。足细胞中CH-ILKBP的缺失导致ZO-1蛋白水平明显降低,同时细胞骨架的肌动蛋白纤维组织结构异常、裂隙隔膜表达异常和足细胞过滤能力受损。在CH-ILKBP缺陷的足细胞中恢复CH-ILKBPZO-1可有效减轻体内和体外由CH-ILKBP缺失引起的足细胞损伤。总的来说,我们的发现揭示了一个由CH-ILKBPZO-1组成的新的信号通路,在维持足细胞稳态中起重要作用。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] Mortality, G. B. D. & Causes of Death, C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459-1544, doi:10.1016/S0140-6736(16)31012-1 (2016).
[2] Neuen, B. L., Chadban, S. J., Demaio, A. R., Johnson, D. W. & Perkovic, V. Chronic kidney disease and the global NCDs agenda. BMJ global health 2, e000380, (2017).
[3] Collaboration, G. B. D. C. K. D. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709-733, (2020).
[4] Liu, Z. H. Nephrology in china. Nat Rev Nephrol 9, 523-528, (2013).
[5] Yu, D. et al. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol 16, 1733-1741.
[6] Leeuwis, J. W., Nguyen, T. Q., Dendooven, A., Kok, R. J. & Goldschmeding, R. Targeting podocyte-associated diseases. Adv Drug Deliv Rev 62, 1325-1336,
[7] Mundel, P. & Shankland, S. J. Podocyte biology and response to injury. J Am Soc Nephrol 13, 3005-3015 (2002).
[8] Brinkkoetter, P. T., Ising, C. & Benzing, T. The role of the podocyte in albumin filtration. Nat Rev Nephrol 9, 328-336, doi:10.1038/nrneph.2013.78 (2013).
[9] Tu, Y., Huang, Y., Zhang, Y., Hua, Y. & Wu, C. A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol 153, 585-598 (2001).
[10] Montanez, E., Wickstrom, S. A., Altstatter, J., Chu, H. & Fassler, R. Alpha-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO J 28, 3132-3144, doi:10.1038/emboj.2009.295 (2009).
[11] Fraccaroli, A. et al. Endothelial alpha-parvin controls integrity of developing vasculature and is required for maintenance of cell-cell junctions. Circ Res 117, 29-40, doi:10.1161/CIRCRESAHA.117.305818 (2015).
[12] Altstatter, J., Hess, M. W., Costell, M. & Montanez, E. alpha-parvin is required for epidermal morphogenesis, hair follicle development and basal keratinocyte polarity. PLoS One 15, e0230380, doi:10.1371/journal.pone.0230380 (2020).
[13] Sun, Y. et al. alpha-Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling. Oncogene 38, 4856-4874, doi:10.1038/s41388-019-0762-1 (2019).
[14] Ito, M. et al. alpha-Parvin, a pseudopodial constituent, promotes cell motility and is associated with lymph node metastasis of lobular breast carcinoma. Breast Cancer Res Treat 144, 59-69, doi:10.1007/s10549-014-2859-0 (2014).
[15] Pignatelli, J., LaLonde, S. E., LaLonde, D. P., Clarke, D. & Turner, C. E. Actopaxin (alpha-parvin) phosphorylation is required for matrix degradation and cancer cell invasion. J Biol Chem 287, 37309-37320, (2012).
[16] Itoh, M. et al. The structural and functional organization of the podocyte filtration slits is regulated by Tjp1/ZO-1. PLoS One 9, e106621, doi:10.1371/journal.pone.0106621 (2014).
[17] Itoh, M., Nakadate, K., Matsusaka, T., Hunziker, W. & Sugimoto, H. Effects of the differential expression of ZO-1 and ZO-2 on podocyte structure and function. Genes Cells 23, 546-556, doi:10.1111/gtc.12598 (2018).
[18] Schnabel, E., Anderson, J. M. & Farquhar, M. G. The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111, 1255-1263, (1990).
[19] Odenwald, M. A. et al. ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci 130, 243-259, (2017).
[20] Tornavaca, O. et al. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 208, 821-838, doi:10.1083/jcb.201404140 (2015).
[21] Itoh, M., Nagafuchi, A., Moroi, S. & Tsukita, S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138, 181-192, doi:10.1083/jcb.138.1.181 (1997).
[22] Fanning, A. S., Jameson, B. J., Jesaitis, L. A. & Anderson, J. M. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273, 29745-29753, doi:10.1074/jbc.273.45.29745 (1998).
[23] Dai, C. et al. Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. J Am Soc Nephrol 17, 2164-2175, (2006).
[24] Kim, J. H. et al. Klotho May Ameliorate Proteinuria by Targeting TRPC6 Channels in Podocytes. J Am Soc Nephrol 28, 140-151, doi:10.1681/ASN.2015080888 (2017).
[25] Okuda, S., Languino, L. R., Ruoslahti, E. & Border, W. A. Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest 86, 453-462, (1990).
[26] Schaier, M. et al. Isotretinoin alleviates renal damage in rat chronic glomerulonephritis. Kidney Int 60, 2222-2234, (2001).
[27] Yamamoto, T., Noble, N. A., Miller, D. E. & Border, W. A. Sustained expression of TGF-beta 1 underlies development of progressive kidney fibrosis. Kidney Int 45, 916-927, doi:10.1038/ki.1994.122 (1994).
[28] Tian, X. et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Invest 124, 1098-1113, doi:10.1172/JCI69778 (2014).
[29] Dai, C. et al. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 20, 1997-2008, (2009).
[30] Sun, Y. et al. A novel mechanism of control of NFkappaB activation and inflammation involving A2B adenosine receptors. J Cell Sci 125, 4507-4517, doi:10.1242/jcs.105023 (2012).
[31] Sun, Y. et al. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor alpha Suppresses Rac1 Activation and Podocyte Injury. J Am Soc Nephrol 28, 3545-3562, doi:10.1681/ASN.2016091021 (2017).
[32] Li, M. et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci 86, 1-12, doi:10.1016/j.ejps.2016.02.013 (2016).
[33] Honda, S., Shirotani-Ikejima, H., Tadokoro, S., Tomiyama, Y. & Miyata, T. The integrin-linked kinase-PINCH-parvin complex supports integrin alphaIIbbeta3 activation. PLoS One 8, e85498, doi:10.1371/journal.pone.0085498 (2013).
[34] Wu, C. The PINCH-ILK-parvin complexes: assembly, functions and regulation. Biochim Biophys Acta 1692, 55-62, doi:10.1016/j.bbamcr.2004.01.006 (2004).
[35] Sepulveda, J. L. & Wu, C. The parvins. Cell Mol Life Sci 63, 25-35.
[36] Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7, 20-31, doi:nrm1789 [pii]10.1038/nrm1789 (2006).
[37] Lu, C. C. et al. Role of Podocyte Injury in Glomerulosclerosis. Adv Exp Med Biol 1165, 195-232.
[38] Chen, W. et al. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling. Anal Chem 88, 4864-4871.
[39] Huber, T. B. et al. (2003). The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem 278, 13417-13421,
[40] Chen, V. C., Li, X., Perreault, H. & Nagy, J. I. Interaction of zonula occludens-1 (ZO-1) with alpha-actinin-4: application of functional proteomics for identification of PDZ domain-associated proteins. J Proteome Res 5, 2123-2134,
[41] Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6, 1258-1266,
[42] El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J Am Soc Nephrol 17, 1334-1344,.
[43] Salant DJ (1994) The structural biology of glomerular epithelial cells in proteinuric diseases. Curr Opin Nephrol Hypertens 3:569
[44] Doyonnas, R. et al. (2001) Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J. Exp. Med. 194, 13–27
[45] Tryggvason K, Wartiovaara J. How does the kidney filter plasma? Physiology (Bethesda), 2005 Apr; 20:96-101.
[46] Yu SM, Nissaisorakarn P.Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne). 2018 Sep 11;5:221.
[47] Guo L., Sanders P. W., Woods A. and Wu C. (2001) The distribution and regulation of integrin-linked kinase in normal and diabetic kidneys. Am. J. Pathol. 159: 1735–1742
[48] Kretzler M., Teixeira V. P., Unschuld P. G., Cohen C. D., Wanke R., Edenhofer I. et al. (2001) Integrin-linked kinase as a candidate downstream effector in proteinuria. FASEB J. 15: 1843–1845
[49] Nikolopoulos S. N. and Turner C. E. (2001) Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions. J. Biol. Chem. 276: 23499–23505
[50] Troussard A. A., Costello P., Yoganathan T. N., et al.(2000) The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene 19: 5444–5452
[51] Von Luttichau I., Djafarzadeh R., Mojaat A., Jochum M. et al. (2002) Identification of a signal transduction pathway that regulates MMP-9 mRNA expression in glomerular injury. Biol. Chem. 383: 1271–1275
[52] Teixeira Vde P., Blattner S. M., Li M., Anders H. J., Cohen C.D., Edenhofer I. et al. (2005) Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int. 67: 514–523
[53] Balda, M.S., and Matter, K. (2008). Tight junctions at a glance. J. Cell Sci. 121, 3677–3682.
[54] Van Itallie, C.M., and Anderson, J.M. (2014). Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 36, 157–65.
[55] Beutel O, Maraspini R, Pombo-García K, et al (2019). Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions. Cell. 2019 Oct 31;179(4):923-936.e11.
[56] Grahammer F, Wigge C, Schell C, Kretz O, Patrakka J, Schneider S, Klose M, Kind J, Arnold SJ, Habermann A, Bräuniger R, Rinschen MM, Völker L, Bregenzer A, Rubbenstroth D, Boerries M, Kerjaschki D, Miner JH, Walz G, Benzing T, Fornoni A, Frangakis AS, Huber TB. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight. 2016 Jun 16;1(9):e86177.
[57] Lenkkeri, U., Mannikko, M., and McCready, P., Structure of the gene for congenital nephrotic syndrome of the Finnish type (NPHS1) and characterization of mutations. Am. J. Hum. Genet. 64, 51-61 (1999)
[58] Luimula, P., Ahola, H., Wang, S.-X., Solin, M. L., Aaltonen, P., Tikkanen, I., Kerjaschki, D., and Holthofer, H., Nephrin in experimental glomerular disease. Kidney Int. 58, 1461-1468 (2000).
[59] Yuan, H., Takeuchi, E., Taylor, G. A., McLaughlin, M., Brown, D., and Salant, D. J., Nephrin dissociates from actin, and its expressionis reduced in early experimental membranous nephropathy. s Am. Soc. NephroL 13, 946-956 (2002).
[60] Winn, M., Conlon, P., Lynn, K., Howell, D. N., Slotterbeck, B. D., Smith, A. H., Graham, E L., Bembe, M., Quarles, L. D., Pericak-Vance, M. A., and Vance, J. M., Linkage of a gene causing familial focal segmental glomerulosclerosis to chromosome 11 and furhter evidence of genetic heterogeneity. Genomics 58, 113- 120 (1999)
[61] Karle, S. M., Uetz, B., Rormer, V., Glaeser, L., Hildebrandt, F., and Fuchsbuber, A., Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 13, 388-393 (2002).
[62] Kaplan, J. M., Kim, S. H., North, K. N., Rennke, H., Correia, L. A, Tong, H. Q., Mathis, B. J., Rodriguez-Perez, J. C., Allen, P. G., Beggs, A. H., and Pollak, M. R., Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerusis. Nat. Genet. 24, 251-256 (2000).

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
Q291
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343157
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
耿伊清. CH-ILKBP在调控足细胞结构和功能稳态中的作用机制研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930114-耿伊清-生物系.pdf(10973KB) Embargo--2023-6-29后可获取Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[耿伊清]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[耿伊清]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[耿伊清]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.