中文版 | English
Title

PCR用高热流密度高效热电制冷器件的研究

Alternative Title
STUDY ON HIGH HEAT FLUX AND HIGH EFFICIENCY THERMOELECTRIC REFRIGERATION DEVICE FOR PCR
Author
Name pinyin
ZHU Bangrui
School number
12032288
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
刘睿恒
Mentor unit
中国科学院深圳先进技术研究院
Publication Years
2022-05-12
Submission date
2022-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

  热电制冷器件是具有前景的热管理器件,被运用在各个温度管理的场景中。PCR技术是生物大分子DNA的检测技术,被广泛应用在医疗领域,在PCR反应中需要快速温度转变速率以及高的温度精准度,提出了对高热流密度以及高效率的热管理器件的需求。通过热电制冷器件的优化,能够得到PCR用的高性能热管理器件。

  热电制冷器件的最重要组成是其发挥功能的热电材料,碲化铋基热电材料被广泛应用与热电器件之中,是成熟的商用热电材料。本文在碲化铋制备工艺以及成分调控上作出了优化,提升了其热电性能。使用放电等离子球磨的新合成方法得到了稳定的Bi0.4Sb1.6Te3的物相,使用过量Te掺杂的液相烧结合成方法,提升了碲化铋功率因子,降低了晶格热导率,在450℃,50MPa热压烧结温度下,得到Bi0.4Sb1.6Te3.3样品室温下30℃左右的功率因子达到38.67μW·cm-1·K-2,最大ZT值为1.39。通过有限元仿真软件建立了热电器件的模型,对其进行了制冷量以及制冷效率进行了优化研究,对实际器件的测量中,器件热电臂高度0.6mm减小到0.4mm,器件最大热流密度提升了52.4%,与仿真相验证。在完成材料以及器件的优化基础上,本文根据PCR的温度控制需求,对热电制冷器件PCR工况下的适应性作出了仿真研究,通过增大工作面上基板厚度,改善导热性能,优化了温度分布均匀性,使用PID算法对器件工作进行控制实现了温度精准度以及快速温度转变速率的需求。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] WANG Y, YANG L, SHI X, et al. Flexible Thermoelectric Materials and Generators: Challenges and Innovations[J]. Advanced Materials, 2019, 31(29): 1807916.1-1807916.47.
[2] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105-114.
[3] 申利梅,陈焕新,汤魁,等.基于热电冷却的集成散热装置的性能优化分析[J].低温 工程,2011(01):35-39.
[4] YI Z, SHIXU Z, GONGPING LI. A review of radioisotope batteries[J]. Chinese Science Bulletin, 2017, 62(17):1831-1845.
[5] ZHU L, TAN H, YU J. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications [J]. Energy Conversion and Management: 2013, 76:685-690.
[6] SHEN L, CHEN H, XIAO F, et al. The practical performance forecast and analysis of thermoelectric module from macro to micro [J]. Energy Conversion and Management: 2015, 100:23-29.
[7] 张亚旭,刘紫烟.荧光 PCR 扩增相关技术[J].中国生物化学与分子生物学 报,2021,37(07):890-899.
[8] 高志威. PCR 温度控制系统[D].西安:西安理工大学,2020.
[9] ROWE D M. Thermoelectrics Handbook[M]. The United States of Americal: CRC Press, 1995:10-90.
[10] ZHU TJ, LIU YT, Fu CG, et al. Compromise and Synergy in High-Efficiency Thermoelectric Materials[J]. Advanced Materials, 2017, 29(14):1605884.1- 1605884.26.
[11] TAN GJ, ZHAO LD, KANAATZIDIS M G. Rationally Designing High- Performance Bulk Thermoelectric Materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149.
[12] YING PJ, LIU XH, FU CG, et al. High Performance α-MgAgSb Thermoelectric Materials for Low Temperature Power Generation[J]. Chemistry of Materials, 2015, 27(3):909-913.
[13] LIU ZH, WANG YH, MAO J, et al. Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron-Phonon Coupling[J]. Advanced Energy Materials, 2016, 6(7):1502269.1-1502269.11.
[14] ZHAO HZH, SUI JH, TANG ZJ, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7:97-103.
[15] BOSCHKER J E, WANG R N, CALARCO, et al. GeTe: a simple compound blessed with a plethora of properties[J]. CrystEngComm, 2017, 19(36):5324-5335.
[16] LI J, ZHANG XY, CHEN ZW et al. Low-Symmetry Rhombohedral GeTe Thermoelectrics[J]. Joule, 2018, 2(5):976-987.
[17] LI J, ZHANG XY, LIN SQ, et a. Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying[J]. Chemistry of Materials, 2017, 29(2): 605- 611.
[18] HU X, JOOD P, OHTA M, et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules[J]. Energy & Environmental Science, 2016, 9(2):517-529.
[19] LALONDE A D, PEI Y, WANG H, et al. Lead telluride alloy thermoelectrics[J]. Materials Today, 2011, 14(11):526-532.
[20] NOLAS G S, SHARP J, GOLDSMID J. Thermoelectrics: basic principles and new materials developments [M]. Springer Science & Business Media, 2013.
[21] NAKAJIMA S. The crystal structure of Bi2Te3−xSex [J]. Journal of Physics and Chemistry of Solids: 1963, 24(3):479-485.
[22] LI X, CHEN Y, HAO F, et al. Research on bismuth telluride based thermoelectric semiconductor crystals [J]. Materials China:2007, 270-278.
[23] POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science, 2008, 320(5876):634-638.
[24] LAN Y, POUDEL B, MA Y, et al. Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride[J]. Nano Letters, 2009, 9(4):1419- 1422.
[25] KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for highperformance bulk thermoelectrics[J]. Science, 2015, 348(6230):109-113.
[26] PAN Y, AYDEMIR U, GROVOGUI J A, et al. Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency[J]. Advanced Materials, 2018, 30(34):1802016.1-1802016.7.
[27] ZHU B, ZHONG YH, XIAO YW, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulkn-type Bi2Te2.4Se0.6via its liquid state treatment[J]. Nano Energy, 2017, 42:8-16.
[28] ZHU B, ZHONG YH, XIAO YW, et al. Enhanced thermoelectric properties of n- type direction solidified Bi2Te2.7Se0.3 alloys by manipulating its liquid state[J]. Scripta Materialia, 2018, 146:192-195.
[29] ZHU B, LIU XX, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy & Environmental Science, 2020,7(13):2106-2114.
[30] ZHANG T, ZHANG QS, JIANG J, et al. Enhanced thermoelectric performance in p- type BiSbTe bulk alloy with nanoinclusion of ZnAlO[J]. Applied Physics Letters, 2011, 98(2):022104.1-022104.3.
[31] LI JH, TAN Q, LI JF, et al. BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties[J]. Advanced Functional Materials, 2013, 23(35):4317-4323.
[32] FARAH M, El M, HIRA K A, et al. Review: The effect of different nanofifiller materials on the thermoelectric behavior of bismuth telluride[J]. Materials & Design, 2021, 209:109974.1-109974.15.
[33] ZHANG Q, X Ai, WANG W, et al. Preparation of 1-d/3-d structured agnws/Bi2Te3 nanocomposites with enhanced thermoelectric properties[J]. Acta Materialia, 2014, 73:37-47.
[34] MADAVALI B, LEE C H, KIM H S, et al. Investigation of microstructure and thermoelectric properties of p-type BiSbTe /zno composites[J]. International Journal of Applied Ceramic Technology, 2017, 15(1):125-131.
[35] LI Y, ZHAO Q, WANG YG, et al. Synthesis and characterization of Bi2Te3/ polyaniline composites[J]. Materials Science in Semiconductor Processing, 2011, 14:219-222.
[36] KIM K T, CHOI S Y, SHIN E H, et al. The influence of cnts on the thermoelectric properties of a cnt/Bi2Te3 composite[J]. Carbon, 2013, 52:541-549.
[37] CHEN WY, SHI XL, ZOU J, et al. Thermoelectric Coolers: Progress, Challenges, and Opportunities[J]. Small Methods, 2022, 6(2):2101235.1-2101235.21.
[38] ZHENG Y, SHI XL, YUAN H, et al. A Synergy of Strain Loading and Laser Radiation in Determining the High-Performing Electrical Transports in the Single Cu-Doped SnSe Microbelt[J]. Materials Today Physics, 2020, 13:100198.1- 100198.9.
[39] DING J, ZHAO W, JIN W, et al. Advanced Thermoelectric Materials for Flexible Cooling Application[J]. Advanced Functional Materials, 2021, 31(20):2010695.
[40] ASWAL D K, BASU R, SINGH A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects[J]. Energy Conversion and Management, 2016, 114:50-67.
[41] KISHORE R A, NOZARIASBMARZ A, POUDEL B, et al. Ultra-high performance wearable thermoelectric coolers with less materials[J]. Nature Communications, 2019, 10:1765.1-1765.13.
[42] PAWEL Z, PRZEMYSLAW B, ECKHARD M. Validation of commercial Bi2Te3- based thermoelectric generator modules for application as metrological reference samples[J].Measurement, 2021, 177:109247.1-109247.13.
[43] YANG G, SANG L, MITCHELL D R G, et al. Enhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategy[J]. Chemical Engineering Journal, 2022, 428:131205.1- 131205.9.
[44] TAN M, SHI X, LIU W, et al. Synergistic Texturing and Bi/Sb‐Te Antisite Doping Secure High Thermoelectric Performance in Bi0.5Sb1.5Te3‐Based Thin Films[J]. Advanced Energy Materials, 2021, 11(40):2102578.1-2102578.8.
[45] FU L, LEE K H, KIM S I, et al. Hidden role of intrinsic Sb-rich nano-precipitates for high-performance Bi2-Sb Te3 thermoelectric alloys[J]. Acta Materialia, 2021, 215:117058.1-117058.11.
[46] HONG M, CHEN ZG, YANG L, et al. Achieving zT > 2 in p-Type AgSbTe2−x Sex Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults[J]. Advanced Energy Materials, 2018, 8(9):1702333.1-1702333.7.
[47] XING T, SONG Q, QIU P, et al. Superior performance and high service stability for GeTe-based thermoelectric compounds[J]. National Science Review, 2019, 6(5): 944-954.
[48] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390):778-783.
[49] PEI YZ, LALONDE A D, SNYDER G J, et al. High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe[J]. Advanced Energy Materials, 2012, 2(6):670-675.
[50] DI C, XU W, ZHU D, et al. Organic thermoelectrics for green energy[J]. National Science Review, 2016, 3(3):269-271.
[51] ZHOU W, FAN Q, ZHANG Q, et al. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture[J]. Nature Communications, 2017, 8(1):14886-14886.
[52] WU J, SUN Y, XU W, et al. Investigating thermoelectric properties of doped polyaniline nanowires[J]. Synthetic Metals, 2014, 189:177-182.
[53] WANG H, YU C. Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration[J]. Joule, 2019, 3(1):53-80.
[54] DING Y, QIU Y, CAI K, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator.[J]. Nature Communications, 2019, 10:841.1-841.7.
[55] LIANG J, WANG T, QIU P, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices[J]. Energy & Environmental Science, 2019, 12(10):2983-2990.
[56] CHOI H, KIMY J, SONG J, et al. UV‐Curable Silver Electrode for Screen‐Printed Thermoelectric Generator[J]. Advanced Functional Materials, 2019, 29(20):1901505.1-1901505.6.
[57] QIU J, YAN Y, LUO T, et al. 3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance[J]. Energy & Environmental Science, 2019, 12(10):3106-3117.
[58] KIM F, KWON B, EOM Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks[J]. Nature Energy, 2018, 3(4): 301- 309.
[59] BUBNOVA O, KHAN Z U, MALTI A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)[J]. Nature Materials, 2011, 10(6):429-433.
[60] ASTRAIN D E, VIAN J, DOMINGUEZ M. Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation [J]. Applied Thermal Engineering, 2003, 23(17):2183-2200.
[61] DU CY, WEN CD. Experimental investigation and numerical analysis for onestage thermoelectric cooler considering Thomson effect[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24):4875-4884.
[62] HUANG MJ, YEN RH, WANG AB. The influence of the Thomson effect on the performance of a thermoelectric cooler [J]. International Journal of Heat and Mass Transfer, 2005, 48(2):413-418.
[63] SNYDER G J, LIM J R, HUANG C K, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process[J]. Nature PublishingGroup, 2003, 2(8): 528-531.
[64] KAUSHIK S, MANIKANDAN S, HANS R. Energy and exergy analysis of an annular thermoelectric heat pump[J]. Journal of Electronic Materials, 2016, 45(7): 3400-3409.
[65] LANDECKER K. Improvement of the performance of Peltier junctions for thermoelectric cooling [J]. Journal of Physics C: Solid State Physics,1970, 3:2146.
[66] BADILLO C A, OLIVARES M A, RUIZ P E. Performance of segmented thermoelectric cooler micro-elements with different geometric shapes and temperature-dependent properties[J]. Entropy, 2018, 20(2):118.1-118.17.
[67] VANEY J B, YAMINI S A, TAKAKI H, et al. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite[J]. Materials Today Physics, 2019, 9:100090.1-100090.10.
[68] MUZAFFAR M U, ZHU B, YANG Q, et al. Suppressing bipolar effect to broadening the optimum range of thermoelectric performance for p-type bismuth telluride–based alloys via calcium doping[J]. Materials Today Physics, 2019, 9: 100130.1-100130.10.
[69] HICKS L D, DRESSELHAUS M S. Effect of fquantum-well structures on the thermoelectric figure of merit[J].Physical Review B, 1993, 47(19):12727-12731.
[70] OUYANG L, GUO L, CAI W, et al. Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(29):11280-11285.
[71] CHEN Z, PEI W, ZHANG S, et al. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing[J]. Materials Science and Engineering A, 2019, 769:138484.1-138484.10.
[72] WANG W, LU Z, ZENG M, et al. Achieving high transverse rupture strength of WC-8Co hardmetals through forming plate-like WC grains by plasma assisted milling[J]. Materials Chemistry and Physics, 2017, 190:128-135.
[73] PAN Y, QIU Y, WITTING I, et al. Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance[J]. Energy & Environmental Science, 2019, 12(2):624-630.
[74] 张骐昊.方钴矿基热电发电器件的优化设计与性能研究[D].上海:中国科学院上海 硅酸盐研究所,2017.
[75] ANTONOVA E E, LOOMAN D C. Finite elements for thermoelectric device analysis in ANSYS [C]//proceedings of the ICT 2005 24th International Conference on Thermoelectrics. Clemson:IEEE, 2005:200-203.
[76] DINCA M P, GHEORGHE M, GALVIN P. Design of a PID controller for a PCR micro reactor[J]. IEEE Transactions on Education, 2009, 52(1):116-125.
[77] DEBNATH M K. Automatic Generation Control Including Solar Thermal Power Generation with Fuzzy-PID Controller with Derivative Filter[J]. International Journal of Renewable Energy Research, 2018, 8(1):26-35.

Academic Degree Assessment Sub committee
中国科学院深圳理工大学(筹)联合培养
Domestic book classification number
TB34
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343166
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
朱邦瑞. PCR用高热流密度高效热电制冷器件的研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032288-朱邦瑞-中国科学院深圳(12056KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[朱邦瑞]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[朱邦瑞]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[朱邦瑞]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.