[1] Tian D, Xu Y, Wang Y, et al. In-situ metallized carbon nanotubes/poly(styrene-butadiene-styrene) (CNTs/SBS) foam for electromagnetic interference shielding [J]. Chemical Engineering Journal, 2021, 420: 130482.
[2] Wei J, Lin Z, Lei Z, et al. Lightweight and Highly Compressible Expandable Polymer Microsphere/Silver Nanowire Composites for Wideband Electromagnetic Interference Shielding [J]. ACS Appl Mater Interfaces, 2022, 14(4): 5940-50.
[3] Pawar S P, Marathe D A, Pattabhi K, et al. Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends [J]. Journal of Materials Chemistry A, 2015, 3(2): 656-69.
[4] Yang W, Zhao Z, Wu K, et al. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2017, 5(15): 3748-56.
[5] Zeng Z, Wang C, Zhang Y, et al. Ultralight and Highly Elastic Graphene/Lignin-Derived Carbon Nanocomposite Aerogels with Ultrahigh Electromagnetic Interference Shielding Performance [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8205-13.
[6] Braune S, Riedel A, Schulte-Mönting J, et al. Influence of a Radiofrequency Electromagnetic Field on Cardiovascular and Hormonal Parameters of the Autonomic Nervous System in Healthy Individuals [J]. Radiation Research, 2002, 158(3): 352-6.
[7] Baan R, Grosse Y, Lauby-Secretan B, et al. Carcinogenicity of radiofrequency electromagnetic fields [J]. The Lancet Oncology, 2011, 12(7): 624-6.
[8] Wan Y J, Zhu P L, Yu S H, et al. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding [J]. Small, 2018, 14(27): e1800534.
[9] Zeng Z, Wu T, Han D, et al. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding [J]. ACS Nano, 2020, 14(3): 2927-38.
[10] Lin S, Liu J, Wang Q, et al. Highly Robust, Flexible, and Large-Scale 3D-Metallized Sponge for High-Performance Electromagnetic Interference Shielding [J]. Advanced Materials Technologies, 2020, 5(2): 1900761.
[11] Zeng Z, Wang C, Wu T, et al. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2020, 8(35): 17969-79.
[12] Duan H, Zhu H, Gao J, et al. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics [J]. Journal of Materials Chemistry A, 2020, 8(18): 9146-59.
[13] Kar G P, Biswas S, Rohini R, et al. Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2015, 3(15): 7974-85.
[14] Zeng Z, Jin H, Chen M, et al. Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites [J]. Small, 2017, 13(34): 1701388.
[15] Li M, Han F, Jiang S, et al. Lightweight Cellulose Nanofibril/Reduced Graphene Oxide Aerogels with Unidirectional Pores for Efficient Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces, 2021, 8(24): 2101437.
[16] Jin K, Xing J, Liu X, et al. Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties [J]. Journal of Materials Chemistry A, 2021, 9(47): 26999-7009.
[17] Sang G, Xu P, Yan T, et al. Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 13(1): 153.
[18] Song P, Ma Z, Qiu H, et al. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures [J]. Nanomicro Lett, 2022, 14(1): 51.
[19] Shen Y, Lin Z, Wei J, et al. Facile synthesis of ultra-lightweight silver/reduced graphene oxide (rGO) coated carbonized-melamine foams with high electromagnetic interference shielding effectiveness and high absorption coefficient [J]. Carbon, 2022, 186: 9-18.
[20] Liao S-Y, Wang X-Y, Li X-M, et al. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding [J]. Chemical Engineering Journal, 2021, 422: 129962.
[21] Lei Z, Tian D, Liu X, et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity [J]. Chemical Engineering Journal, 2021, 424: 130365.
[22] Xu Y, Lin Z, Yang Y, et al. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design [J]. Mater Horiz, 2022, 9(2): 708-19.
[23] Xu Y, Lin Z, Rajavel K, et al. Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 14(1): 29.
[24] Wang X Y, Liao S Y, Wan Y J, et al. Near-field and far-field EMI shielding response of lightweight and flexible MXene-decorated polyester textiles [J]. Materials Today Physics, 2022, 23: 100644.
[25] Wang X-Y, Liao S-Y, Wan Y-J, et al. Electromagnetic interference shielding materials: recent progress, structure design, and future perspective [J]. Journal of Materials Chemistry C, 2022, 10(1): 44-72.
[26] Wanasinghe D, Aslani F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes [J]. Composites Part B: Engineering, 2019, 176: 107207.
[27] Ma X, Zhang Q, Luo Z, et al. A novel structure of Ferro-Aluminum based sandwich composite for magnetic and electromagnetic interference shielding [J]. Materials & Design, 2016, 89: 71-7.
[28] Hung F-S, Hung F-Y, Chiang C-M. Crystallization and annealing effects of sputtered tin alloy films on electromagnetic interference shielding [J]. Applied Surface Science, 2011, 257(8): 3733-8.
[29] Hung F-s, Hung F-y, Chiang C-m, et al. Annealing effects of Sn-Al and Sn-Cu nano thin films on mechanism of electromagnetic interference shielding [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 2020-5.
[30] Choi H K, Lee A, Park M, et al. Hierarchical Porous Film with Layer-by-Layer Assembly of 2D Copper Nanosheets for Ultimate Electromagnetic Interference Shielding [J]. ACS Nano, 2021, 15(1): 829-39.
[31] Kumar R, Sahoo S, Joanni E, et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding [J]. Carbon, 2021, 177: 304-31.
[32] Liu H, Wu S, You C, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding [J]. Carbon, 2021, 172: 569-96.
[33] Wu N, Hu Q, Wei R, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects [J]. Carbon, 2021, 176: 88-105.
[34] Li Y-M, Deng C, Zhao Z-Y, et al. Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance [J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105769.
[35] Guan H, Chung D D L. Effect of the planar coil and linear arrangements of continuous carbon fiber tow on the electromagnetic interference shielding effectiveness, with comparison of carbon fibers with and without nickel coating [J]. Carbon, 2019, 152: 898-908.
[36] Wang R, Yang H, Wang J, et al. The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber [J]. Polymer Testing, 2014, 38: 53-6.
[37] Kumar R, Dhakate S R, Gupta T, et al. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes [J]. Journal of Materials Chemistry A, 2013, 1(18): 5727-35.
[38] Yu Y, Chao Z, Gong Q, et al. Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions [J]. Materials & Design, 2021, 206: 109783.
[39] Choudhary H K, Kumar R, Pawar S P, et al. Effect of morphology and role of conductivity of embedded metallic nanoparticles on electromagnetic interference shielding of PVDF-carbonaceous-nanofiller composites [J]. Carbon, 2020, 164: 357-68.
[40] Ji K, Zhao H, Zhang J, et al. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs [J]. Applied Surface Science, 2014, 311: 351-6.
[41] Mei H, Zhao X, Xia J, et al. Compacting CNT sponge to achieve larger electromagnetic interference shielding performance [J]. Materials & Design, 2018, 144: 323-30.
[42] Wen B, Cao M, Lu M, et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures [J]. Adv Mater, 2014, 26(21): 3484-9.
[43] Lee S, Jo I, Kang S, et al. Smart Contact Lenses with Graphene Coating for Electromagnetic Interference Shielding and Dehydration Protection [J]. ACS Nano, 2017, 11(6): 5318-24.
[44] Zhou T, Xu C, Liu H, et al. Second Time-Scale Synthesis of High-Quality Graphite Films by Quenching for Effective Electromagnetic Interference Shielding [J]. ACS Nano, 2020, 14(3): 3121-8.
[45] Wei Q, Pei S, Qian X, et al. Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film [J]. Adv Mater, 2020, 32(14): e1907411.
[46] Xu J, Li R, Ji S, et al. Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications [J]. ACS Nano, 2021, 15(5): 8907-18.
[47] Moglie F, Micheli D, Laurenzi S, et al. Electromagnetic shielding performance of carbon foams [J]. Carbon, 2012, 50(5): 1972-80.
[48] Kim J T, Park C W, Kim B-J. A study on synergetic EMI shielding behaviors of Ni-Co alloy-coated carbon fibers-reinforced composites [J]. Synthetic Metals, 2017, 223: 212-7.
[49] Lalan V, Ganesanpotti S. Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites [J]. Journal of Electronic Materials, 2019, 49(3): 1666-76.
[50] Song Q, Ye F, Yin X, et al. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding [J]. Adv Mater, 2017, 29(31): 1701583.
[51] Shen B, Li Y, Yi D, et al. Microcellular graphene foam for improved broadband electromagnetic interference shielding [J]. Carbon, 2016, 102: 154-60.
[52] Wan Y J, Wang X Y, Li X M, et al. Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness [J]. ACS Nano, 2020, 14(10): 14134-45.
[53] Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review [J]. Polymer Reviews, 2019, 59(2): 280-337.
[54] Wang Y, Jing X. Intrinsically conducting polymers for electromagnetic interference shielding [J]. Polymers for Advanced Technologies, 2005, 16(4): 344-51.
[55] Sarkar B, Li X, Quenneville E, et al. Lightweight and flexible conducting polymer sponges and hydrogels for electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2021, 9(46): 16558-65.
[56] Wang J, Li Q, Li K, et al. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding [J]. Adv Mater, 2022, 34(12): e2109904.
[57] Zou L, Lan C, Zhang S, et al. Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 13(1): 190.
[58] Al-Saleh M H, Gelves G A, Sundararaj U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(1): 92-7.
[59] Zeng Z, Chen M, Pei Y, et al. Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding [J]. ACS Appl Mater Interfaces, 2017, 9(37): 32211-9.
[60] Zhou Q, Lyu J, Wang G, et al. Mechanically Strong and Multifunctional Hybrid Hydrogels with Ultrahigh Electrical Conductivity [J]. Advanced Functional Materials, 2021, 31(40): 2104536.
[61] Barani Z, Kargar F, Ghafouri Y, et al. Electrically Insulating Flexible Films with Quasi‐1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub‐THz Frequency Bands [J]. Advanced Materials, 2021, 33(11): 2007286.
[62] Zhu R, Li Z, Deng G, et al. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding [J]. Nano Energy, 2022, 92: 106700.
[63] Yan D-X, Pang H, Li B, et al. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding [J]. Advanced Functional Materials, 2015, 25(4): 559-66.
[64] Yousefi N, Sun X, Lin X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding [J]. Adv Mater, 2014, 26(31): 5480-7.
[65] Huang H-D, Liu C-Y, Zhou D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2015, 3(9): 4983-91.
[66] Zeng Z, Jin H, Chen M, et al. Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding [J]. Advanced Functional Materials, 2016, 26(2): 303-10.
[67] Liu J, Zhang H B, Sun R, et al. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding [J]. Adv Mater, 2017, 29(38): 1702367.
[68] Liu J, McKeon L, Garcia J, et al. Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding [J]. Adv Mater, 2022, 34(5): e2106253.
[69] Feng X, Ning J, Wang B, et al. Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene [J]. Nano Energy, 2020, 72: 104741.
[70] Zhou B, Zhang Z, Li Y, et al. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers [J]. ACS Appl Mater Interfaces, 2020, 12(4): 4895-905.
[71] Wan Y-J, Rajavel K, Li X-M, et al. Electromagnetic interference shielding of Ti3C2T MXene modified by ionic liquid for high chemical stability and excellent mechanical strength [J]. Chemical Engineering Journal, 2021, 408.
[72] Kruželák J, Kvasničáková A, Hložeková K, et al. Progress in polymers and polymer composites used as efficient materials for EMI shielding [J]. Nanoscale Advances, 2021, 3(1): 123-72.
[73] Liang C, Gu Z, Zhang Y, et al. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review [J]. Nanomicro Lett, 2021, 13(1): 181.
[74] Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects [J]. Synthetic Metals, 2021, 272: 116664.
[75] Guo H, Chen Y, Li Y, et al. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review [J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106309.
[76] Cheng J, Li C, Xiong Y, et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials [J]. Nanomicro Lett, 2022, 14(1): 80.
[77] Kumar P, Narayan Maiti U, Sikdar A, et al. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects [J]. Polymer Reviews, 2019, 59(4): 687-738.
[78] Wu L, Wang L, Guo Z, et al. Durable and Multifunctional Superhydrophobic Coatings with Excellent Joule Heating and Electromagnetic Interference Shielding Performance for Flexible Sensing Electronics [J]. ACS Appl Mater Interfaces, 2019, 11(37): 34338-47.
[79] Wang J, Zhu X, Xiong P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2022, 10(2): 960-8.
[80] Chen Z, Xu C, Ma C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding [J]. Adv Mater, 2013, 25(9): 1296-300.
[81] Chen Y, Zhang H-B, Yang Y, et al. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding [J]. Advanced Functional Materials, 2016, 26(3): 447-55.
[82] Wang T, Kong W W, Yu W C, et al. A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2021, 13(1): 162.
[83] Huang F-W, Yang Q-C, Jia L-C, et al. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding [J]. Chemical Engineering Journal, 2021, 426: 131288.
[84] Yao B, Hong W, Chen T, et al. Highly Stretchable Polymer Composite with Strain-Enhanced Electromagnetic Interference Shielding Effectiveness [J]. Adv Mater, 2020, 32(14): e1907499.
[85] Li S, Wang J, Zhu Z, et al. CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2021, 9(1): 358-70.
[86] Liang S, Li Y, Yang J, et al. 3D Stretchable, Compressible, and Highly Conductive Metal-Coated Polydimethylsiloxane Sponges [J]. Advanced Materials Technologies, 2016, 1(7): 1600117.
[87] Wang L, Shi X, Zhang J, et al. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance [J]. Journal of Materials Science & Technology, 2020, 52: 119-26.
[88] Zhai W, Wang C, Wang S, et al. Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring [J]. Journal of Materials Chemistry A, 2021, 9(11): 7238-47.
[89] Zeng Z H, Wu N, Wei J J, et al. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding [J]. Nanomicro Lett, 2022, 14(1): 59.
[90] Zeng Z, Jiang F, Yue Y, et al. Flexible and Ultrathin Waterproof Cellular Membranes Based on High-Conjunction Metal-Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding [J]. Adv Mater, 2020, 32(19): e1908496.
[91] Xue B, Li Y, Cheng Z, et al. Directional Electromagnetic Interference Shielding Based on Step-Wise Asymmetric Conductive Networks [J]. Nanomicro Lett, 2021, 14(1): 16.
[92] Li J, Luo K-C, Zhang J-L, et al. Flexible and Water-proof nylon mesh with ultralow silver content for effective electromagnetic interference shielding effectiveness [J]. Chemical Engineering Journal, 2022, 439: 135662.
[93] Liao S Y, Li G, Wang X Y, et al. Metallized Skeleton of Polymer Foam Based on Metal-Organic Decomposition for High-Performance EMI Shielding [J]. ACS Appl Mater Interfaces, 2022, 14(2): 3302-14.
[94] Lan C, Guo M, Li C, et al. Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding [J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7477-85.
[95] Wang L, Luo J, Chen Y, et al. Fluorine-free Superhydrophobic and Conductive Rubber Composite with Outstanding Deicing Performance for Highly Sensitive and Stretchable Strain Sensors [J]. ACS Appl Mater Interfaces, 2019, 11(19): 17774-83.
[96] Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics [J]. Adv Mater, 2015, 27(15): 2433-9.
[97] Wang L, Wang H, Huang X-W, et al. Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property [J]. Journal of Materials Chemistry A, 2018, 6(47): 24523-33.
[98] Park M, Im J, Shin M, et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres [J]. Nat Nanotechnol, 2012, 7(12): 803-9.
[99] Zhao S, Guo L, Li J, et al. Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond [J]. Small, 2017, 13(28): 1700944.
[100] 许亚东. 聚合物电磁屏蔽复合材料的结构设计与性能研究 [D]; 中北大学, 2019.
Edit Comment