[1] TARASCON JM, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
[2] 戴新义. 锂离子电池正极材料LiCoO2的改性及其薄膜制备研究[D]. 成都:电子科技大学, 2016, 5-77.
[3] PARK OK, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy & Environmental Science, 2011, 4(5):1621-1633.
[4] THACKERAY MM. Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry, 1997, 25(1-2):1-71.
[5] CHUNG KY, RYU CW, KIM KB. Onset Mechanism of Jahn-Teller Distortion in 4 V LiMn2O4 and Its Suppression by LiM0.05Mn1.95O4(M = Co, Ni)Coating[J]. Journal of the Electrochemical Society, 2005, 152(4):A791-A795.
[6] PATEY TJ, R B, NAKAYAMA M, et al. Electrochemistry of LiMn2O4 nanoparticles made by flame spray pyrolysis[J]. Physical Chemistry Chemical Physics, 2009, 11(19):3756-3761.
[7] TANG W, LIU L L, TIAN S, et al. LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries[J]. Electrochemistry Communications, 2011, 13(11):1159-1162.
[8] HOSONO E, KUDO T, HONMA I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density[J]. Nano Letters, 2009, 9(3):1045-1051.
[9] PADHI AK, NANJUNDASWAMY KS, GOODENOUGH JB. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of the Electrochemical Society, 1997, 144(4):1188-1194.
[10] ELLIS BL, LEE KT, NAZAR LF. Positive Electrode Materials for Li-Ion and Li-Batteries[J]. Chemistry of Materials, 2010, 22(3):691-714.
[11] NR A, YC A, JFM B, et al. Electroactivity of natural and synthetic triphylite-ScienceDirect[J]. Journal of Power Sources, 2001, 97–98:503-507.
[12] LIU Z, YU A, LEE J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. Journal of Power Sources, 1999, 81–82:416-419.
[13] OHZUKU T, MAKIMURA Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries[J]. Chemistry Letters, 2001, 1(7):642-643.
[14] BELHAROUAK I, SUN Y K, LIU J, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications[J]. Journal of Power Sources, 2003, 123(2):247-252.
[15] ANTOLINI E, FERRETTI M. Synthesis and Thermal Stability of LiCoO2[J]. Journal of Solid State Chemistry, 1995, 117(1):1.
[16] CHIANG YM, JANG YI, WANG H, et al. Synthesis of LiCoO2 by decomposition and intercalation of hydroxides[J]. Journal of the Electrochemical Society, 1998, 145(3):887-891.
[17] Wang Z, Wang Z, Guo H, et al. Synthesis of Li2MnO3-stabilized LiCoO2 cathode material by spray-drying method and its high-voltage performance[J]. Journal of Alloys and Compounds, 2015, 626:228-233.
[18] 李阳兴, 姜长印, 万春荣, 等. 喷雾干燥法制备 LiCoO2超细粉[J]. 无机材料学报, 1999, 14(04):657-661.
[19] SUN YK, OH IH, HONG SA. Synthesis of ultrafine LiCoO2 powders by the sol-gel method[J]. Journal of Materials Science, 1996, 31(14):3617-3621.
[20] GAO S, WEI W, MA M, et al. Sol–gel synthesis and electrochemical properties of c-axis oriented LiCoO2 for lithium-ion batteries[J]. RSC Advances, 2015, 5(64):51483-51488.
[21] LALA SM, MONTORO LA, ROSOLEN JM. LiCoO2 sub-microns particles obtained from micro-precipitation in molten stearic acid[J]. Journal of Power Sources, 2003, 124(1):118-123.
[22] WU N, ZHANG Y, GUO Y, et al. Flakelike LiCoO2 with Exposed {010} Facets As a Stable Cathode Material for Highly Reversible Lithium Storage[J]. Acs Applied Materials & Interfaces, 2016, 8(4):2723-2731.
[23] ROSSEN E, REIMERS J N, DAHN J R. Synthesis and electrochemistry of spinel LT-LiCoO2[J]. Solid State Ionics, 1993, 62(1-2):53-60.
[24] GUMMOW RJ, LILES DC, THACKERAY MM. Spinel versus layered structures for lithium cobalt oxide synthesised at 400°C[J]. Materials Research Bulletin, 1993, 28(3):235-246.
[25] GUMMOW RJ, THACKERAY MM, DAVID W, et al. Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C[J]. Materials Research Bulletin, 1992, 27(3):327-337.
[26] 闫时建, 田文怀, 其鲁. 不同温度下合成的LiCoO2的晶体结构[J]. 无机化学学报, 2006, (02):211-216.
[27] 闫时建, 田文怀. 钴酸锂晶体结构与能量关系的研究进展[J]. 电源技术, 2005, (03):187-192.
[28] 张卫民, 杨永会, 孙思修. 二次锂离子电池正极活性材料-LiCoO2制备研究进展[J]. 无机化学学报, 2000, (06):873-878.
[29] 戴新义. 锂离子电池正极材料 LiCoO2的改性及其薄膜制备研究[D]. 成都:电子科技大学, 2016, 5-77.
[30] REIMERS JN, DAHN JR. Electrochemical and Insitu X-Ray-Diffraction Studies of Lithium Intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992, 139(8):2091-2097.
[31] HONG JS, SELMAN JR. Relationship Between Calorimetric and Structural Characteristics of Lithium-Ion Cells I. Thermal Analysis and Phase Diagram[J]. Journal of the Electrochemical Society, 2000, 147(9):3183-3189.
[32] OHZUKU T, UEDA A. Solid‐State Redox Reactions of LiCoO2(R3(-)m) for 4 Volt Secondary Lithium Cells[J]. Journal of The Electrochemical Society, 1994, 141(11):2972-2977.
[33] REIMERS JN, DAHN JR. Electrochemical and Insitu X-Ray-Diffraction Studies of Lithium Intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992, 139(8):2091-2097.
[34] HONG JS, SELMAN JR. Relationship Between Calorimetric and Structural Characteristics of Lithium-Ion Cells I. Thermal Analysis and Phase Diagram[J]. Journal of the Electrochemical Society, 2000, 147(9):3183-3189.
[35] GOODENOUGH JB, PARK KS. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
[36] CHEN Z, DAHN JR. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J]. Electrochimica Acta, 2004, 49(7):1079-1090.
[37] ZHANG JN, Li Q, WANG Y, et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode[J]. Energy Storage Materials, 2018, 14:1-7.
[38] WANG Y, ZHANG Q, XUE ZC, et al. An In Situ Formed Surface Coating Layer Enabling LiCoO2 with Stable 4.6 V High-Voltage Cycle Performances[J]. Advanced Energy Materials, 2020, 10(28):2001413(1)-2001413(7).
[39] WIZANSKY AR, RAUCH PE, DISALVO FJ. Powerful oxidizing agents for the oxidative deintercalation of lithium from transition-metal oxides[J]. Journal of Solid State Chemistry, 1989, 81(2):203-207.
[40] GUPTA R, MANTHIRAM A. Chemical Extraction of Lithium from Layered LiCoO2[J]. Journal of Solid State Chemistry, 1996, 121(2):483-491.
[41] UEDA, ATSUSHI, SAKAEBE, et al. LiCoO2 Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating[J]. Journal of the Electrochemical Society, 2017, 164(1):A6116-A6122.
[42] ZHU X, ONG CS, XU X, et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins[J]. Scientific Reports, 2013, 3:1084.
[43] YADAV GG, DAVID A, ZHU H, et al. Microemulsion-based synthesis and electrochemical evaluation of different nanostructures of LiCoO2 prepared through sacrificial nanowire templates[J]. Nanoscale, 2013, 6(2):860-866.
[44] BOUWMAN PJ, BOUKAMP BA, BOUWMEESTER H, et al. Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes[J]. Journal of the Electrochemical Society, 2002, 149(6):A699-A709.
[45] XIA H, WAN Y, ASSENMACHER W, et al. Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries[J]. Npg Asia Material, 2014, 6(9):e126.
[46] TANG W, LIU LL, TIAN S, et al. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries[J]. Electrochemistry Communications, 2010, 12(11):1524-1526.
[47] ZHU X, ONG CS, XU X, et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins[J]. Scientific Reports, 2013, 3:1084.
[48] XIAO X, LIU X, LI W, et al. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries[J]. Nano Research, 2012, 5(6):395-401.
[49] XIA H, WAN Y, ASSENMACHER W, et al. Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries[J]. Npg Asia Material, 2014, 6(9):e126.
[50] WHITTINGHAM MS. Lithium Batteries and Cathode Materials[J]. Chemical Reviews, 2004, 104(10):4271-4302.
[51] ZHANG JN, Li QH, LI Q, et al. Improved electrochemical performances of high voltage LiCoO2 with tungsten doping[J]. Chinese Physics B, 2018, 27(8):088202(1)- 088202(11).
[52] ZHU Z, WANG H, LI Y, et al. A Surface Se‐Substituted LiCo[O2δSeδ] Cathode with Ultrastable High‐Voltage Cycling in Pouch Full‐Cells[J]. Advanced Materials, 2005, 32(50):182.
[53] KANG W, WANG JY, LI Q, et al. In situ synthesis of a nickel concentration gradient structure of Ni-rich LiNi0.8Co0.15Al0.05O2 with promising superior electrochemical properties at high cut-off voltage[J]. Nanoscale, 2020, 12(20):11182-11191.
[54] CEDER G, CHIANG, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations.[J]. Nature, 1998, 392(6677):694-696.
[55] MING X, TANG H, LIU Y, et al. Synthesis of high-voltage (4.7 V) LiCoO2 cathode materials with Al doping and conformal Al2O3 coating by atomic layer deposition[J]. RSC Advances, 2016, 6(68):63250-63255.
[56] FRANGINI S, SCACCIA S, CAREWSKA M. A voltammetric study concerning the structural stability of Li-overstoichiometric Mg-doped LiCoO2 powders[J]. Electrochimica Acta, 2003, 48(23):3473-3479.
[57] KIM S, CHOI S,LEE K, et al. Self-assembly of core-shell structures driven by low doping limit of Ti in LiCoO2: first-principles thermodynamic and experimental investigation[J]. Physical Chemistry Chemical Physics, 2017, 19(5):4104-4113.
[58] CAO Q, ZHANG HP, WANG GJ, et al. A novel carbon-coated LiCoO2 as cathode material forlithium ion battery[J]. Electrochemistry Communications, 2007, 9(5):1228-1232.
[59] FILIPPIN AN, LIN TY, RAWLENCE M, et al. Ni–Al–Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries[J]. RSC Advances,2018,8(36):20304-20313.
[60] ZHANG M, TAN M, ZHAO H, et al. Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries[J]. Applied Surface Science, 2018, 458:111-118.
[61] ZHANG JN, LI Q, OUYANG CY, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6V[J]. Nature Energy, 2019, 4(7):594-603.
[62] WANG ZX, DONG H, CHEN LQ, et al. Understanding mechanism of improved electrochemical performance of surface modified LiCoO2[J]. Solid State Ionics, 2004, 175(1):239-242.
[63] HAN B, DUNLOP AR, TRASK SE, et al. Tailoring Alumina Based Interphases on Lithium Ion Cathodes[J]. Journal of The Electrochemical Society, 2018, 165(14):A3275-A3283.
[64] ZHOU A, LIU Q, WANG Y, et al. Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages[J]. Journal of Materials Chemistry A, 2017, 5(46):24361-24370.
[65] SHAO L, ZHOU L, YANG L, et al. Enhanced 4.5 V/55 °C cycling performance of LiCoO2 cathode via LiAlO2-LiCo1-xAlxO2 double-layer coatings[J]. Electrochimica Acta, 2019, 297(1):742-748.
[66] SHEN B, ZUO P, LI Q, et al. Lithium Cobalt Oxides Functionalized by Conductive Al-doped ZnO Coating as Cathode for High-performance Lithium Ion Batteries[J]. Electrochimica Acta, 2017, 224(1):96-104.
[67] PANDA PK. Ceramic Nanofibers by Electrospinning Technique—A Review[J]. Transactions of the Indian Ceramic Society, 2008, 66(2):65-76.
[68] HUANG ZM, ZHANG YZ, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science & Technology, 2003, 63(15):2223-2253.
[69] GREINER A, WENDORFF JH. Electrospinning: A fascinating method for the preparation of ultrathin fibres[J]. Angewandte Chemie-International Edition, 2007, 46(30):5670-5703.
[70] MIAO J, MIYAUCHI M, SIMMONS TJ, et al. Electrospinning of Nanomaterials and Applications in Electronic Components and Devices[J]. Journal of Nanoscience & Nanotechnology, 2010, 10(9):5507-5519.
[71] AGARWAL S, GREINER A, WENDORFF JH. Polymer nanophase by use of electrospinning[J]. Chemie Ingenieur Technik, 2008, 80(11):1671-1676.
[72] PARK S, PARK K, YOON H, et al. Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication[J]. Polymer International, 2010, 56(11):1361-1366.
[73] MARTINS A, REIS RL, NEVES NM. Electrospinning: processing technique for tissue engineering scaffolding[J]. International Materials Reviews, 2008, 53(5):257-274.
[74] RAMASESHAN R, SUNDARRAJAN S, JOSE R, et al. Nanostructured ceramics by electrospinning[J]. Journal of Applied Physics, 2007, 102(11):7.
[75] TAN S, HUANG X, WU B. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers[J]. Polymer International, 2010, 56(11):1330-1339.
[76] ZHANG M, UCHAKER E, HU S, et al. CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties[J]. Nanoscale, 2013, 5(24):12342-12349.
[77] LUO Y, WANG K, QIAN Q, et al. Fabrication and photocatalytic properties of Gd-doped ZnO nanoparticle-assembled nanorods[J]. Materials Letters, 2015, 149(15):70-73.
[78] INAGAKI M, YING Y, KANG F. Carbon Nanofibers Prepared via Electrospinning[J]. Advanced Materials, 2012, 24(19):2547-2566.
[79] WANG HS, FU GD, LI XS. Functional Polymeric Nanofibers from Electrospinning[J]. Recent Patents on Nanotechnology, 2009, 3(1):21-31.
[80] WANG BB, WANG XD, WANG TH. Microscopic mechanism for the effect of adding salt on electrospinning by molecular dynamics simulations[J]. Applied Physics Letters, 2014, 105(12):121906.
[81] PAPKOV D, GOPONENKO A, COMPTON OC, et al. Improved Graphitic Structure of Continuous Carbon Nanofibers via Graphene Oxide Templating[J]. Advanced Functional Materials, 2013, 23(46):5763-5770.
[82] BOUROUROU M, HOLZINGER M, BOSSARD F, et al. Chemically reduced electrospun polyacrilonitrile-carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications[J]. Carbon An International Journal Sponsored by the American Carbon Society, 2015, 87:233-238.
[83] LIU S, YU B, LI F, et al. Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2[J]. Electrochimica Acta, 2014, 141:161-166.
[84] LEE DJ, LEE H, RYOU MH, et al. Electrospun Three-Dimensional Mesoporous Silicon Nanofibers as an Anode Material for High-Performance Lithium Secondary Batteries[J]. Acs Applied Materials & Interfaces, 2013, 5(22):12005-12010.
[85] TEO WE, INAI R, RAMAKRISHNA S. Technological advances in electrospinning of nanofibers[J]. Science & Technology of Advanced Materials, 2011, 12(1):013002.
[86] GU YX, CHEN DR, JIAO ML. Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries.[J]. Journal of Physical Chemistry B, 2005, 109(38):17901-6.
[87] GU YX, CHEN DR, JIAO X, et al. LiCoO2–MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties[J]. Journal of Materials Chemistry, 2007, 17(18):1769-1776.
[88] GU YX, FANG F, et al. Hollow LiNi0.8Co0.1Mn0.1O2MgO Coaxial Fibers: Sol-Gel Method Combined with Co-electrospun Preparation and Electrochemical Properties[J]. The Journal of Physical Chemistry C, 2008, 112(51):20176–20180.
[89] LU HW, YU L, ZENG W, et al. Fabrication and electrochemical properties of three-dimensional structure of LiCoO2 fibers[J]. Electrochemical and Solid-State Letters, 2008, 11(8):A140.
[90] KALLURI S, PANG WK, SENG KH, et al. One-dimensional nanostructured design of Li1+x(Mn1/3Ni1/3Fe1/3)O2 as a dual cathode for lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:250-257.
Edit Comment