中文版 | English
Title

基于有机场效应晶体管结构的红外光电探测器的研究

Alternative Title
INFRARED PHOTODETECTOR BASED ON ORGANIC FIELD EFFECT TRANSISTOR
Author
Name pinyin
LIU Yuyang
School number
12032295
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
王佳宏
Mentor unit
中科院深圳先进技术研究院
Publication Years
2022-05-12
Submission date
2022-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

具有近红外响应的探测器目前被广泛应用于红外成像、医学检测和自
动化等领域。故越来越多的新型材料被用于开发有机红外探测器,期望实
现良好的近红外探测。PbS 胶体量子点是一种带隙可调节的半导体材料,
在红外探测领域引起了极大的关注。但由于存在光生载流子的寿命短,传
输距离有限等问题。对此,不仅需要选用合适的有机材料来匹配 PbS 量子
点的能级,也需要设计合理的器件结构来提升有机探测器的性能。本论文
以 OFETs 为器件结构基础,构建了多种具有良好红外光探测的有机光敏
场效应晶体管。具体的研究内容如下: 
选用经典的 p 型有机半导体材料 P3HT 和最佳受体 PC61BM,制备了具
有近红外探测能力的光敏场效应晶体管。通过构建体异质结晶体管、设计
合适的场效应晶体管结构、优化器件制备工艺等方式探索器件的红外光响
应性能。制备了相应的体异质结三元探测器(PbS/P3HT:PC61BM)以及分
层光敏探测器(PbS/P3HT) 。所得器件对于白光有良好的光响应特性,探
测红外光波长的范围可至 1100 nm,且所探测的最弱光强可达 160 μW/cm2,
响应的光响应电流可达 10-8 A。 
更加深入的探索了基于有机材料 PDPPBTT 与 PbS 量子点耦合的场效
应短波红外探测晶体管。通过有机材料 PDPPBTT 提供高迁移率的电荷传输
路径,实现在短波红外光(1 -1.5 μm)照明时,从 PbS 量子点到有机半导
体材料的空穴注入过程。混合型光电探测器中的光响应速度(<60 ms)相
比于以 PbS 量子点作为晶体管沟道层固有的慢响应行为有着显著提高。混
合晶体管可以检测到 50 μW/cm2(1440 nm)的最弱红外光强,光电流可达
800 nA,实现了低检测线、高灵敏度的短波红外检测。为短波红外光谱中
提供高性能检测提供了新的解决方案,极大地优化了红外传感器的设计。 
 
 

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] WU Z, ZHAI Y, KIM H, et al. Emerging design and characterization guidelines for polymer-based infrared photodetectors[J]. Accounts of chemical research, 2018, 51(12): 3144-3153.

[2] YUAN H C, SHIN J, QIN G, et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes[J]. Applied physics letters, 2009, 94(1): 013102.

[3] DONG H, ZHU H, MENG Q, et al. Organic photoresponse materials and devices[J]. Chemical society reviews, 2012, 41(5): 1754-1808.

[4] GUO Y, YU G, LIU Y. Functional organic field‐effect transistors[J]. Advanced materials, 2010, 22(40): 4427-4447.

[5] YAO Y, LIANG Y, SHROTRIYA V, et al. Plastic near‐infrared photodetectors utilizing low band gap polymer[J]. Advanced materials, 2007, 19(22): 3979-3983.

[6] AZZELLINO G, GRIMOLDI A, BINDA M, et al. Fully inkjet ‐ printed organic photodetectors with high quantum yield[J]. Advanced materials, 2013, 25(47): 6829-6833.

[7] BUCHELE P, RICHTER M, TEDDE S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors[J]. Nature photonics, 2015, 9(12): 843-848.

[8] MANNA E, XIAO T, SHINAR J, et al. Organic photodetectors in analytical applications[J]. Electronics, 2015, 4(3): 688-722.

[9] MILLIRON D J, ALIVISATOS A P, PITOIS C, et al. Electroactive surfactant designed to mediate electron transfer between CdSe nanocrystals and organic semiconductors[J]. Advanced materials, 2003, 15(1): 58-61.

[10] GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

[11] HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging[J]. Nature biomedical engineering, 2017, 12(1): 218-230.

[12] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced materials, 2013, 25(31): 4267-4295.

[13] BRAGA D, HOROWITZ G. High‐performance organic field‐effect transistors[J]. Advanced materials, 2009, 21(14‐15): 1473-1486.

[14] ZHANG X H, DOMERCQ B, WANG X, et al. High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD)[J]. Organic electronics, 2007, 8(6): 718-726.

[15] 李东伟. 基于场效应晶体管结构的多功能有机光电器件研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018.

[16] JENA D, KONAR A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering[J]. Physical review letters, 2007, 98(13): 136805.

[17] ZAUMSEIL J, SIRRINGHAUS H. Electron and ambipolar transport in organic field-effect transistors[J]. Chemical reviews, 2007, 107(4): 1296-1323.

[18] ORTIZ-CONDE A, SANCHEZ F J G, LIOU J J, et al. A review of recent MOSFET threshold voltage extraction methods[J]. Microelectronics reliability, 2002, 42(4-5): 583-596.

[19] LONG M, WANG Y, WANG P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS nano, 2019, 13(2): 2511-2519.

[20] SIEGMUND B, MISCHOK A, BENDUHN J, et al. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption[J]. Nature communications, 2017, 8(1): 54-60.

[21] AMIRI M, ALIZADEH N. Highly photosensitive near infrared photodetector based on polypyrrole nanoparticle incorporated with CdS quantum dots[J]. Materials science in semiconductor processing, 2020, 111: 104964.

[22] LUO P, ZHUGE F, Wang F, et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm[J]. ACS nano, 2019, 13(8): 9028-9037.

[23] HADFIELD R H. Single-photon detectors for optical quantum information applications[J]. Nature photonics, 2009, 3(12): 696-705.

[24] GAO Y, YI Y, WANG X, et al. A Novel Hybrid‐Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection[J]. Advanced materials, 2019, 31(16): 1900763.

[25] DU L, LUO X, ZHAO F, et al. Toward facile broadband high photoresponse of fullerene based phototransistor from the ultraviolet to the near-infrared region[J]. Carbon, 2016, 96: 685-694.

[26] PENG Y, LV W, YAO B, et al. Improved performance of photosensitive field-effect transistors based on palladium phthalocyanine by utilizing Al as source and drain electrodes[J]. IEEE , 2013, 60(3): 1208-1212.

[27] ROGALSKI A, MARTYNIUK P, KOPYTKO M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied sciences, 2021, 11(2): 501.

[28] NAKOTTE T, LUO H, PIETRYGA J. PbE (E= S, Se) colloidal quantum dot-layered 2D material hybrid photodetectors[J]. Nanomaterials, 2020, 10(1): 172.

[29] GUPTA A, SAKTHIVEL T, Seal S. Recent development in 2D materials beyond graphene[J]. Progress in materials science, 2015, 73: 44-126.

[30] MARTYNIUK P, ANTOSZEWSKI J, MARTYNIUK M, et al. New concepts in infrared photodetector designs[J]. Applied physics reviews, 2014, 1(4): 041102.

[31] LEDOUX I, BADAN J, ZYSS J, et al. Generation of high-peak-power tunable infrared femtosecond pulses in an organic crystal: application to time resolution of weak infrared signals[J]. Josab, 1987, 4(6): 987-997.

[32] HUANG S, PENG B,CHAN P K L. Ambipolar Organic Field‐Effect Transistors Based on a Dual‐Function, Ultrathin and Highly Crystalline 2, 9‐didecyldinaphtho

[2, 3-b: 2′, 3′-f] thieno

[3, 2-b] thiophene (C10-DNTT) Layer[J]. Advanced electronic materials, 2017, 3(12): 1700268.

[33] BRONSTEIN H, CHEN Z, ASHRAF R S, et al. Thieno

[3,2-b] thiophene − diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices[J]. Journal of the american chemical society, 2011, 133(10): 3272-3275.

[34] MURGATROYED P N. Theory of space-charge-limited current enhanced by Frenkel effect[J]. Journal of physics, 1970, 3(2): 151.

[35] ZAINI M S, YING CHYI LIEW J, AIANG AHMAD S A, et al. Quantum confinement effect and photoenhancement of photoluminescence of PbS and PbS/MnS quantum dots[J]. Applied sciences, 2020, 10(18): 6282.

[36] TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nature materials, 2011, 10(10): 765-771.

[37] 张可欣,李庚伟,杨少延,等. n-GaN 上 Au/Zr 和 Au/Ti 金属电极的界面反应和金属间互扩散行为对比研究[J].材料导报,2020(21): 127-141

[38] DENBAARS S P, FEEZELLD, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta materialia, 2013, 61(3): 945-951.

[39] JI D, LI T, LIU J, et al. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays[J]. Nature communications, 2019, 10(1): 78-86.

[40] GARCIA-BELMONTE G, BOIX PP, BISQUERT J, et al. Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy[J]. Solar energy materials and solar cells, 2010, 94(2): 366-375.

[41] WU Z, YAO W, LONDON A E, et al. Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes[J]. ACS applied materials & interfaces, 2017, 9(2): 1654-1660.

[42] ZIMMERMAN J D, DIEV V V, HANSON K, et al. Porphyrin‐Tape/C60 Organic Photodetectors with 6.5% External Quantum Efficiency in the Near Infrared[J]. Advanced materials, 2010, 22(25): 2780-2783.

[43] KUMAR M, BHATT V, ABHYANKR A C, et al. Multifunctional dumbbell-shaped ZnO based temperature-dependent UV photodetection and selective H2 gas detection[J]. International journal of hydrogen energy, 2020, 45(29): 15011-15025.

[44] KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection[J]. Nature nanotechnology, 2010, 5(6): 391-400.

[45] XIA F, MUELLER T, GOLIZADEH-MOJARAD R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano letters, 2009, 9(3): 1039-1044.

[46] DAS S, CHOI J Y, ALFORD T L. P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer[J]. Solar energy materials and solar cells, 2015, 133: 255-259.

[47] DANG M T, HIRSCH L, WANTZ G. P3HT:PCBM, best seller in polymer photovoltaic research[J]. 2011:3597-3602.

[48] SHAO S, LIU J, ZHANG J, et al. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly (3-hexylthiophene): fullerene derivative solar cells[J]. ACS applied materials & interfaces, 2012, 4(10): 5704-5710.

[49] LIAO M, WANG X, TERAJI T, et al. Light intensity dependence of photocurrent gain in single-crystal diamond detectors[J]. Physical review , 2010, 81(3): 033304.

[50] MARSH R A, HODGKISS J M, ALBERT-SEIFRIED S, et al. Effect of annealing on P3HT: PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy[J]. Nano letters, 2010, 10(3): 923-930.

[51] LEE J M, CHO I T, LEE J H, et al. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors[J]. Applied physics letters, 2008, 93(9): 093504.

[52] JEONG K S, TANG J, LIU H, et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics[J]. ACS nano, 2012, 6(1): 89-99.

[53] HWANG D K, LEE Y T, LEE H S, et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain[J]. NPG Asia materials, 2016, 8(1): e233-e233.

[54] CAO Y, STAVRINADIS A, LASANTA T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature energy, 2016, 1(4): 1-6.

[55] KOLEILAT G I, LEVINA L, SHUKLA H, et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots[J]. ACS nano, 2008, 2(5): 833-840.

[56] CHOI H T, KANG J H, AHN J, et al. Zero-dimensional PbS quantum dot–InGaZnO film heterostructure for short-wave infrared flat-panel imager[J]. ACS photonics, 2020, 7(8): 1932-1941.

[57] RAUCH T, BOBERLM, TEDDE S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature photonics, 2009, 3(6): 332-336.

[58] MINKEVICIUS L, TAMOSIUNAS V, KOJELIS M, et al. Influence of field effects on the performance of InGaAs-based terahertz radiation detectors[J]. Journal of infrared, millimeter, and terahertz waves, 2017, 38(6): 689-707.

[59] YU C, LI X, YANG B, et al. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays[J]. Infrared physics & technology, 2017, 85: 74-80.

[60] SARMAH S, DAS M, SARKAR D. Ageing mediated silicon suboxide interlayer growth in porous silicon: p-Si heterostructured metal-semiconductor-metal device for enhanced UV-visible photodetection[J]. Thin solid films, 2021, 738: 138962.

[61] KLEM E J D, GREGORY C, TEMPLE D, et al. PbS colloidal quantum dot photodiodes for low-cost SWIR sensing[C].International society for optics and photonics, 2015, 9451: 945104.

[62] ZENG W, SHU L, LI Q, et al. Fiber ‐ based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced materials, 2014, 26(31): 5310-5336.

[63] GAO Y, GE Y, WANG X, et al. Ultrathin and Ultrasensitive Direct X‐ray Detector Based on Heterojunction Phototransistors[J]. Advanced materials, 2021, 33(32): 2101717.

[64] CHOW P C Y, MATSUHISA N, ZALAR P, et al. Dual-gate organic phototransistor with high-gain and linear photoresponse[J]. Nature communications, 2018, 9(1): 45-54.

[65] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced materials, 2013, 25(31): 4267-4295.

[66] XING S, WANG H, KONG T, et al. Realization of performance enhancement in ternary polymer solar cells by broad absorption, efficient energy transfer, and balanced charge carrier mobility[J]. IEEE journal of photovoltaics, 2017, 7(4): 1058-1064.

[67] JASIENIAK J, CALFANO M, WATKINS S E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals[J]. ACS nano, 2011, 5(7): 5888-5902.

[68] TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nature materials, 2011, 10(10): 765-771.

[69] WANG Y, LIAO Q, SHE D, et al. Modulation of binary neuroplasticity in a heterojunction-based ambipolar transistor[J]. ACS applied materials & interfaces, 2020, 12(13): 15370-15379.

[70] SCHEELE M, HANIFI D, ZHEREBETSKYY D, et al. PbS nanoparticles capped with tetrathiafulvalenetetracarboxylate: utilizing energy level alignment for efficient carrier transport[J]. ACS nano, 2014, 8(3): 2532-2540.

[71] WU T, AHMADI M, HU B. Giant current amplification induced by ion migration in perovskite single crystal photodetectors[J]. Journal of materials chemistry , 2018, 6(30): 8042-8050.

[72] HU L, HUANG S, PATTERSON R, et al. Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications[J]. Journal of materials chemistry , 2019, 7(15): 4497-4502.

[73] DENG J, ZONG L, ZHU M, et al. MoS2/HfO2/Silicon ‐ On‐ Insulator Dual ‐Photogating Transistor with Ambipolar Photoresponsivity for High‐Resolution Light Wavelength Detection[J]. Advanced functional materials, 2019, 29(46): 1906242.

[74] XIE C, MAK C, TAO X, et al. Photodetectors based on two‐dimensional layered materials beyond graphene[J]. Advanced functional materials, 2017, 27(19): 1603886.

[75] CHEN Y, WU X, CHU Y, et al. Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure[J]. Nano-micro letters, 2018, 10(4): 57-66.

[76] NIE R, DENG X, FENG L, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias[J]. Small, 2017, 13(24): 1603260.

[77] HAN J, LUO S, YIN X, et al. Hybrid PbS Quantum‐Dot‐in‐Perovskite for High‐Efficiency Perovskite Solar Cell[J]. Small, 2018, 14(31): 1801016.

[78] WANG Y, CHEN C, ZOU T, et al. Spin‐On‐Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Active ‐Matrix Near‐Infrared Imaging[J]. Advanced materials technologies, 2020, 5(1): 1900752.

 

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TM914.4
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343162
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
刘宇阳. 基于有机场效应晶体管结构的红外光电探测器的研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032295-刘宇阳-中国科学院深圳(3884KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘宇阳]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘宇阳]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘宇阳]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.