中文版 | English
Title

基于SBS嵌段共聚物的电磁屏蔽复合材料制备与性能研究

Alternative Title
PREPARATION AND PROPERTIES OF EMISHIELDING COMPOSITES BASED ON SBS BLOCK COPOLYMER
Author
Name pinyin
ZHAO Zeyu
School number
12032277
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
胡友根
Mentor unit
中国科学院深圳先进技术研究院
Publication Years
2022-05-10
Submission date
2022-06-30
University
南方科技大学
Place of Publication
深圳
Abstract

自十九世纪以来,基于法拉第、麦克斯韦、赫兹等众多科学家对电磁学的不断研究,电磁波开始在人类社会中占据愈加重要的地位,并被广泛运用于通讯、探测、医疗等诸多领域,随之而来的是越来越严重的电磁辐射污染问题。其中,高频率、大功率的电磁辐射会干扰电子设备的正常运行,也会对人的身体健康产生潜在影响,而对电磁波进行衰减和屏蔽可以有效减少其危害,因此,作为解决这一系列问题最为有效手段的电磁屏蔽材料应运而生。尤其是随着新一代智能电子设备,如智能手机、平板电脑、可穿戴设备的快速发展,电子设备不断朝着小型化、轻质化、柔性化的方向迈进,聚合物基导电复合材料(Conductive Polymer CompositesCPCs)凭借其易加工、易调控、适用性广等优点,在电磁屏蔽领域得到了越来越多的关注与研究。

聚合物基导电复合材料按结构特征可主要分为填充复合型和表面导电型两种。填充复合型CPCs材料的导电填料相对均匀地分布在复合材料内部,这种复合材料的整体导电性较好,但往往需要较高的填料含量来构筑三维的导电网络;表面导电型CPCs材料往往通过溅射、喷涂、化学镀、电镀等手段实现在聚合物基体表面包覆金属涂层,能够在较低负载量下实现较高的导电和屏蔽性能,然而其聚合物基底与金属涂层间的结合力差,在形变时容易出现断裂和脱落等现象,限制了表面导电型CPCs在电磁屏蔽领域的应用。本论文的主要工作旨在增强聚合物基体与金属导电层的界面结合力,选用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)作为聚合物基体,利用SBS与银盐溶液的表界面浸润作用,实现金属银(Ag)涂层在聚合物界面的微嵌入,提升金属层与聚合物基体间的结合力,并系统研究了Ag/SBS复合薄膜的金属层结构、力学性能、导电性能及电磁屏蔽性能之间的关系。论文的主要研究内容如下:

1)将SBS薄膜浸润在银盐溶液中,通过原位还原法对SBS薄膜表面的银盐进行化学还原,从而实现SBS薄膜表面的银(Ag)金属化,制备了具有良好导电性的Ag/SBS电磁屏蔽复合薄膜材料,并探究了使复合薄膜获得良好导电及电磁屏蔽性能所需的最佳还原条件及还原次数。Ag/SBS复合薄膜表层的银纳米颗粒(AgNPs)能够实现在SBS表面的微嵌入,提升镀层与SBS的界面结合力。在经过3次还原后,复合薄膜的Ag负载量为37.5 wt%,电导率高达1.1×104 S/m,在X波段的电磁屏蔽效能(EMI SE)高达80.2 dB,且在50%的拉伸应变下仍具有20.4 dB的电磁屏蔽效能。

2)以SBS薄膜为基体,对预拉伸状态的SBS薄膜进行Ag金属化并松弛,获得了具有褶皱结构Ag导电层的Ag/SBS复合薄膜。预拉伸状态下的SBS薄膜比较面积提升,有效提升了还原效率,褶皱状结构的Ag导电层极大增强了复合薄膜的拉伸导电稳定性及电磁屏蔽效能稳定性。经过1次原位还原的100%预拉伸Ag/SBS薄膜具有1.5×104 S/m的高电导率,X波段下的EMI SE可达88.3 dB,特别是在100%的拉伸应变下EMI SE仍高达51.5 dB

3)以SBS为基体,引入具有高长径比的碳纳米纤维(CNF)作为导电填料,制备了具有良好拉伸导电稳定性的CNF/SBS复合薄膜,并对其进行Ag金属化,得到具有优异电磁屏蔽性能和良好拉伸导电稳定性的Ag/CNF/SBS复合薄膜。CNF的加入构建了连通上下Ag导电层的导电网络,增强了薄膜整体的导电性,CNF质量分数为15 wt%Ag/CNF/SBS复合薄膜的电导率达到了2.5×104 S/m,在X波段的EMI SE高达102.3 dB。同时,由于CNF高长径比的特性,可在拉伸时保证薄膜的电磁屏蔽性能,上述薄膜在100%拉伸应变下仍具有33.4 dB的电磁屏蔽效能。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] Tian D, Xu Y, Wang Y, et al. In-situ metallized carbon nanotubes/poly(styrene-butadiene-styrene) (CNTs/SBS) foam for electromagnetic interference shielding [J]. Chemical Engineering Journal, 2021, 420: 130482.
[2] Wei J, Lin Z, Lei Z, et al. Lightweight and Highly Compressible Expandable Polymer Microsphere/Silver Nanowire Composites for Wideband Electromagnetic Interference Shielding [J]. ACS Appl Mater Interfaces, 2022, 14(4): 5940-50.
[3] Pawar S P, Marathe D A, Pattabhi K, et al. Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends [J]. Journal of Materials Chemistry A, 2015, 3(2): 656-69.
[4] Yang W, Zhao Z, Wu K, et al. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2017, 5(15): 3748-56.
[5] Zeng Z, Wang C, Zhang Y, et al. Ultralight and Highly Elastic Graphene/Lignin-Derived Carbon Nanocomposite Aerogels with Ultrahigh Electromagnetic Interference Shielding Performance [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8205-13.
[6] Braune S, Riedel A, Schulte-Mönting J, et al. Influence of a Radiofrequency Electromagnetic Field on Cardiovascular and Hormonal Parameters of the Autonomic Nervous System in Healthy Individuals [J]. Radiation Research, 2002, 158(3): 352-6.
[7] Baan R, Grosse Y, Lauby-Secretan B, et al. Carcinogenicity of radiofrequency electromagnetic fields [J]. The Lancet Oncology, 2011, 12(7): 624-6.
[8] Wan Y J, Zhu P L, Yu S H, et al. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding [J]. Small, 2018, 14(27): e1800534.
[9] Zeng Z, Wu T, Han D, et al. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding [J]. ACS Nano, 2020, 14(3): 2927-38.
[10] Lin S, Liu J, Wang Q, et al. Highly Robust, Flexible, and Large-Scale 3D-Metallized Sponge for High-Performance Electromagnetic Interference Shielding [J]. Advanced Materials Technologies, 2020, 5(2): 1900761.
[11] Zeng Z, Wang C, Wu T, et al. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2020, 8(35): 17969-79.
[12] Duan H, Zhu H, Gao J, et al. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics [J]. Journal of Materials Chemistry A, 2020, 8(18): 9146-59.
[13] Kar G P, Biswas S, Rohini R, et al. Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2015, 3(15): 7974-85.
[14] Zeng Z, Jin H, Chen M, et al. Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites [J]. Small, 2017, 13(34): 1701388.
[15] Li M, Han F, Jiang S, et al. Lightweight Cellulose Nanofibril/Reduced Graphene Oxide Aerogels with Unidirectional Pores for Efficient Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces, 2021, 8(24): 2101437.
[16] Jin K, Xing J, Liu X, et al. Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties [J]. Journal of Materials Chemistry A, 2021, 9(47): 26999-7009.
[17] Sang G, Xu P, Yan T, et al. Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 13(1): 153.
[18] Song P, Ma Z, Qiu H, et al. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures [J]. Nanomicro Lett, 2022, 14(1): 51.
[19] Shen Y, Lin Z, Wei J, et al. Facile synthesis of ultra-lightweight silver/reduced graphene oxide (rGO) coated carbonized-melamine foams with high electromagnetic interference shielding effectiveness and high absorption coefficient [J]. Carbon, 2022, 186: 9-18.
[20] Liao S-Y, Wang X-Y, Li X-M, et al. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding [J]. Chemical Engineering Journal, 2021, 422: 129962.
[21] Lei Z, Tian D, Liu X, et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity [J]. Chemical Engineering Journal, 2021, 424: 130365.
[22] Xu Y, Lin Z, Yang Y, et al. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design [J]. Mater Horiz, 2022, 9(2): 708-19.
[23] Xu Y, Lin Z, Rajavel K, et al. Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 14(1): 29.
[24] Wang X Y, Liao S Y, Wan Y J, et al. Near-field and far-field EMI shielding response of lightweight and flexible MXene-decorated polyester textiles [J]. Materials Today Physics, 2022, 23: 100644.
[25] Wang X-Y, Liao S-Y, Wan Y-J, et al. Electromagnetic interference shielding materials: recent progress, structure design, and future perspective [J]. Journal of Materials Chemistry C, 2022, 10(1): 44-72.
[26] Wanasinghe D, Aslani F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes [J]. Composites Part B: Engineering, 2019, 176: 107207.
[27] Ma X, Zhang Q, Luo Z, et al. A novel structure of Ferro-Aluminum based sandwich composite for magnetic and electromagnetic interference shielding [J]. Materials & Design, 2016, 89: 71-7.
[28] Hung F-S, Hung F-Y, Chiang C-M. Crystallization and annealing effects of sputtered tin alloy films on electromagnetic interference shielding [J]. Applied Surface Science, 2011, 257(8): 3733-8.
[29] Hung F-s, Hung F-y, Chiang C-m, et al. Annealing effects of Sn-Al and Sn-Cu nano thin films on mechanism of electromagnetic interference shielding [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 2020-5.
[30] Choi H K, Lee A, Park M, et al. Hierarchical Porous Film with Layer-by-Layer Assembly of 2D Copper Nanosheets for Ultimate Electromagnetic Interference Shielding [J]. ACS Nano, 2021, 15(1): 829-39.
[31] Kumar R, Sahoo S, Joanni E, et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding [J]. Carbon, 2021, 177: 304-31.
[32] Liu H, Wu S, You C, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding [J]. Carbon, 2021, 172: 569-96.
[33] Wu N, Hu Q, Wei R, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects [J]. Carbon, 2021, 176: 88-105.
[34] Li Y-M, Deng C, Zhao Z-Y, et al. Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance [J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105769.
[35] Guan H, Chung D D L. Effect of the planar coil and linear arrangements of continuous carbon fiber tow on the electromagnetic interference shielding effectiveness, with comparison of carbon fibers with and without nickel coating [J]. Carbon, 2019, 152: 898-908.
[36] Wang R, Yang H, Wang J, et al. The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber [J]. Polymer Testing, 2014, 38: 53-6.
[37] Kumar R, Dhakate S R, Gupta T, et al. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes [J]. Journal of Materials Chemistry A, 2013, 1(18): 5727-35.
[38] Yu Y, Chao Z, Gong Q, et al. Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions [J]. Materials & Design, 2021, 206: 109783.
[39] Choudhary H K, Kumar R, Pawar S P, et al. Effect of morphology and role of conductivity of embedded metallic nanoparticles on electromagnetic interference shielding of PVDF-carbonaceous-nanofiller composites [J]. Carbon, 2020, 164: 357-68.
[40] Ji K, Zhao H, Zhang J, et al. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs [J]. Applied Surface Science, 2014, 311: 351-6.
[41] Mei H, Zhao X, Xia J, et al. Compacting CNT sponge to achieve larger electromagnetic interference shielding performance [J]. Materials & Design, 2018, 144: 323-30.
[42] Wen B, Cao M, Lu M, et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures [J]. Adv Mater, 2014, 26(21): 3484-9.
[43] Lee S, Jo I, Kang S, et al. Smart Contact Lenses with Graphene Coating for Electromagnetic Interference Shielding and Dehydration Protection [J]. ACS Nano, 2017, 11(6): 5318-24.
[44] Zhou T, Xu C, Liu H, et al. Second Time-Scale Synthesis of High-Quality Graphite Films by Quenching for Effective Electromagnetic Interference Shielding [J]. ACS Nano, 2020, 14(3): 3121-8.
[45] Wei Q, Pei S, Qian X, et al. Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film [J]. Adv Mater, 2020, 32(14): e1907411.
[46] Xu J, Li R, Ji S, et al. Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications [J]. ACS Nano, 2021, 15(5): 8907-18.
[47] Moglie F, Micheli D, Laurenzi S, et al. Electromagnetic shielding performance of carbon foams [J]. Carbon, 2012, 50(5): 1972-80.
[48] Kim J T, Park C W, Kim B-J. A study on synergetic EMI shielding behaviors of Ni-Co alloy-coated carbon fibers-reinforced composites [J]. Synthetic Metals, 2017, 223: 212-7.
[49] Lalan V, Ganesanpotti S. Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites [J]. Journal of Electronic Materials, 2019, 49(3): 1666-76.
[50] Song Q, Ye F, Yin X, et al. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding [J]. Adv Mater, 2017, 29(31): 1701583.
[51] Shen B, Li Y, Yi D, et al. Microcellular graphene foam for improved broadband electromagnetic interference shielding [J]. Carbon, 2016, 102: 154-60.
[52] Wan Y J, Wang X Y, Li X M, et al. Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness [J]. ACS Nano, 2020, 14(10): 14134-45.
[53] Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review [J]. Polymer Reviews, 2019, 59(2): 280-337.
[54] Wang Y, Jing X. Intrinsically conducting polymers for electromagnetic interference shielding [J]. Polymers for Advanced Technologies, 2005, 16(4): 344-51.
[55] Sarkar B, Li X, Quenneville E, et al. Lightweight and flexible conducting polymer sponges and hydrogels for electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2021, 9(46): 16558-65.
[56] Wang J, Li Q, Li K, et al. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding [J]. Adv Mater, 2022, 34(12): e2109904.
[57] Zou L, Lan C, Zhang S, et al. Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 13(1): 190.
[58] Al-Saleh M H, Gelves G A, Sundararaj U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(1): 92-7.
[59] Zeng Z, Chen M, Pei Y, et al. Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding [J]. ACS Appl Mater Interfaces, 2017, 9(37): 32211-9.
[60] Zhou Q, Lyu J, Wang G, et al. Mechanically Strong and Multifunctional Hybrid Hydrogels with Ultrahigh Electrical Conductivity [J]. Advanced Functional Materials, 2021, 31(40): 2104536.
[61] Barani Z, Kargar F, Ghafouri Y, et al. Electrically Insulating Flexible Films with Quasi‐1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub‐THz Frequency Bands [J]. Advanced Materials, 2021, 33(11): 2007286.
[62] Zhu R, Li Z, Deng G, et al. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding [J]. Nano Energy, 2022, 92: 106700.
[63] Yan D-X, Pang H, Li B, et al. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding [J]. Advanced Functional Materials, 2015, 25(4): 559-66.
[64] Yousefi N, Sun X, Lin X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding [J]. Adv Mater, 2014, 26(31): 5480-7.
[65] Huang H-D, Liu C-Y, Zhou D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2015, 3(9): 4983-91.
[66] Zeng Z, Jin H, Chen M, et al. Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding [J]. Advanced Functional Materials, 2016, 26(2): 303-10.
[67] Liu J, Zhang H B, Sun R, et al. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding [J]. Adv Mater, 2017, 29(38): 1702367.
[68] Liu J, McKeon L, Garcia J, et al. Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding [J]. Adv Mater, 2022, 34(5): e2106253.
[69] Feng X, Ning J, Wang B, et al. Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene [J]. Nano Energy, 2020, 72: 104741.
[70] Zhou B, Zhang Z, Li Y, et al. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers [J]. ACS Appl Mater Interfaces, 2020, 12(4): 4895-905.
[71] Wan Y-J, Rajavel K, Li X-M, et al. Electromagnetic interference shielding of Ti3C2T MXene modified by ionic liquid for high chemical stability and excellent mechanical strength [J]. Chemical Engineering Journal, 2021, 408.
[72] Kruželák J, Kvasničáková A, Hložeková K, et al. Progress in polymers and polymer composites used as efficient materials for EMI shielding [J]. Nanoscale Advances, 2021, 3(1): 123-72.
[73] Liang C, Gu Z, Zhang Y, et al. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review [J]. Nanomicro Lett, 2021, 13(1): 181.
[74] Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects [J]. Synthetic Metals, 2021, 272: 116664.
[75] Guo H, Chen Y, Li Y, et al. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review [J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106309.
[76] Cheng J, Li C, Xiong Y, et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials [J]. Nanomicro Lett, 2022, 14(1): 80.
[77] Kumar P, Narayan Maiti U, Sikdar A, et al. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects [J]. Polymer Reviews, 2019, 59(4): 687-738.
[78] Wu L, Wang L, Guo Z, et al. Durable and Multifunctional Superhydrophobic Coatings with Excellent Joule Heating and Electromagnetic Interference Shielding Performance for Flexible Sensing Electronics [J]. ACS Appl Mater Interfaces, 2019, 11(37): 34338-47.
[79] Wang J, Zhu X, Xiong P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2022, 10(2): 960-8.
[80] Chen Z, Xu C, Ma C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding [J]. Adv Mater, 2013, 25(9): 1296-300.
[81] Chen Y, Zhang H-B, Yang Y, et al. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding [J]. Advanced Functional Materials, 2016, 26(3): 447-55.
[82] Wang T, Kong W W, Yu W C, et al. A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 13(1): 162.
[83] Huang F-W, Yang Q-C, Jia L-C, et al. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding [J]. Chemical Engineering Journal, 2021, 426: 131288.
[84] Yao B, Hong W, Chen T, et al. Highly Stretchable Polymer Composite with Strain-Enhanced Electromagnetic Interference Shielding Effectiveness [J]. Adv Mater, 2020, 32(14): e1907499.
[85] Li S, Wang J, Zhu Z, et al. CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2021, 9(1): 358-70.
[86] Liang S, Li Y, Yang J, et al. 3D Stretchable, Compressible, and Highly Conductive Metal-Coated Polydimethylsiloxane Sponges [J]. Advanced Materials Technologies, 2016, 1(7): 1600117.
[87] Wang L, Shi X, Zhang J, et al. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance [J]. Journal of Materials Science & Technology, 2020, 52: 119-26.
[88] Zhai W, Wang C, Wang S, et al. Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring [J]. Journal of Materials Chemistry A, 2021, 9(11): 7238-47.
[89] Zeng Z H, Wu N, Wei J J, et al. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2022, 14(1): 59.
[90] Zeng Z, Jiang F, Yue Y, et al. Flexible and Ultrathin Waterproof Cellular Membranes Based on High-Conjunction Metal-Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding [J]. Adv Mater, 2020, 32(19): e1908496.
[91] Xue B, Li Y, Cheng Z, et al. Directional Electromagnetic Interference Shielding Based on Step-Wise Asymmetric Conductive Networks [J]. Nanomicro Lett, 2021, 14(1): 16.
[92] Li J, Luo K-C, Zhang J-L, et al. Flexible and Water-proof nylon mesh with ultralow silver content for effective electromagnetic interference shielding effectiveness [J]. Chemical Engineering Journal, 2022, 439: 135662.
[93] Liao S Y, Li G, Wang X Y, et al. Metallized Skeleton of Polymer Foam Based on Metal-Organic Decomposition for High-Performance EMI Shielding [J]. ACS Appl Mater Interfaces, 2022, 14(2): 3302-14.
[94] Lan C, Guo M, Li C, et al. Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding [J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7477-85.
[95] Wang L, Luo J, Chen Y, et al. Fluorine-free Superhydrophobic and Conductive Rubber Composite with Outstanding Deicing Performance for Highly Sensitive and Stretchable Strain Sensors [J]. ACS Appl Mater Interfaces, 2019, 11(19): 17774-83.
[96] Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics [J]. Adv Mater, 2015, 27(15): 2433-9.
[97] Wang L, Wang H, Huang X-W, et al. Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property [J]. Journal of Materials Chemistry A, 2018, 6(47): 24523-33.
[98] Park M, Im J, Shin M, et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres [J]. Nat Nanotechnol, 2012, 7(12): 803-9.
[99] Zhao S, Guo L, Li J, et al. Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond [J]. Small, 2017, 13(28): 1700944.
[100] 许亚东. 聚合物电磁屏蔽复合材料的结构设计与性能研究 [D]; 中北大学, 2019.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TB333
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343165
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
赵泽宇. 基于SBS嵌段共聚物的电磁屏蔽复合材料制备与性能研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032277-赵泽宇-中国科学院深圳(9526KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[赵泽宇]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[赵泽宇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[赵泽宇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.